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nucleus is either 8" or X" in a particle-stable state.
(These reactions are kinematically distinguishable, and
would lead to a bump on the rising edge of the diBeren-
tial cross-sections in Figs. 10-12).From the data we can
say that these processes therefore amount to less than
about 10% of the total pion photoproduction cross-
section from carbon at 200 Mev photon energy.
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Elastic scattering cross sections of 183-Mev positrons and electrons are calculated for various charge
distributions of the Ca and Au nuclei. It is shown that the combined use of positron and electron scattering
measurements can lead to a determination of the nuclear charge distribution which is more accurate than
that derived from either one of the scattering cross sections when used by itself. The scattered particles
obey Dirac's equation and the nuclei are assumed to be static spherically symmetric charge distributions,
whose radial dependence is given in terms of a three-parameter family of curves.

I. INTRODUCTION

GREAT deal of information concerning the de-
pendence of nuclear charge density on radial

distance has been achieved in the last years, in particu-
lar by the high-energy electron scattering experiments. '
The charge density is determined with highest accuracy
at the nuclear surface, near the "halfway point, " a
certain amount of ambiguity still remaining at the
central and tail regions. Positrons may prove useful in
resolving such uncertainties because, due to repulsion
rather than attraction of the wave function from the
center of the nucleus, the diGerent regions of the nuclear
charge distribution should affect the cross section with
weights di6ering from those in the case of electrons. '

This work is an attempt to establish the nature and
extent of such positron-electron differences in a rough
exploratory fashion. Cross sections of positrons and
electrons scattered by nuclei having various spherical
charge distributions are calculated numerically. The
radial dependence of the nuclear charge distributions
considered in this work is given in terms of three

*This research was supported by the U. S. Air Force under a
contract monitored by the Air Force Ofhce of Scientific Research
of the Air Research and Development Command.' K. W. Ford and D. L. Hill, Ann. Rev. Nuclear Sci. 5, 25 (1955).' R. Hofstadter, Ann. Rev. Nuclear Sci. 7, 231 (1957).' The authors are indebted to Professor G. Breit for bringing
this point to their attention. Compare also with footnote 12.

parameters and can be made to vary continuously from
a "wine-bottle" to a Woods-Saxon form. The effect on
the electron scattering cross section produced by a
change in the form of the nuclear charge distribution is
compared to the corresponding effect on the positron
cross section. Conclusions are drawn regarding the re-
duction of the inaccuracy in the determination of the
charge distribution from the combined e+ and e scatter-
ing experiments and analyses. Incidentally, re6nement
of this type of investigation might ultimately permit
the detection of effects which are usually neglected in
the calculations, for instance, the deformation from
sphericity which could occur during the scattering.

In Sec. III a comparison between the electron and
positron cross sections is made for four shapes of the
charge distribution of Ca. Two of the charge distribu-
tions (WB—1 and WB—2) have various central wine-
bottle-like depressions, and are intended to furnish a
comparison of sensitivity of electron and positron scat-
tering to the internal regions of the nucleus. The two
other charge distributions (WS—1 and WS—2) have no
central depression but differ instead by 6% in their
surface thickness. The nucleus chosen is Ca because in
this case the numerical inaccuracies in the cross section
are estimated to be small compared to the effect due to
the changes of the charge distribution.

Two other charge distributions are considered for the
nucleus of Au. The effects are sizable in this case, but



SCATTERING OF POS ITRONS AN D ELECTRONS 133i

the accuracy of the calculation, as discussed in Sec. IV,
is smaller than in the case of Ca. A list of some of the
notations used in what follows is given below.

~=P/h, where i' is Planck's constant divided by 2n.,
and p the momentum of the incident particle.

x=~r, where r is the radial distance from the center of
the nucleus.

sp =Kfp the matching radius.
Zn=&Ze'/hc. The upper sign refers to electrons, the

lower one to positrons. The atomic number of target
nucleus is Z.

P=n/c, where 7i is the velocity of the incident particle.
~/0

k = eigenvalue of angular momentum operator
pat L v+1) as delned for instance in the work cited
in footnote 10. The values are &1, &2, etc.

R and I superscripts denote quantities occurring in the
calculation of the regular and irregular Coulomb
wave functions.

