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Two alternative schemes are proposed for the determination of electronic self-consistent field (SCF) orbitals
in atoms and molecules. They are designed to be applied principally to electronic configurations consisting
of two open shells. Both schemes are based upon the idea that the SCF orbitals are expanded in terms of
adequate basis functions but they are different in the way of solving the SCF problem. An attempt is made
to rate relative merits of both schemes, though they have not yet received any actual application.

I. INTRODUCTION

WO alternative formulations of the analytical
method are presented for solving the Hartree-
Fock self-consistent field (SCF) problem in atoms and
molecules. The first one is an explicit exposition of the
treatment described in a previous paper® (hereafter
referred to as I) and is a direct generalization of the
Roothaan procedure.? The second one is closely con-
nected with an idea indicated in the fourth section of I
and here the idea is developed to the ultimate point. A
rough statement of the applicability of these two
methods is as follows. The first one covers various
electron configurations with two open shells of different
symmetry species, while the second one can be applied
to two open shells of same as well as different symmetry
species. A simple molecular example: the electron con-
figurations (17, )Y(1my)Y and (AIm)¥(2m)¥ (1LM,
N<3) can be handled with the second method but
only (1m,)™(1w,)¥ with the first one. An obvious
advantage of the first method over the second one is
its more or less established practicability since the
Roothaan procedure has already been used efficiently
for atomic and molecular calculations. This does not,
however, imply that the second method could be
practically useless. It seems formidable for desk calcu-
lations but we may reasonably hope that it is well
within the reach of modern automatic computers.
Among other works on the present subject a recent
paper by Lefebvre® should be mentioned, in which he
adopts a different approach to the subject. Apparently
the methods described in the present paper seem to
have a wider range of applicability than Lefebvre’s
one, but the comparison between them should be based
upon actual experiences of applications to various
electronic systems of practical importance.

2. SPECIFICATION OF PROBLEM

We consider electronic systems of the following
specifications:
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(1) The total Hamiltonian JC is given by
=2 Hu)+32 ur (1/70), 1)

H(u) is the nuclear field plus kinetic energy operator
for the uth electron, and 7, the distance between the
uth and the »th electron.

(2) The total wave function & is, in general, a sum
of several Slater determinants ¥,:

d=3", CY,, (2)

where the C,’s are fixed coefficients. Each ¥, is an
antisymmetrized product of one-electron functions or
orbitals {¢;}, some of them being doubly occupied and
others singly occupied. Since we use the spin-free
Schridinger Hamiltonian, the C,’s may be determined
by requiring that the function @ is the simplest of wave
functions which belong to a certain spin-multiplicity.
The orbitals {¢;} may be assumed, without loss of
generality, to be mutually orthogonal. In referring to
the individual orbitals, we use the indices %, ! for the
closed-shell orbitals, m,# for the open-shell orbitals,
and 17, j for orbitals of either group.

(3) The expectation value of the energy is given by

E=(®|5|®)/(@|®), ©))
where

@lo= [ [e211av., @
n
(<I>[3€]<I>)=f-~f<1>*3€<1>IIdV“. (5)
"
It is usual to normalize functions in the following way:
(i <Pi>=f¢i*‘deV:5ii, (6)

(@|®)=1. )

Now we specify the explicit formula of the expec-
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tation value of the total energy:
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E=2 Zk Hk'I—Zk Zl (ijl_Kkl)_l"f[Z Zm Hm""f Zm Zn (Za]mn—men)_l"z Zk Zm (ijm'_Kkm):I
+f,[2 Zm’ Hm"'l"f, Zm' Z"' (Za'ljm'"'-_b,Km'n')_i_Z Zk Zm' (ijm’_Kkm’)]+2ff, Zm Zm’ L. (8)

Two sets of subscripts, (m,n) and (m',n'), are used
here in order to distinguish the two open shells which
we are concerned about in the following formulations.
a, b, f,and &/, o', f’ are numerical constants depending
on the specific case. The first two sums in Eq. (8)
represent the closed-shell energy, the next two sums
the energy of the first open shell, and the fifth sum the
interaction energy between the closed and the first
open shell. The next three sums are related to the second
open shell and have analogous meanings to those of the
foregoing three sums. The last sum represents the
interaction energy between the first and the second
open-shell. H;, J;;, and K;; are defined as usual:

Hi=(p:|H| 0, )
Jii={ei| il ed={ei|J:| 03,

Kii={o:| K| 00)={0;| Ki| ¢3),

(10)
(11)

and

Ji(ﬂ>¢<u>=[ ] sai*(V)%(V)(l/m»)dV»]w(u), (12)

Ki<u>¢<u>=[ | goi*o)ga(»)(1/rw>dvy]w(u>. (13)

The last term in Eq. (8), 211" > mm’ Lmms, cannot be
given an explicit and general expression. It depends on
the specific case. In some cases, it is expressed as a
linear combination of J;; and K;; but this is not always
true. (See I for more detailed discussions.)

