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Simultaneous Effect of Doppler and Foreign Gas Broadening on Spectral Lines*
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By using the classical Fourier integral theory, an expression is given for the shape of a spectral line,
broadened by phase changes due to collisions and by the actual changes in velocity of the emitting particles
resulting from collisions. The result is not a simple Voigt-type folding of an exponential into a dispersion
distribution; it exhibits the contraction noted by Dicke and leads to the usual formulas when the time
interval between path-deflecting or phase-disturbing collisions becomes very great.

HE shape of spectral lines emitted by an atom or
an ion in the gaseous state at high temperature is

determined simultaneously by the perturbing inRuences
of neighboring particles and by the thermal transla-
tional motion of the emitter itself. These two processes
(pressure broadening and Doppler effect) are generally
treated separately.

The first effect involves an analysis of the wave
emitted by the atom, the amplitude and phase of which
are altered by interaction with other particles of the
medium. When the impacts of these particles are of
short duration in comparison with the time between
collisions, the perturbation can be represented as a
sudden, random change in the phase of the emitted
wave, and well-known analysis yields the Lorentz shape:

1/rL
I(Id 2)=—

(~—~')'+ (1/«)'

where co' is the undisturbed angular frequency and rl.
the mean time between collisions which alter the radia-
tion processes sufficiently: 1/TL nQH, wh——ere n is the
number density of perturbers, 8 their mean velocity,
and Q an appropriate collision cross section. The width
at half intensity is, for this shape,

AM1= 2/TL

on the other hand, the pure Doppler effect which
accounts for the various frequency shifts arising from a
Maxwell distribution of velocities of the emitting
particles gives the following line shape:

accordance with (2). This gives the following profile:
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known as the Voigt integral. '
Another point of view was employed by Dicke' who

considered collisions which induce velocity changes, but
only negligible phase changes in the emitted radiation
(case of atom undergoing hyperfine transitions and
embodied in a buffer gas). The analysis of Dicke, pre-
sented in the work of Wittke, ' is first concerned with
the simple model of a radiating atom going back and
forth with a single velocity e in a box of length a. A
Fourier analysis of the radiation received by a fixed
observer shows that, both in the classical and the
quantum version of this model, the spectrum practi-
cally consists of a single line at the unperturbed fre-
quency, provided the emitted wavelength X' is much
greater than II. In the opposite case (X'((II), the spec-
trum shows the two well-known Doppler components
resulting from the unperturbed line, shifted in fre-
quency by +2Ir(c/X') (n/e). To be closer to reality, Dicke
then treats the classical model of an emitting particle
moving through a gas (always without phase changes at
collisions). The received wave exp[i(a&'t —2~g/X')] is
Fourier-analyzed (x is the linear displacement of the
emitter in the direction of the observer). The intensity
at frequency co so obtained,

I (Id —Id') = exp[ —(me2/2k T(o'') (u —a)')2],

of half-width

(2) ( 2m'
e'&" "'&&" '& exp~ — [x(t') —x(t)] ~dtdt',

)
h~; = 2co'(2k T in2/me') (2')
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To combine the two distributions a folding process is
generally used in which each elementary component of
the distribution (1) is assumed to be broadened in
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is then averaged over an ensemble of identical and
noninteracting emitters, giving

X j d z=oo

( 2ml
e pl — ax lW(ax, r)d» dr. (4))

4 'D/)~'s
I(cu —oi') =

(~—~')'+ (4~'D/) ")' (6)

Dicke's result consists therefore in a Lorentzian shape
of type (1), with a half-width 2.4s'D/X". In the micro-
wave region this quantity is found to be much
smaller than the Doppler half-width (2') at the same
temperature. '

The following Sec. (II) presents observations which
lead to a somewhat diGerent formulation of the prob-
lem. This formulation is extended in (III) to the con-
dition where phase shifts at collisions are also present.
Limiting cases are discussed. Finally in (IV) the spec-
tral shape in the wings of lines is studied.

A first remark on the above treatment concerns the
use of the probability distribution function W(», r),
Eq. (5). It is shown by Chandrasekhar4 that the diffu-
sion function (4) is a limiting approximation proper for
times v such that

r»g '=mD/I T, (7)

where P is the coefficient of the dynamical friction
undergone by the moving emitting particle.

For hydrogen in argon, at 357'K and 1 atm pressure,
D=0.979 cm'/sec. ' The relation (7) then gives for the
validity domain of (5)

&»0 7X10 "sec.
But in the microwave region, the periods involved are
of the order of magnitude of 10 "sec; therefore, Eq. (4)
and the above inequality show that the use of the
diffusion function (5) is not entirely justified in this
instance.