Gi, (x) and Fi, (x) are nuclear wave functions defined in
Eqs. (A1) and (A2) of the Appendix.

5&, are the nuclear phase shifts defined in Eq. (A3').
s, c, and m are the three parameters which determine

the shape of the nuclear charge distribution as given
by Eq (1).

WS denotes a charge distribution of Woods-Saxon form,
given by Eq. (1) with w=0.

WB denotes a charge distribution of a wine-bottle form,
given by Eq. (1) when wNO.

II. METHOD

Since analytic approximations are unreliable in the
high-energy region for nuclei of large atomic number Z,
the work is carried out numerically in a similar spirit
to that of Hahn, Ravenhall, and Hofstadter. ' The
potential responsible for the scattering is assumed to be
due to a static spherical nuclear charge distribution.
Effects due to recoil, inelasticity, and deformation from
sphericity are neglected in this work. The calculations
have been performed on an IBM 650 calculator employ-
ing a modification of a program used previously for
obtaining p meson cross sections and polarizations. ' The
method is very similar to the one used by Vennie,
Ravenhall, and Wilson' and involves numerically inte-
grating the electron or positron wave function from the
origin to a point xp outside the nucleus. ~ The phase
shifts are obtained by matching the wave functions to
the regular and irregular Coulomb wave functions calcu-
lated at xp by series expansion. Additional details are
contained in the work on p scattering' which will be
denoted here as I for further references.

48. Hahn, D. G. Ravenhall, and R. Hofstadter, Phys. Rev.
101, 1131 (1956).

' G. H. Rawitscher, Phys. Rev. 112, 1274 (1958).
' D. R. Yennie, D. G. Ravenhall, and R. N. Wilson, Phys. Rev.

95, 500 (1954).
A list of notations and definitions is given at the end of Sec. I.

The three-parameter charge distribution p (r) has
the form'

p(r) =po(1+wr'/c')/(1+exp/(r —c)/sj}, (1)

where c and s are constants which determine the
halfway radius and the surface thickness, respectively,
pp is a suitable normalization constant such that
4~Jo"p(r)r'dr=Ze, and w is a third parameter which,
when different from zero, produces the "wine-bottle"-
like central depression. It should be kept in mind that
m in addition increases the value of the charge distribu-
tion in the surface region, as becomes apparent in Fig. 6
of Hahn et al.' or Fig. 3 of this paper. In the case of
m=0, the surface thickness t, as described by Hof-
stadter, ' is equal to 4.40s, and the halfway radius is
given by c. It is also customary to define cp by the
relation c=cQ &.

The choice of the parameters c, s, and m for the
cases I to IV presented in Sec. III is suggested by the
following considerations.

In the determination of the nuclear charge distribu-
tion from the experimental scattering cross sections, the
procedure is as follows: A family of radial shapes for
the charge distribution is chosen as a function of a
number of parameters. Each point in the space of the
parameters determines a particular form for the charge
distribution and a corresponding theoretical scattering
cross section. On account of the experimental error in
the cross section, the form of the charge distribution
cannot be determined uniquely, giving rise to an "un-
certainty region" in the space of the parameters which
surrounds the point corresponding to the best fit. That
the uncertainty region can be rather extended has beeD
shown by the three-parameter investigation of Hahn
et a/. 4 for the case of 183-Mev electrons scattering on
Au, as will be described below.

If positron scattering were simultaneously available,
then an additional positron uncertainty region could be
established in the space of the charge distribution
parameters, and the intersection of the two regions
would determine the final uncertainty in the charge dis-
tributi. on. The degree of usefulness of employing posi-
trons in addition to electrons can, therefore, be ascer-
tained from a study of the nature of the overlap of the
two regions of uncertainty.