Now our problem is to find the method by which we
can get the “best” orbitals {¢.}, that is to say, the
orbitals which minimize the expectation value of the
total energy. This is achieved by applying the vari-
ational principle to Eq. (8). In I, we derived a set of
equations (the Hartree-Fock equations) to be satisfied
by the orbitals { ¢;} and those equations were essentially
partial differential equations in three dimensions.

In the present paper we adopt a different line of
approach to the actual procedure of wvariation, an
approach most extensively developed by Roothaan.?
The idea is to expand each orbital ¢; in terms of a given
set of suitable basis functions X ,:

(14)

This expansion leads to a variational problem for the
coefficients {C;} and this time we deal with a set of
algebraic equations instead of partial differential
equations. The possible merits of this procedure are
discussed by Roothaan in his recent paper.?

SoiZZp X5Cpi-

3. FIRST METHOD

We start by imposing a further restriction on Eq.
(8), in that the two open shells should belong to
different symmetries. It is also necessary to divide the
whole family of closed shells into two groups. The first
group {¢x} contains all the closed-shell orbitals which
have the same symmetry property as that of the first
open-shell orbitals {¢m}; the second group {¢x} con-
tains all the closed-shell orbitals which have the same
symmetry property as that of the second open-shell
orbitals {¢m}. If there are remaining closed-shell
orbitals of symmetry species different from both { ¢}
and {¢n}, those closed shells can be grouped either
within the first group or within the second one.

Following Roothaan,? we introduce the notation
@rei I lieu of ¢;. In general, N or u refers to the irre-
ducible representation, or symmetry species; a or f
refers to the subspecies, that is, it labels the individual
members of the degenerate set that transforms ac-
cording to the representation \; and ¢ (or 7, --+) is a
numbering index which labéls orbitals which cannot
be distinguished by symmetry any more. Correspond-
ingly, we introduce symmetry basis functions Xep.
Each occupied orbital of a given species and subspecies
is a linear combination of the basis orbitals of the same
species and subspecies, and the expansion coefficients
are independent of the subspecies, in order to guarantee
that a degenerate set of occupied orbitals has the correct
transformation properties. Hence

QDXM':Z;; X)\apc)\pi- (15)
Here and in the following, the {C»,;} are considered to
be real. If we normalize gx.: to unity, then
(@rail Orai)=2 g CrpilXnap| Xrag)Crgi=bij-

This can be written as
qu CrpiSrpaCirei= 01y (16)
Srpa=a\! 2 e (Xrap| Xrag)- an

Here d» is the dimension of the representation A. Fol-
lowing Roothaan,> we modify the normalization con-
ditions for {C»,} in the following way:

222 CroiSrpdCrgr=drd1y,
222 CromSapdCrgn= fdrdmn,
qu Cxrom Sy peC g = f/d)\’am'n':
qu CrpeSrpeCrgm=0,
qu Cr ppSn pgCyr gmr =0.
These conditions constitute the constraints for the
variation process of the energy formula. It should be

where

(18)
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noted that it is not necessary to include the conditions
between {Crpm} and {Crpm'} as constraints because
these two open shells belong to different symmetry
species.
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Our next task is to get the expression of the total
energy E in terms of {Cy,} specified as above. This is
done straightforwardly with due attention to the
normalization conditions (18) which are a bit unusual:

E=2 Z?‘ qu Zk C)\pk(H)\pq‘I'hC,kpq)quk"*'Zk qu Zk Zu er Zl Ckpkcurl(zgkpq,urs_Jclpq,uw)cuslcqu
+2 Z)\ qu Zm Ckpm(Hkpq+h0,kpq)qum+Zk qu Zm Zu er Zn Ckpmcnrn<za<g)\pq,nr3"bgc)\pq.m)cusnckqm
+2 Z)x qu Zk Zu er Zn Ckpkcurn(Zé’kpq.urs_xkpq,um)cnsncxu""z ZX’ qu Zk' C)\’:ak’HN:qu)\’qk’
TN opa 2w 2w 2ors 2 CrpwCurrtr (25>\’pq.u'rs_%x’pq,n’rs)cu’sl’CNqk’+2 2x 2pq 2om Ov pm Hv pdCov g
"I'Z)\’ qu Zm’ Zu’ er Zn’ C)\’pM’Cn'rn’(20,5>\’m.u’rs_blsck’pq,M’N)Cu’sn’c)\’qw

h +2 Z)\’ qu Zk’ Zn’ Zra Zn’ Ck’pk’cn’m' (25)«17:1.#’78"'Sck’pq,u’TS>Cﬂ’sn’C>\’qk'y (19)
wiere

hC’.)\pq:Zp/ er Zi’ Cﬂ.’ri’ (zgkpq,n’rs_ Sckpq,u’rs)cp.'si', (20)

d hO,qu=ZM' er Zk’ C#’rk’ (ngpq,u’m_Sckpq,u’m)cﬂ'sk"f‘zw er Zm' Cn'rm' T)\pq,n’rscn’sm’: (21)

an

H)\pq:dVI Za (X)\“PIHIX)\‘I(I)) (22)

cg)\pq,ursz (d)\d“)—l Zaﬁ x)\aP*(l)XMBT*(Z) (1/712)Xkaq(1)xuﬂs(Z)dVldV27 (23)

Kapa,urs= (@rdy) ™ 2 ap Xoap™(1)X u8:*(2) (1/”12)Xuﬂs(1)X)\aq(2)dV1dV2' (24)

It is not possible to give here a general expression for
Tapg,urs and a proper expression must be sought in
each case. This is not a difficult task in most cases. In
many cases of practical interest it is expressed as a
linear combination of gapq,urs and Kapg, urs:

‘Tqu,m=ASkpq,urs'l—Bi‘Cm,ms, (25)

though this does not exhaust all the important cases.
It is easily seen that Japg,urs and Kapg,urs are sym-
metrical for the exchange of indices Apg <> urs, and
Hermitian for the simulianeous exchange p <> q, r <> s.
Since these properties are required for the successful
derivation of the necessary equations, Zpe,urs should
also have the same properties. This is all we need for
the formal development of the present treatment. From
the practical point of view, however, we put forward
- further requirements on their mathematical properties,
which turn out to be of great help to reduce the size of
the whole numerical procedure. First, we require that
Irpa,ursy Kapa,urs, aDd Thpg,urs should all be real. The
second requirement is that they should be symmetrical
for the independent exchanges p <> ¢ and 7 <> s. This
is usually achieved through a proper symmetrization
procedure, for example:

Kapa,urs — % (Jckm,urd’ Jckpq,nsr): (26)

as discussed in a paper by Roothaan, Sachs, and Weiss.*
These two additional requirements do not constitute
any serious restrictions for the actual applications
planned for the future.

It seems convenient to list a number of equations
which we need later in the course of the derivation of

4 C. C. J. Roothaan, Lester M. Sachs, and A. W. Weiss, Revs.
Modern Phys. 32, 186 (1960).

the Hartree-Fock equations for the linear coefficients
{Cxp:}. First we define the following various quantities:

D ppe= Zk CrprCrgy
DO,)\pqz Zm C)\me)\qm,
D1 xp¢=DerpatDo pe-

]C'.qu=2n er Iroa,ursDe, prs,
JO,)\pq=Zn er g)\pq.msDO,nm
KC’»MJQ=Z# er J'C)\pq,ursDC’,urs,
KOY)\Pq:ZIL er JC)\pq,ursDO,urs-
Irpg="hc pa— 10 \pg-
A)\?qi:d)\—_l Zu'w S)\puc)\m‘c)\wik)\wq
+d)\_l Zuw h)\puC)\uiC)\wis)\wq,
LM’Q@': dx? Zuw Sr0uCruiCrwiJ 0 2w
+d 2 ww J0 rpeCruiCrwiSrwg,
Mrpei=d\ 22 ww SxpuCruiCrwiK 0 wq
+d)\_1 Zuw KO,)\puC)\uiCRwiS)\wq-
AC,MM:ZZ Axpqly
AO,quzn Axpgn,
Ar pe=Ac\pgt A0 \pg-
LC.Moq=Zl Lpay,
Lo pq=2_n Lrpan,
Ly \pqe=Lc¢apgtLo g
MC-)\ZNI':ZZ Mpa
Mo pq=2_n Mrpgn,
MT,)\pq=MC,)\pq+MO,)\pq-