Secondly, a condition analogous to X'& a or X'(a for

S. Chandrasekhar, Revs. Modern Phys. 15, 1 (j.943).
5R. D. Present, Einetic Theory of Gases (McGraw-Hill Book

Company, Inc. , New York, 1958).

The probability W(», r) to find a displacement » of
the particle after a time r used by Dicke is the diffusion
probability function,

W(», r) = (47rDr) '* expL —(»)'/4Dr], (5)

where D is a diffusion coefficient for the emitter in the
buGer gas. The calculation of the above integrals then
leads to the following simple result for the line shape:

the box model does not appear anywhere in the above
diGusion treatment, though it would seem desirable for
consistency. The experimental results' (narrowing of the
lines), which agree with the theoretical prediction, seem
to justify a more careful examination of this equation.

We start from a Fourier analysis of the observed
amplitude expLi(or't —2vrx/X')], and then consider the
square modulus of the components obtained. These two
operations lead to the Fourier integral formula accord-
ing to which the line shape I(&u —oo') is the Fourier
transform,

I(oi oi')=2(R—I e'~" "' 'F(r)dr,

of the correlation function:

l1 t+r
p

2si
F(7)= lim — expl — Px(/o+r) —x(1o)j ldto (9).r-- Tj , E )

The usual way to evaluate such a function' in the
theory of pressure broadening is to apply the ergodic
hypothesis, i.e., to replace the average over time con-
tained in (9) by an average over all possible paths
between time to and time to+r. If we use the impact
approximation (collisions of negligible duration), with
collisions distributing the perturber paths in accordance,
for example, with a Poisson law (mean time rid), we

may write

( 2sl
Xexpl —,L»(»,»i, " ri, rs ")j(-i I

X'

XL(so,»i,»s, .
,ri, ro, /r)duo. . dpi

Here, L j~ i denotes dx=»(to+r) »(to) for a—path
containing m collisions as function of the velocity' vo at
time $0, the m velocity changes Av;, and the m durations
r; between the various instants of collisions starting
from to, while I' is the probability density of these
various parameters in a path containing m collisions
and described in a time r. An. evaluation of Eq. (10) is
outlined by Hreene' provided the exponent is a sum of
independent phase shifts; but here the evaluation of the
integral in (10) needs to be carried through completely,
with retention of the exact form of I' . Therefore, in-
stea, d of keeping the exponent as in (10), the condi-
tional probability is introduced:

II (»i, ,ri, ./»( »no, . . i. ,r , i)=»,so, r)

'H. Margenau and M. B. Lewis, Revs. Modern Phys. 31, 509
(1959).

By vo or v; we mean the projection of the velocity of the par-
ticles upon an axis joining it to the observer.
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1220 LOU I S GALAT R Y

for the occurrence of a path of duration 7 containing nz

collisions characterized by the parameters hv&, v &
~ ~

such that the initial velocity would be vo and the shift
in the direction of the observer would be Ax. The quan-
tity II is related to P by the formulas:

~+QO

P(vp)P~'(Api, ,ri, '/pp, r)dip, (11)P =
—QO

with

(12)

m 1~ II dhv dz 1

In Eq. (11), P(vp) is the distribution function of ep

(velocity at time tp), and Wp(hx; vp, r) is the distribu-
tion function of Ax, based on the initial velocity vo and
the duration v of the path. This function, extensively
studied by Chandrasekhar, 4 has the following form:

Wp(hx; imp, r)
= (A/7r) l exp{—Afhx —wp(1 —exp( —Pr))/P]'), (13)

with

A = (nsP'/2k T)$2Pr 3+4 exp—(—Pr) —exp (—2tlr) ].
Its limit for very great r is the diffusion function (5).'
The definitions (11) and (12) of P are introduced in
(10).Thus, after reversing the order of the integrations
and noting that

It is to be noted that this expression is obtained
under the condition that the symbol m appearing in A
is effectively the mass of the optically active particle
itself. Strictly speaking, A is a function A(nz, nz ) of m
and of the mass m' of the particles of buffer gas, and we
obtain the less simple form:

L1—exp( —Pr)]'
F(r) = exp

4B(~)P ( '/2~)

(15')
4A (m, nz') (X'/2ir)'

The line shape is the Fourier transl'orm of Eq. (15), or
of Eq. (15').