The various choices of shapes of nuclear charge dis-
tributions which have been tried in connection with
electron scattering have shown' that the charge dis-
tribution is determined with greatest accuracy in the
surface region. In the case of positron scattering, the
repulsive nature of the Coulomb interaction leads one
to expect that the charge distribution is determined
with greatest accuracy in a region somewhat further

This form was first introduced in the work cited in footnote 4,
Eq. (8), where it is denoted by "shape (8)" or 3-parameter. In
the present paper this nuclear distribution will be denoted by
WB whenever ze/0 and WS otherwise. The latter is denoted by
EXT in the work cited in footnote 5.
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FIG. 1. Comparison of scattering cross sections for various
radial nuclear charge distributions. The first pair of curves shows
the scattering of 183 Mev positrons on gold. The form of the nu-
clear charge distribution is given in Eq. (1), text. The values of
the parameters are taken from the work cited in footnote 4,
Table I. For the curve labeled WS the parameters are c=6.38,
a=0.535, m=0; for the curve labeled WB they are c=6.07,
a=0.613, and m =0.64. The corresponding electron cross sections
are plotted in Fig. 3 of the reference cited in footnote 4, and the
nuclear charge distributions are shown in Fig. 6 of the same refer-
ence. Numerical uncertainties in the theoretical values are indi-
cated in Fig. 2, where the comparison to the corresponding
electron cross section is also illustrated. The other two pairs of
curves illustrate the 183-Mev electron and positron cross sections
for Ca calculated in connection with case II. The comparison of
the cross sections is shown in Fig. 4, where an estimate of the theo-
retical accuracy is also given. The nuclear charge distributions
corresponding to the curves labeled WB—1 and WS—1 are de6ned
in Table I. The dependence of the nuclear charge distribution on
the radial distance resembles either a Woods-Saxon shape (WS)
or a wine bottle shape (WB).

shapes carried out by Hahn et al.4 for 183 Mev electrons
scattered by gold. The values of the nuclear shape
parameters are taken from Table I of their paper4 and
listed in the caption of Fig. 1.The positron cross sections
are shown in Fig. 1. Figure 2 gives the ratio of the
electron cross sections corresponding to the two nuclear
distributions as well as the ratio for the corresponding
positron cross sections. Comparison of the two ratios
shows a large difference, mainly in the backward direc-
tion. However, the result should only be taken as a
qualitative indication of the relative merits of the two
particles in view of the numerical uncertainties attached
to this particular case. An estimate of these inaccuracies
is contained in Sec. IV. All cross-section ratios contained
in the shaded area of Fig. 3 have an uncertainty larger
than the value of the ratio itself. Cross section ratios
at a given angle which are not contained within the
shaded area have a numerical uncertainty less than the
value indicated by the upper and lower borders of the
shaded area at the same angle.

The calculations to be described next refer to 183-Mev
electrons and positrons scattered by Ca". In these cases
the accuracy is better than for the case of Au because
of the smaller value of the matching radius xo. This
point will be discussed in Sec. IV. On the other hand,
due to the smaller values of Z and xo, the differences
between the cross sections corresponding to the various
nuclear charge distributions are also less pronounced. )

Case II, an extension of case I to the nucleus of Ca,
is intended to compare the effectiveness of positrons
and electrons in resolving a WS—WB ambiguity. The
values of c and s for the Woods-Saxon shape, labeled
WS—1, are equal to the ones derived from the electron
scattering experiments. ' ' For the wine-bottle-like dis-
tribution, denoted by WB—1, the value of m is taken
arbitrarily equal to 0.64, and the values of c and s are

removed from the center than in the case of electron
scattering at the same energy. This expected difference
is kept in mind in the present comparison of the electron
and positron shape-parameter uncertainty regions, es-
pecially for the nuclear surface parameters.

The cases described in Sec. III are intended to throw
light on the differences in the positron and electron
uncertainty regions in the space of the shape parameters.
In particular, cases I and II show that the wine bottle
Woods-Saxon ambiguity described by Hahn et al.' which
arises in electron scattering can be reduced by the
measurement of positron scattering. Cases III and IV
explore the difference of the sensitivity of positrons and
electrons to a change in the nuclear surface and interior
regions, respectively.