27

(28)

(29)

(30)

(1)

(32)

(33)
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From the above equations, together with Eq. (18), we derive easily the following results:

Zq AC,)\qu)\qmzd)n~1 Zq Zuw S)\puDC,)\uwh)anC)\qmy
Zq AO,)\qu)\qk': d)\—l Zq Zuw S)\puDO,)\uwh)\qu)\qky

Zq (AC,)\pq—h)\pq)C)\qk= d)\~1 Zq Zuw S)\]JMDC’,)\uwh)\qu)‘qk,

(34)

Zq (AO,)pq*fh)\pq)C)\qm:dk—l Zq Zuw S)\puDO,)\uwh)\qu}\qm-

Zq LC,)\qu)\qm=d)\_1 Zq Zuw S)\puDC.)\uw]O,)\qu)\qm;
Zq LO,)pqcquzdk—l Zq Zuw S)\puDO,kquO,)\qu)qky

Zq (LC,)\pq—JO,)\PQ)C)\qkzd)\—l Zq Zuw S)\puDC’,)\uwjo,)\ququ;

(35)

Zq (LO,)\pq—fJO,)\pq)C)\qmz d)\-—l Zq Zuw S)\puDO,)suw]O,)\qu)\qm~

Zq MC,)\ququz 7 Zq Zuw S)\puDC’,)\quO,)\qu)\qm,
Zq MO,)\qu)\qk: d}\_l Zq Zuw S)\puDO,)\quO,)\qu)\qk;

Zq (MC’,)\pq_'KO.)\pq)C)\qk:d)\_l Zq Zuw S)\puDC’,)\quO,)\qu)\qk,

(36)

Zq (MO,MJQ_fKO,)\Pq)C)\qm:d)\—l Zq Zuw S)\puDO,)\quO,)\qu)\qm-

In addition to the above thirty-two equations [ from
(27) to (36)] pertinent to the first group of the electron
shells, we need the corresponding thirty-two equations
for the second group. Since they can be obtained simply
by changing A, &, m, fto N, k', ', f"in Eqgs. (27)-(36),
they are omitted here. The above list of equations may
still seem formidable at first glance, but it will be
realized that the real content is rather simple and
straightforward.

We now apply the variational principle to the total
energy in order to obtain the SCF equations for the
determination of the best set of coefficients {Cx,:} and
{Cypir}. Let us first look into Eq. (19) a little bit more
closely. The expression is not symmetrical with respect
to {Chp:} and {Cy pir}. This has been done intentionally.
Strictly speaking, we have to prepare another expression
in which the roles of the first and the second group are
reversed. Now suppose that we have a reasonable
starting approximation for the second group coefficients
{Cxpir}. Instead of varying all the coefficients (i.e.,
orbitals) simultaneously, we first give variations only
to the first group coefficients {Capi} with the second
group coefficients held fixed. This is permissible because
the orthogonality conditions are always secured between
{Cxp:} and {Cy pir} from symmetry considerations and
it is not necessary to include the orthogonality relations
as constraints for the variational process. The co-
efficients {Cp} being fixed, the last five sums in
Eq. (19) drop out of the expression for 6£. This means
that the expression for 6E assumes essentially the same
form as that treated in Roothaan’s paper,? which covers
mainly one-open-shell cases. The only difference is the
appearance of the additional terms /¢ \pq and /o ap, as
indicated in (19), (20), and (21).

The derivation of the SCF equations for the co-
efficients {Cxp:} closely parallels the derivation of the
SCF equations in the second section of Roothaan’s
paper.2 In the course of the derivation, we make use

of Egs. (34), (35), and (36). The whole algebra is
fairly straightforward if one proceeds in the fashion of
Roothaan,? and we restrict ourselves here to writing
down the results. The SCF equations for {Ca}, which
correspond to Egs. (32) in Roothaan’s paper,? are:

Zq FoppdCrak="me Zq Skpqcquy

37
Zq FO,quC)\qmzn)\m Zq S)\pqckqm; ( )
where
FC’,)\pqzH)\pq+2]0,)\pq_KC',)\pq+2J0,)\pq
_KO,)\pq—*_ZaLO,)\pq_ﬁMO,)\pq
+henpatvA0 200, 38)

FO,)\pq= H)\pq'l" 2]0,)\pq"‘KC’,)\pq+ 2‘7/]0,)\pq
—bKopqt20Lenpg—BM a4
+hoapatYACNpe
Next we write down a unified scheme of equations which

corresponds to Eq. (22) of I, or to Eq. (53) of
Roothaan’s paper?: :