Simple analytic forms of this line shape are immedi-
a,tely obtainable for limiting values of P. Since the co-
eKcient of dynamical friction is the inverse of the re-
laxation time of the vector velocity of the emitter, ' we
shall take here

=7D )

v D is the mean free time between deflecting collisions.
(a) If rD is grea, t (buffer gas at low density), the

following correlation function derived from Eq. (15) is
used:

limF (r) = exp{—LkT/2m(X'/27r) ]r ),P~o

which gives for the line shape, after taking the Fourier
transform:

one gets the following expression for the correlation
function:

II+CO p+N

F(r) = P(ep)
J

Wp(dx vp r)

&(exp( 27rihx/—X')dAx dip. (14)

+exp
m (X'/2m) '

(pi —(u')' . (17)
2kT

This is the Doppler shape (2).
(b) For rD very small (presence of buffer gas at

sufTiciently high density), we use instead of Eq. (15):

hmF (r) = exp{—)kT/mP(X'/2~)']r)The integrations in Eq. (14) are performed after the
change of variable y= 4x—ppL1 —exp( —Pr)]/tp. There
results, upon assuming for vo a Maxwellian distribution: and the line shape becomes, by Fourjer transformation,

F(r) =
i
—

i
exp( —Bop')

~ . &~i

&&cos{iYpc 1—exp( —Pr)]/(X'/2m. )P)dip

+"
t Ay&—

I exp( —Ay') cosLy/(~'/2ir)]dy
& . &~i

with B=rn/2kT. On performing the integrations and
writing 3 and 8 explicitly, we obtain for the correlation
function of the problem:

F(r) =exp~ — $Pr 1+exp(—Pr)] . (—15)
mP ()'/2 )

2 (k T/nsP) (4n'/) ")
I(M M )= (19)

(p~
—p~')'+(k Tm/P)'( m4' /"7)'

According to the definition (7) of the diffusion coeK-
cient D, this line shape is identical with Dicke s (6).
Equation (6) is correct because the limit (5) of the
distribution (13) for large r has the same form as the
limit, valid for every 7, of the same distribution func-
tion for large P.

We can state precisely the lower limit of P= rD ' for
which (18) is a good approximation to (15). It may be
seen that this happens when the term vp[1 —exp( —Pr)]

J

' S. Chandrasekhar, Astrophys. J. 97, 255 (j.943).
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FIG. 1. Correlation functions, without phase shifts at collisions;
A: Doppler type; 8:present work Dor 15.5(l/X')'= -', g.

XP i
Ops

' in Eq. (13) is negligible in comparison with
the period of the factor exp( —2prihx/)t') appearing in
Eq. (14), which is realized if eptp '«()t'/2pr). This condi-
tion may be considered as physically fulfilled if, intro-
ducing the mean velocity I/' of the emitter, we have
VP-'«() '/2pr) or

FIG. 2. Line intensities (in arbitrary units) corresponding
to the correlation functions of Fig. 1.

form of a correlation function F(r), and Ii (r) is now

1 1+
I'(r) = lim—

P-moo gj
2%i

Xexp — Ax(tp, r) dtp. (20)
X'

Here l is the mean free path between deflecting colli-
sions. This condition is analogous to the condition a«A'
found by Dicke in his study of the box model.

Apart from the two preceding limit cases, numerical
integration is necessary to obtain the line shape from
the correlation function (15). The factor in the ex-
ponent in (15) may be written as 15,5(t/)t')'. This factor
is taken as rp (which imPlies )t' 8l). This would corre-
spond, at T=400'K and for the 1771X10' cycles/sec
hyperhne transition of Na", to a buffer gas pressure
10 4 mm Hg. Figure 1 shows the correlation function
(15) and the Doppler correlation function (obtained for
zero collision cross section for path deflection). The
corresponding line shapes appear in Fig. 2 Ldrawn with
the reduced abscissae (pp

—pp')/P$. According to these
6gures, the narrowing of the line found by Dicke is
apparent even for such a low density of buGer gas.

Thus far the perturbation of the emission mechanism
at collision was not considered. We shall assume this in
the simplest way, i.e., by taking account only of in-
stantaneous phase changes in the radiation with respect
to the unperturbed phase co't when the emitter undergoes
a collision, and by neglecting any term in (pp+pp') like
that appearing in the Van Vleck-Weisskopf formula
(this will force the profile to be symmetric). We take
p(A&p)d(tp, &p) to be the probability that, in such an
encounter, the phase is shifted by a value between Ap
and App+d(Apo). The observed phase change will there-
fore be the sum of hp and of the Doppler phase change
2prt), x/)t'. Here, too, the line shape is the Fourier trans-

We will assume that there is no correlation between
the two exponentials above. The two ensemble averages
involved in the calculation of the integral (20) may
therefore be taken separately. The evaluation of the
average on the first factor gives"

expL —(1 A') rz, 'r i—B'rr, rj, —

where rl. is the mean free time between the Poisson-
distributed collisions which disturb the emitted phase
and