III. CALCULATION

Case I is an extension to positrons of the comparison
between wine bottle (WB) and Woods-Saxon (WS)

0
0 60 I 20

Scattering Ang le (degrees)
I 80

FIG. 2. Comparison of the sensitivity of 183-Mev electron and
positron differential scattering cross sections to a change in the
radial charge distribution of the Au nucleus. The two distributions
are the WB (wine bottle) and WS (Woods-Saxon) de6ned in the
caption to Fig. 1, and described as case I in the text. The ratio of
the WS to the WB cross sections is shown by the dashed curve for
positrons and by the solid line for electrons. The shaded area shows
an estimate of the numerical uncertainty of the cross section
ratios as described in the text.
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TABLE I. Charge distribution parameters for the nucleus of
Ca used for cases II, III, and IV. The parameters are defined in
connection with Eq. (1).

Shape

WS—1
WS—2
WB—1
WB—2

0
0

0.64
1.00

3.625
3.625
3.336
3.129

0.568
0.602
0.560
0.570

Cp

1.060
1.060
0.976
0.915

2.500
2.650
2.464
2.510

b b

chosen by analogy to the Au case such that the resulting
electron cross section is reasonably close to the WS
electron cross section. The values of the parameters
which define the various charge distributions used for
cases II—IU are listed in Table I. In Fig. 3 the nuclear
charge distributions for case II are compared. The
values of the cross section have already been presented
in Fig. 1, and in Fig. 4 their ratios are compared. The
shaded area shows the limits of the uncertainty factor
up to which the cross section ratios are determined as
explained in connection to case I. Comparison of the re-
sults shows that positrons are more sensitive than elec-
trons to the change of nuclear charge distribution, the
diGerence in the ratios of cross sections being about a

0
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FIG. 4. Comparison of 183-Mev electron and positron cross
sections for two nuclear charge distributions of Ca. The distribu-
tions are WS—1 and WB-1 defined in Table I and discussed as
case II in the text. The ordinate shows the ratio of the cross
sections Owa I/o.wB 1, the solid curve referring to electrons, the
dotted one to positrons. The two curves permit a comparison of the
effect on the cross section of a change in the nuclear charge dis-
tribution from WS—1 to WB—1, both for electrons and for posi-
trons. The cross section ratios are calculated at the angles 30',
45', etc. up to 150' and connected by straight lines. The circles
and squares are the results of accuracy tests A and 8, respectively,
described in Sec. IV. The shaded area indicates an upper limit to
the numerical uncertainties, as described in the text.
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factor of 1.8 near the region of the diGraction dip. ' From
the WS—WB comparisons of cases I and II it cannot be
concluded that positrons are better probes of the nuclear
interior than electrons are. The reason is that the WS
charge distribution divers from that for WB in the sur-
face region as well as inside, as can be seen from the plot
of r'p(r) versus r in Fig. 6 of Hahn et at.' or from the
lower half of Fig. 3 of this paper. This observation pro-
vides the motivation for the work on case III described
below. The lower part of Fig. 3 shows differences of the
charge contained within the distance r for the various
forms of the charge distributions used in the calculations
of cases II to IU. The curves are helpful in the compari-
son of the small charge distribution diGerences at large
distances, and in addition illustrate a quantity of physi-
cal interest which is the charge. For comparison, the
quantity which enters the calculation of the potential
at distance R is

pB 00

(1/R) r'pdr+ rpdr,J, ~z
Ql
lI

2

t I I

0 5 9
r, Distance from Center of Nucleus in l0 cm

-l5

FIG. 3. Charge distributions p(r) vs r used in the calculation of
cases II to IV. The normalization is such that JP r2pdr is the
same for all charge distributions. The various distributions are
defined by Eq. (1) with the parameters given in Table I. DiGer-
ences between the charge distributions for large r are too small to
be apparent from the plot of p(r) vs r. These diGerences are illus-
trated in the lower part of the figure by means of plots of the differ-
ence for two distributions of the charge Jp" r"pdr' contained
within the radius r. The ordinate is in arbitrary units.

showing that p(r) does not enter the calculations
directly.

Case III. The effect of a 6'Po change in the surface
thickness t on the cross section for a WS nuclear shape
is shown in Fig. 5. The more diffuse shape is denoted by
WS—2. The dotted curve represents the ratio of the cross
sections for positrons, the dash dot curve refers to elec-
trons. With the exception of the point at 165', the posi-

' A more accurate search for the WB shape parameters such that
the WS and WB electron cross section diAerence is minimized
does not seem warranted in the present preliminary investigation.
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accuracy of the wave function determines to a large
extent the accuracy of the nuclear phase shift and hence
that of the cross section, as discussed in the following.