Zq F)pqckqi= (Y3 Zq S)\qu)\qi- (39)
Here
Fqu:kaq‘l"')’(ho.)\pq"'fhc’,kpq'l‘AT.kpq);
v=~1-1)", (40)
where
kaq:H%pq‘*'P)\pq’_Qkpq‘*'RMq; (41)
Pquzzu er G))\pq,nrsDT,nrs; (4:2)
Orpe=2_ 4 2ors Qrpa,ursDo, urs, (43)
Crpa,urs=2npa, urs— Kapa, ursy (44)
Dpa,urs=20Inpq, urs—BRpg,urs, (45)
R?‘Pq:d)\hl Zuw SkpuDT,)\uwQ‘)\wq
+d)\_1 Zuw Q)\puDT,)\uwS)\wq; (46)
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Ixpq=horpa—ho,\pas (47)
hC,)\pq=va’ er G)qu,n'rsDT,u’rs; (48)
kO,)\pq'_‘ Zu’ er (P)\pq.u’rsDC,y'rs

+Zn’ er Tkpq.u’rsDO.M’fsy (49)
A'I',)\qu ! Zuw S)\puDT,)\uwh)\wq
Fd 2w IapuDr puwSrwg- (50)

The SCF equations (39) determine the coefficients
{Cyp:} for the first group of orbitals under the condition
that all the coefficients {Cy i} of the second group of
orbitals are held fixed. Now we turn to the deter-
mination of {Cypir} with {Cap:} held fixed as deter-
mined above. For this purpose we need the SCF
equations for {Cyp~} which correspond to Egs. (39):

Zq Fl’pqc)\’qi': Exd Zq S)\’pqc)\’qi') (51)
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where
Fk'pq=F)\’pq‘l"y,(hO,)\’pq_f/hC.X’M"l"AT.X'pq): (52)
F)\'pq:H)"pq"“Rk’pq_Qk’M'{"RNpq- (53)

Expressions for the various quantities which appear in
(52) and (53) are obtained by replacing A — N, u — v/,
W —p, a—a, and §— B in (42)-(50). After getting
{Cxpir} from Egs. (51), we go back to Egs. (39) and
this back and forth process must be continued until
over-all self-consistency is attained.

Finally we need a convenient expression from which
we may calculate the total energy. Noting that

Zagkpq'ws—bgckpq,urs: (pkpq,urs_ (1 - f) Q)\pq,ur-‘:

we immediately obtain the following expression from
(19):

E=2 ZX ZM(H)\m'i'hcv)\pq)DC.)\pq‘i'Z)\ qu Zu 2o DC,kqu)Ma,wsDC,MS‘l‘Z ZX qu (Hkpq‘l‘hO,pq)DO,Mq
+Z)\ qu Zu er DO.)\pq[@hpq,ms_ (1“f)Q,>\pq,n1's:|D0,Ms+2 Z)\ qu Zu zn DC|)\17(1<P)\27'1,M78D0-M”
+2 30 Zoa HvpaDenpit 28 Zpg 2w 2ors Do pa® pa,wrrsDewrs
+2 ZX’ qu Hy pgDox pgt2 2w qu Z#’ er DO,)\’pq[(PNpqm’N" (1—/f)cQ)~’pq,u’rst0.u’rs

However, the above formula lacks desirable compact-
ness, and we must seek another expression which
corresponds to Eq. (54) of Roothaan’s paper.? First
we note that
Zpu DT,)\pqS)\puDT,)\uw=d)\DC’,)\qw"I—fd)\DO,)\qw,
qu DT,)\uwS)\quT,)\pq':d)\DC,)\pu_i_fd)\DO,)\pu- (55)

By using (55) we find that

E=3 qu (H)\PQ+F’)\PQ)DTJ\PQ
=20 Zoa (Qrpat7rpa) (Do xpat fDo xpo)
+Z>\’ qu (H)\’pq'i'F)\’pq)DT,)\’m
-2 Zz)q Q)\’pq(DC,)\'pq‘l'fIDO.)\'pq)-
The applicability of the method described above is
discussed in the third section of the previous paper I.
It is hoped that this method will in the near future

receive some actual applications, especially to several
excited states of simple diatomic molecules.

(56)

4. SECOND METHOD

In the application of the SCF method to the general
open-shell case, the most serious trouble comes from
the fact that we need so-called off-diagonal Lagrangian
multipliers when we add orthogonality conditions
between orbitals to the variational’ problem as
constraints.

Roothaan? succeeded in surmounting the difficulty
in the case of the single open shell by an ingenious
mathematical device. A direct generalization of

+Z)\' qu Z#' er DC’,)\’qu))\'pq,p’rsDO,u’rs- (54)

Roothaan’s treatment to the two-open-shell case was
proposed in I and the explicit exposition has been given
in the previous section of the present paper. However,
it should be noted that the treatment in the previous
section can be applied only to the two-open-shell case
in which the two open-shell orbitals have no common
symmetry. The point is that the orthogonality between
them is always guaranteed by symmetry and it is not
necessary to add the orthogonality condition as a
constraint to the variational problem. Thus we should
say that so far we have done nothing to overcome the
difficulty arising of the off-diagonal multipliers in the
general open-shell case. Roothaan’s original scheme?
and its extension discussed above cover a fairly wide
range of application, but unfortunately some simple
but important cases slip out of the range; the simplest
of them is the 1s2s 1S state of the helium atom.

Now we propose a new scheme to tackle the general
two-open-shell case in which the total energy is ex-
pressed by Eq. (8). The central idea is that we preserve
the orthogonality conditions between orbitals in some
way other than adding them to the energy variation as
constraints. If this is achieved, we have no trouble with
the off-diagonal Lagrangian mutlipliers simply because
we do not need them.

We state the problem as follows: Suppose we have
the (i)th approximation for the orbitals, {@repr®},
which form a finite orthonormal set of functions. Let
us find a next approximation for the orbitals,
{ orap™P}, avoiding the inclusion of any troublesome
off-diagonal multipliers in the course of deriving the
SCF equations.
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We take the (2)th approximate orbitals {¢rep™} as
the basis functions (just like {Xaap} in the previous
section) and expand each of the (i+1)th approximate
orbitals {0} in terms of the temporal basis
Junctions { orap®} :

¢,)\aj(i+1)=zp qa)\ap('”')C)\pj(Hl), (57)

where the {C»,;¢"} are assumed to be real for sim-
plicity. We require that the orbitals {¢x.;} must form
an orthonormal set at all stages of approximation:

(%aj(i+1>| mak(z‘ﬂ))
= qu Ckpf(i+l)<¢>\up(i) I @Aaq(i)>c>\qk(i+n

=2 Orpi IO\ V=555, (58)

gkpq.ms(i) = Z ff ‘PM;u(i)* (1) ‘Puﬁr(i)* (2) (1/"12) <P)\aq(i) (1) ‘Puﬁs(i) (Z)dVldVZy
af

xkpq,ws(i) = Z ffﬂa)\ap(i)*(l) ‘Pnﬂr(i)*(z) (1/7'12) %tﬁs(i) (1) ‘Pkaq(i) (Z)dVIdV2-
af
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This is the conditions which the coefficients {Cy,;%+}
must satisfy. This implies that we go back to the usual
normalization convention, (16), instead of the modified
one, (18), adopted in the previous section. Thus we
write

qu CMJ’(HDS%pq(i)C?\qk(H_l)=5ik; (59)
where
S)\pq(i):d)\_l th <¢>\ap(i) I ¢)\aq(i)>:‘3pq: (60)
H)p,? is defined as follows:
Hkpq(i)"zza <€0>\ap(i) IHI ﬂf’kaq(i))- (61)

Notice the difference between (22) and (61). Similarly,

(62)

(63)

1t is, however, rather annoying to put superscripts (z) or (:41) on each of {¢rap} and {Cxp;}, and so hereafter we
suppress them, bearing in mind that we are passing from the (¢)th to the (i-1)th approximation for the orbitals,
{ 22V}, by using the (¢)th approximate orbitals { pra,®} as temporal basis functions.