Outside of the nuclear region the potential is Coulomb
and the nuclear radial wave functions" G~ and F~ can
be expressed as linear combinations of the regular and
irregular Coulomb wave functions through the relations'

ey
~ +egq

~0+ o i/ e ~

+
P~=CaP~"+D~Ps'. (2)

The functions G, F, G~, F~, G~, and F are defined in
Eqs. (A1) to (A5) of the Appendix, where a connection
to the quantities numerically calculated is also given.
The point beyond which the charge distribution is
neglected in the numerical calculations is denoted by
xo and will be referred to as the matching point. For
each k the eGects of the nuclear charge distribution
enters the calculation of the nuclear phase shift 5& only
through the ratio D&/C&, as is shown by Eq. (A15). The
calculation of Ds/Cs in terms of the radial wave func-
tions involves the combination

60 l20
Scattering Angle (degrees) Gs~ —ps~(Gs/ps) (3)

FIG. 5. Comparison of the eBect on the scattering cross section
of a change in the interior region of the nuclear charge distribution
of Ca 0 to a change at the surface. The upper two curves show the
ratio of the cross sections for two WS charge distributions which
differ by 6% in the surface thickness, described as case III in the
text, and defined in Table I. Here the ordinate 01/0.2 represents
the ratio o-ws I/O. ws 2, where WS—2 has the larger surface thick-
ness. The dotted line is for positrons, the dot dash curve corre-
sponds to electrons. The lower two curves, described in the text as
case IV, correspond to a change of the interior of the nucleus. In
this case the ordinate o ~/or represents the ratio of the differential
cross sections for charge distributions WB—1 and WB—2, defined in
Table I and illustrated in Fig. 3. The dashed curve is for positrons,
the solid line refers to electrons. The cross section ratios are calcu-
lated at the angles 30', 45', etc. , and connected by straight lines.
The circles represent the results of the numerical uncertainty
test A described in Sec. IV.

tron cross sections appear to be more affected by the
nuclear surface change than the electron cross sections.

For case IV a distribution WB—2 is selected which
divers from WB—1 mainly in the central nuclear region,
as is illustrated in Fig. 3. The ratios for the two dis-
tributions of the positron and electron cross sections are
illustrated in Fig. 5. Comparison of the two ratios shows
that a change from WB—1 to WB—2 in the nuclear charge
distribution changes the electron cross section at least
as much as it does the positron cross section. It is very
likely that electrons are more effective than positrons in
"seeing" the inside of the nucleus. This conclusion,
although suggested by the results of case IV, is not
definitely shown here because of the lack of accuracy
of these results.

IV. ACCURACY ESTIMATES

The numerical errors in the calculation of the Cou-
lomb and nuclear wave functions at the matching point
will be investigated in some detail in this section. The

as can be seen for instance from Eq. (9A) of I.' For a
given accuracy in the radial wave functions the accuracy
obtained for the nuclear phase shift depends on the
degree of cancellation between the two terms in ex-
pression (3)."

An indication of the cancellation per unit nuclear
phase shift can be obtained from the quantity

GB pB (G/p)
/Et ( '+~) —t ( ')]=Q. (4)

r [gR+pB (G/p) ]
Here the subscripts k have been suppressed. For the
calculations of cases II to IV, xo was near 7.7 and near
8.7 for test case B. The values k in these calculations,
for which the nuclear phase shift is nonnegligible, run
from ~1 to +8. For k larger than 4 the nuclear phase
shift is less than 10 ' rad. Values of Q as a function of
xo have been obtained for the sample cases k= ~1 and
k= &6 for 183 Mev electrons and positrons scattering
on form WS—1 of Ca". Use was made of expression
(A14) which is a good approximation to Q in this case.
For &= &1, Q is above 2 in the vicinity of xs ——8 for
both electrons and positrons. For k =&6, Q goes through
a minimum near so= 7.8, where its value is close to 0.7.
No particularly troublesome cancellations are, therefore,
to be expected in the calculations, other than the can-
cellations which naturally occur whenever the nuclear
phase shifts are small. For example, for a nuclear phase
shift 5s of 10 ' rad, the cancellation in the expression (3)