The expectation value of the total energy is now given by
E=2 27\ qu Zk CkaH)\qu)\qk_l_Z)\ qu Zk Z}l ZTS Zl C)\pkcﬂrl(zg)\pq,ﬂm_x)\pq,urs)cuslc)\qk

+2f ZX qu Zm C)\pmH)\qu?\qm""fZ Z)\ qu Zm Zn er Zn Ckpmcmn(zagkpq.ms_bgc)\pq,um)cnsnc)\qm

+2f ZX qu Zk Zu er Zm C)xpkcnrmag)\pq,nrs_ xkpq,ur-?)cnsmc)\qk’*‘ Zf, Z)\ qu Zm' Ckpm’HMqC)\qm'

+f,2 ZX qu Zm’ Zn er Zn’ C)\Pm’cm‘n’(za‘,og)\pq,m‘s_b’gc)\pq,m‘s)cusn’c)\qm’

+2fl Z)\ ZPQ Zk Z,‘l ZTS ZM’ C)\pkcurm’ (ngpq,;n's"‘ K)\pq,nm)cpsm’c)\qk

+2ff/ Z)\ qu Zm Zy er ZM’ Ckpmcurm' T)\pq,urscusm’chqm-

(64)

The variational procedures to be adopted here are specified as follows: First we choose a set of closed- or open-
shell orbitals (or a single orbital if it is not degenerate) specified by particular X and j. Let us choose arbitrarily a
closed shell first and specify it by A and K. Small variations are given only to {Ca,x} with all other coefficients
{Chp;} held fixed. This is, in general, not permissible unless we have a certain mathematical device or trick to
preserve the orthogonality conditions between the nonfixed and fixed orbitals. We are going to propose such a
device which is expected to work, but just for convenience we defer a detailed explanation of the device for a while
and perform the variational process as stated above.

The total energy E suffers only a partial variation with respect to the orbitals (A,K). We denote the variation
by 0Eak:

BEAK: 6[2 qu CApKHquCAqI{+qu er CApKCArK(z(gqu,Ars_Jcqu,Ars)CAsKCAqK]_'_ e :-0, (65)
where
EquzHqu+er Zl#K CArl(Z(gqu,Ars”‘gcqu,Ars)CAsl+Z pEA er Zl Clnl(z(gqu,urs""JCqu,urs)Cusl
+f Z# ZTS Zm Curm(ngpq,prs_:K:qu.prs)Cnsm_l_f, Zu er Zm Curm’ (2gqu,prs_SCqu,ufrs)CusmH (66)

The bracket 6 - - -] includes all the terms containing
{Cupx} in (64) and this is all we have to take care of,
since all the other terms vanish under the present
partial variation. Thanks to the device just mentioned,
the only constraint to be added is

0 (Z pq CAPKSquCAqK) =0. (67)

If we designate the Lagrangian multiplier by —2exg,
the resulting equations become

20 FapiCror=err 3 q SapChak, (68)

where _
FquzHqu+Gqu: (69)
Gape=2rs Cark (2Yapa,Ars— FKapg.ars)Chsic. (70)
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We turn to the explanation of the device which makes
it possible to perform the partial variation procedure
shown above. It is based upon a special choice of the
expansion coefficients {C,;} in the formula,

¢)\ai(i+1)=2p S”Mp(i)ckw} (71)

where the {orap} are labeled in such a way that p=1
gives the lowest orbital, p=2 the second, p=3 the
third and so forth. We choose the coefficients {Cxp;}
as follows:
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Here M, is the highest occupied orbital number and
Ny is the total number of the basis functions of sym-
metry species A. The first two lines give the variational
coefficients and the third line guarantees the ortho-
gonalities among the nonfixed and fixed orbitals which
belong to the same symmetrical species. The impli-
cation of the remaining four lines is that we are trying
to improve just one orbital (set) at a time. To be more
explicit,

Carx#0, . . L. Orak = prar®,  (k#=K),
. subject to variation
Capr#0, if MA<p<Na, Orak V= orar®,  (A\5#£A),
Capx=0, if 1<p<My and p=K, oren D = gy, (73)
Capk=0pr, 1 k#K, (72) Orams D= @ o .,
Cape=0pr, 1 AFA,
Crom="0pm, Under the specifications of {Chpx} in (72), the SCF
Crpm =0pm’. equations (68) become
FrpxCrrr+ 2. FapChrox=erxCapr, (p=K, Ma+1, Ms+2, -+, Ny), (74)
>MA
where
Fqu=Hqu+Gqu, (75)
Bqu=Hqu+ Z (Zgqu,All—JCqu,All)"i“ Z Z (25qu,nll‘JCqu-ull)+fZ Z (Zngpq,nmm_JCqu.umm)
I#K . pEA L rom
+f, Z Z (25qu,nm’m"‘JCqu,nm’m’): (76)
u o om’
Gqu=er CATK(Z(gqu,Ars_:K:qu,Ars)CAsK, ) (P, q, 7, 3=K, MA+1, MA+2, MY NA)- (77)