~0 G. Breit and G. E. Brown, Phys. Rev. 76, 1307 (1949).
11 The additional quantity (G/F}P~—G~ enters in the calculation

of Dy,/Cq in terms of the wave functions. For the case of interest,
&or which the nuclear phase shift is small, cancellations in the
above quantity are small compared to the cancellation in expres-
sion (3) and will not be considered here.
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wilI occur in the first two significant figures, indicating.
that an accuracy of better than 0.1% is required in the
knowledge of the wave funcztions in order to obtain an
accuracy of 10% for the nuclear; phase shift.

The Coulomb wave functions are calculated at the
matching point by a power series expansion in xp, using,
the expression (11A) of I.' Since the coeflzcients in the
expansion are related by recurrence relations, numerical
errors can accumulate and increase as the number of
terms in the summation increases, as is the case when
the value of xp increases.

Two tests have been performed in order to estimate
the accuracy in the calculations of the cross sections of
cases II and IV. Both tests have been done for 183 Mev
electrons and the WS—1 charge distribution of the nu-
cleus of Ca. The matching point for this case has a value
close to 7.70.

In test A the precision of the Coulomb and nuclear
wave functions is estimated, and the resulting precision
in the differential cross section is calculated. The pro-
cedure is as follows. Electron regular and irregular
Coulomb wave functions are computed by series expan-
sion at x close to 1.7, where the accuracy is expected to
be better than at 7.7 on account of the smaller number
of terms required in the expansion. If these wave func-
tions were now numerically integrated out to sp=7.7
and then compared to the Coulomb wave functions
calculated by series expansion at that point, an estimate
of the error would be obtained. However, in order to
avoid possible initial condition errors due to the in-
creasing or decreasing nature of the particular regular
and irregular Coulomb wave functions in the interval
1.7 (x(7.7, a combination of these functions is utilized
instead. The combinations are of the type indicated by
Eq. (2), with the coefficients C& and D& taken equal to
those occurring in the calculation of case II, electrons,
WS—1. The ratio of the wave functions at @=7.7 ob-
tained in this manner by integration started at 1.7 is
labeled (G/F)z„~', the corresponding ratio obtained by
using the same combination of Coulomb wave functions
calculated by series expansion at @=7.7 is labeled
(G/P) z. The numerical integration is done by the same
method as the one used in the calculation of the nuclear
wave functions, as described in I, and the integration
interval is varied until the integration error is definitely
smaller than the difference to be measured. The
expression

L(G/&) z—(G/&) z.~]/(G/&) z.~

is found to be less than 2)&10 '" for k=~1 and &6,
indicating that the error in the ratio of Coulomb wave
functions is less than 10 '%.

From the variation of the integration interval, the
error in the nuclear wave function ratios as calculated
in cases II to IV is estimated to be less than 10 '% and,
therefore, each term in the expression (3) should have
an error of less than 10 '%. For the purpose of test A,
a change of about 10 '% is deliberately introduced into

the regular and irregular Coulomb wave'functions at the
matching point by replacing the sixth, . seventh, and-

eighth sigriificant figures by zeros. The cross section'
resulting from these'modified wave functions is recalcu-
lh, ted and the rati'o of the cross- section thus obtained
to the original one, .

(da/dQ) T,g/(do/dD),

is represented by circles in Figs. 4 and 5.
In test 8 the matching point is changed from the

original value close to 7.7 to the value 8.7, and the cross
section is recalculated without further alterations. Care
is taken that all nuclear charge lies within the original
xp also in this case. The ratio of new to old cross sections
is shown by the squares in Fig. 4. The merit of this test
is that no arti6cial conditions are introduced. On the
other hand, test 8 is possibly too severe because of the
large value of the matching distance which increases the
error in the Coulomb wave functions to a value greater
than what it presumably is in the calculations of
cases II to IV.

The shaded area shown in Fig. 4 is obtained by
plotting the inverse of the cross section ratios of tests A
and 8, in addition to the direct ratios, and then drawing
smooth upper and lower limiting curves. The shaded
area shown in Fig. 2 is obtained in a similar fashion,
based on a test A done in this case for 183-Mev electrons
scattering on the WS distribution of the gold nucleus.

V. SUMMARY AND CONCLUSIONS

A comparison between electrons and positrons as tools
for determining the radial dependence of the nuclear
charge density has been undertaken by means of a few
exploratory sample calculations.

The method consists in varying the shape of the radial
dependence of the nuclear charge distribution as de-
termined by three parameters, and numerically calcu-
lating the scattering cross sections for bothpositrons
and electrons for each shape. The nuclei studied are
Ca" and Au" at 183-Mev incident energy.

A comparison of the results indicates that positron
cross sections are affected differently than electron cross
sections for a given change in the nuclear charge dis-
tribution" by as much as a factor of 2 in the case of Au
and by a factor of about 1.5 in the case of Ca for one of
the examples studied. Indications exist that positrons
are more affected than electrons by a change of the
charge distribution at the nuclear surface. It is felt that
additional investigation of the difference between elec-
trons and positrons, as well as p mesons, in their ability
to serve as nuclear probes, would be warranted.

"Equation (A7) of the Appendix expresses the change in phase
shift produced by a change in potential V—V in terms of an inte-
gral of V—V over the interior of the nucleus. The weighting factor
is the combination FIi+GG which depends on whether the
potential V is attractive or repulsive.
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APPENDIX

ps= ps +fis. (A3')

The functions Ii q and Gg are related to the functions

'3 The notation and use of the wave functions is along the lines
of the work cited in footnote 10, The authors are grateful to
Professor G. Breit for pointing out to them a simpli6cation in the
original proof of Eqs. (A6) and (A7).

The functions" Fs(r) and Gs(r) are equal to r times
the corresponding radial wave functions and satisfy the
equations,

(1/Ac) (E+mc' —V)F s (d/dr+—k/r) Gs =0,

(1/Ac) (E—mc' —V)Gs+ (d/dr k/r)F s—= 0,
(A1)

where E and m are, respectively, the total energy and
rest mass of the incident particle, V is the electrostatic
potential due to the nuclear charge distribution, and k
is defined at the end of Sec. I.

The normalization is such that asymptotically

Gy~ sin+If, ,
(A2)

Fs [(E mc')/—(E+mc')5l costs,

where y~ is defined below.
In the point nucleus case, V is the Coulomb potential

and

y„s x ks./2 —
ri ln2x+o „s k&0

(A3)=x—(~k~ —1)s./2 —
r) ln2x+oss k(0.

Here the superscript 5 stands for either 8 or I according
to whether the quantities so labeled refer to the regular
or irregular Coulomb wave functions, respectively.
For example, o~~ is the relativistic equivalent of the
quantity o.l„,usually denoted as the Coulomb phase
shift, where L=

~
k

~

—1.The right-hand side of Eq. (A6)
of I' gives an expression for both o.l,

~ and o.~, where
they are denoted by p I,

~ and p &~. The irregular
Coulomb wave function used in this work is defined, in
analogy to the regular function, in terms of a power
series expansion given by Eq. (11A) of Is together with
Eq. (AS) of this paper. As a result, unlike the non-
relativistic case, o.sr and o.P do not differ by s./2.

In the case that U corresponds to an extended nuclear
charge distribution, the nuclear wave functions Ii ~ and
Gs are regular at the origin and satisfy relations (A1)
and (A2). In this case the asymptotic phase ys differs
from yg,

"by the nuclear phase shift BI,

F & and g s of Is by the equations"

G.=L(E/ ")+15'e-.,
Fs ———[(E/mc') —15'5 g, .

(A4)

The nuclear wave functions hs and Fs are calculated
by means of numerical integration of Eqs. (2A) of I.'
The Coulomb wave functions gs'~, gs'r, &i,'~ and

of I are the quantities numerically calculated by
series expansion. They are related to the unprimed
quantities by the expressions

gs'= [(Elmo')+15 'Ns'xo'"' gs"
Ps [(E/m——c')+15 lNs xs'& "&Ps' (AS)

Here the superscript S stands for either R or I and

s(k) =~ (k' —Z'n') *',

the + and —signs corresponding, respectively, to the
regular and irregular cases. The normalization coe%-
cients Nss are given by Eq. (13A) of I.' The definition
of G and F used in this work, Eqs. (A1) and (A2), is
along the lines of Breit and Brown, "lends itself better
for the passage to the nonrelativistic case, and is more
useful for the derivations to be given below. The mass,
although negligible for the application to positrons and
electrons, is kept in the formulas for the sake of
completeness.