These are the equations for the self-consistent determination of the coefficients {Ca,x}. Since the derivation of
the corresponding equations for {Cspa} and {Capar} are quite similar to the preceding one, we simply write

down the results:

FapuCartrt+ 2. FapeCromr=eanCupar,

>MA
where

FApM=Hqu+GAM7

HAPQ=HAPq+f Z (zargqu,Ann_bJCqu,Ann)“"f Z Z (ZG.Squ,nnn-bSCqu,Mn)
n#EM

(?=M,MA+17 MA+2"",NA)’ (78)
(79)

pFEA n
+Z XL: (Zgqu,nll_ JCqu,ull) +fl Z Z] Tqu.um’m': (80)
(P,Q;”:S=M7MA+1yMA+2>"‘,NA)- (81)

Grpe= f er Caru (2a3qu,Ars_ bJCqu,Ars)CAsM,

Similarly, the equations for {Capn} may be obtained
by the replacements M — M', n—n', m' —m, f— f',
f'—f,a—ad,and b— 0.

It seems practical to take a simple example for the
illustration of the entire SCF procedure. Let us con-
sider the (1¢)2(2¢)2(30)?(1m)*(2m)f configuration of a
molecule. Here we have two symmetry species, ¢ and
w, and we may denote them by A=0 and A=1, re-
spectively. In the ¢(\=0) shells, & runs from 1 to 3

but there are no # and ' since there is no open shell
of ¢ symmetry. On the other hand, in the w(A\=1)
shells, we have two open shells and no closed shell if
1<e, B<3. To begin with, we must have a starting
set of orthonormal functions {¢re,@}. This is obtained
by a proper use of Schmidt orthogonalization pro-
cedure or by solving the SCF problem for an approxi-
mate configuration simpler than the one under con-
sideration. For example, if a+8=4 an obvious choice
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should be a closed-shell configuration
(16)2(20)%(30)*(17)*.

Now, by using {¢rp®} as the basis functions, we
apply the SCF equations for closed shells (74) to (1o)
with all the other orbitals (coefficients) held fixed.
This process yields a better approximate orbital for
(1¢) and at the same time a new orthonormal set of
“basis” function {¢re,®} for the use in the next step.
A natural (but not necessary) choice of the next step
is the application of (74) to (2¢). Thus we apply con-
secutively appropriate SCF equations to (3¢), (1m)
and (2m). After that, we restart again the whole process
[from (1¢) to (2m)] until over-all self-consistency is
attained.

The total energy may be calculated from (8) and we
are ready to start the configuration interaction calcu-
lations to improve the SCF approximation.

5. DISCUSSION

Since we have proposed two SCF schemes for treating
the electronic systems, we should make some com-
parison between them.

If we limit ourselves to the region where both
methods can be equally applied, the first method seems
more compact and elegant from the mathematical
point of view and may actually be more convenient
to use. In fact, Roothaan’s scheme has already estab-
lished its practicability in various cases and the same
may be expected for the first method of the present
paper, which is a straightforward generalization of
Roothaan’s method.

However, there are indications that we might get
into trouble when we apply Roothaan’s method to the
system in which the number of electrons is large and/or
some of the electrons are not firmly bound, because of
the tendency of the oscillatory behavior of the solution.
The trouble may be attributed to the topological com-
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plexity of the energy surface which depends upon so
many parameters in a very complicated way.

The apparent disadvantage of the second method is
the necessity of wearisome repetition of many small
SCF procedures. Furthermore we have to change the
“basis” functions every time we pass to the next SCF
procedure as it is seen in the above description of the
procedure. This orthonormal transformation of the
basis functions at every step would be a formidable
task for desk calculations. However, it seems reasonably
straightforward to program such a transformation for
an automatic computer. In addition, each of partial
SCF procedures contained in the entire SCF procedure
in the second method is much simpler than the SCF
procedures of the first method and the implication is
that we are dealing with fairly simple energy surfaces.
We may hope that the second method could be a relief
to overcome the so-called convergence difficulty.

Finally it must be mentioned that the second method
commands a wider range of applicability than the first
method.

The underlying idea common to both methods is the
partial fixation of orbitals during the variational pro-
cedure of the total energy. From this point of view,
both methods are to be regarded as just two of many
possible variations of the theme. The scheme proposed
in the fourth section of I is one of the possible com-
binations of the two methods. The works of Pople and
Nesbet,> Lykos and Parr,® and McWeeny” contain
similar ideas.
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