It will now be shown how

Gs FP GsaF s' [(E—mc')/—(——E+mc') 5*

)&sin(a. sr —o.~"), (A6)

sin(6/, —6/, )= [(E+mc')/p'c'5—

XJ (GsGs+FsFs) (V V)dx, (A7—)
0

can be derived. These relations have been found useful
in checking the numerical work and also as partial indi-
cators of the accuracy of the numerical methods used.
Here Gs and Fs are defined by Eqs. (A1) and (A2),
with the potential given by V, while the potential corre-
sponding to G~ and Ii ~ is U. By defining the column
vectors

(Fa) (Fs)
&G„&

' Eg) ' (AS)

'4 A,misprint occurred in Eqs. (j.A) of I.The correct relations are

Ga=~ '(Lf:+&)&pa,
z,=r- (z—1)~m,.

The function G and Ii of I should not be confused with the func-
tions denoted by the same symbols in the present work. In addi-
tion, the quantity p ln2x should be added to the expression in
square brackets of Eqs. (4A) of I.
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-k/r

(1/A) (p —mc) )

)0 -ii ~1 Oqs=
Ei 0) &0 1)

and the matrices

((1/A) (p+mc)

—k/r
(A9)

The left-hand side vanishes at x= 0, and making use of
Eqs. (A2), (A3) and (A3') at x= ~, relation (A7) re-
sults. For computational purposes, a useful form of
Eq. (A6) in terms of the functions F~'R, g~'R defined

by the relations (AS) is the following:

B~~ I ~„I~„B
= —2(k' —~'~')'nL(1 —0')'+ 1)/(~'~') (A13)

where p= (F- V)//c a—nd p= (E V)/c—, the Eqs. (A1)
can be written

(A10)(P+ ed//«)x =0,

yTPT+ (RI/«)gT~T 0 (A11)

where the superscript T indicates transposition. By
multiplying Eq. (A10) on the left by gT and Eq. (A11)
on the right by g, subtracting, and remembering that
e = —~, one obtains

PT P= (1/A) (——V+ U)I.

By integrating both sides of Eq. (A12) over dx from
0 to ~, one obtains

(GkFu —F~R)

d(x "x)/«= xT(P—P')x (A12)

If V= t/ and E=E, then P= P= P~ and the right-hand
side of Eq. (A12) vanishes. The left-hand side is the
derivative of G~F~—E~G~, which, therefore, is a con-
stant. By specializing to the Coulomb case, referring to
regular and irregular wave functions by symbols without
and with bars, respectively, and by making use of the
asymptotic relations (A2) and (A3), Eq. (A6) is
obtained.

If V/V and E=E, then

An approximate expression for Q, defined in Eq. (4) of
the text, is as follows

Q~=-2LG~') '
X$(E+eic')'*(E mc—') 2Fi,B) ' cos'aB (A14)

For simplicity the indices k are left out in what follows.
To prove the result, use is made of the relation

tan(aB+5) —tanaR

D/C sin(aI —aB)
(A15)

1+(D/C) (cosai/cosa" ) cos'a B

which is equivalent to Eq. (5A) of I.' Making use of
relation (2), one finds

GR FB(G/F) GRFI FRGI

GR+FB(G/F) 2(C/D)GBFB+ (GRFI+GIFB)

In the cases discussed in the text and where the can-
cellations in expression 3 are of importance, 6 and hence
D/C is small compared to 1, and GBFI+GIFB can be
neglected with respect to the term in C/D. Neglecting,
in addition, the term in D/C in the denominator of the
right hand side of Eq. (A15) and making use of expres-
sion (A6), the result (A14) follows. In case of zeros in
either G~ or F~, the approximations leading to Kq.
(A14) are not valid.