)+2 7l

cos(AP) p(~&a)d(AP) '

p2 7P

sin(A op) p (hp) d (6&p).
Jp

The average over the second exponential of (20) leads
to the function (14). We thus obtain for the line shape
resulting from simultaneous pressure broadening (in
the above way), Doppler effect, and molecular collisions:

I(pp pp')—
+00

=251 ~ exp[i(pp cp')rje ' —"i're t' "'&'I'r- —
Jp

~+oo ~+oo

X I'(np) ~ We(Ax; vp, r)

Xe ts~""'&~'dAxdnp dr, (21)
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Let us examine, as before, its limiting forms for ex-
treme values of the coeKcient of dynamical friction P.

(a) For small P (low density of buffer gas), one gets
from Eq. (21):

O.S t+" t" ( B
I(pp cp') —= 2 P(&o)

!" cos
J ~')

0
D

Fio. 3. Correlation functions, with phase shifts at collisions;
A: Voigt type; B:present work Lfor 15.5(lih')'=-'„rL, =rD=P ',
1 —A'= —,', 8'=0]. The arrow shows the common tangent for
Pr =0.

or
)+00

I(co—co') = 2 P(t p)

1—A' )
&&expI — r Idrdep,

TL

or

I(&o—to')=2~ cos[(&p—&o' —B'/r r)r]e o """

[Pr 1+exp( —Pr)]dr. (21')
mP&P '/2w)s

This is the general expression of the line shape.

(1—A')/rr,
X dop. (22)

(to cp' B'/—rr. —2wep/) '—)'+D 1 A')/rl, —]'

If we put 2wep/X'= $, take for P(oo) a Maxwellian dis-
tribution, and consider the case A'= B'=0 D.e., p(hp)
= (2w) ' between 6pp= 0 and hap= 2w], Eq. (22) leads to
the Voigt profile (3).

(b) For very large P (high density of buffer gas),
we have, according so Eq. (21'):

(1—A )/rr, + (kT/m!9) (4vrs/X s)
I (co to ) = 2

(to tp' B'/rn—) +P—(1 A')/7 I.+ (—kT/mP) (47r /X' )j (23)

An analogous result, but based on a phenomeno-
logical damping constant to take into account the effect
of phase changes at collisions, has been obtained by
Wittke and Dicke. '

For high pressure of perturbers the Lorentzian line
shape (23) replaces, therefore, the Voigt profile (22)
obtained when changes of velocity at collisions are
ignored.

As in Part II, we present finally a numerical applica-
tion referring to a case where the above approximations
are not valid and where we must use Eq. (21') itself to
get the line shape. The same value ~ is adopted as
before for the coefficient of Pr 1+exp(—Pr)$.—We
suppose moreover that rr, ro P' and——we take B'=——0
(no shift of the center of the line) and 1—A'=~i.
Figure 3 shows the correlation function in this case and
also the Voigt correlation function corresponding to a
zero collision cross section for path-deflecting collisions.
A numerical integration yields the curve 8 of Fig. 4.
In this figure the Voigt profile A was taken from the
data of reference 1. It is to be noted that, for the chosen
physical conditions at least, the deflection of trajectories
at collisions introduces a notable contraction of the line,
relative to the Voigt profile.

We study now the intensity distribution in the wings
of the line, i.e., in the limiting case Ice

—tp I
—+ po.

1—A'
expI—

7L

B'q - 1 ~ry-
7 i r I

E——
rz, ) m=o m! t rD)

2T- 7Vp

exp z —— r;Av, ——
X' '=~ X'

Here we have expressed Ax in terms of the changes of
velocity at collision Av;; the time elapsed from the ith
collision till the instant to+r r , and the velocityb'efore
the first collision vp. The symbol ( ) means an average
over all the parameters An, , 7-„and ~p. This expression
implies complete statistical independence between the
perturbation of the emitted phase and the translation
Ax of the emitter. By splitting off the factor
exp( —2wiepr/X'), we first perform an average over all

Av;, observing also that

hv, = P„,(cosg, '—cos0,),

It is possible to find the desired result by a direct
application of the ergodic hypothesis to Eqs. (9) and
(10), without introducing the distribution function
Wp(6$, 'vp, r). This may be seen as follows. Consider a
path containing m collisions by which the velocity is
altered. The probability of occurrence of such a path
during a time r is (1/m!)(r/rD) exp( —r/r ),Lwhere
7 D is the mean time between these collisions and may be
identified with P '. The correlation function will there-
fore be
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with

and

p' 1—exp( —aP)
C'(r)= ~~ dt,

0 at'

a = (2k T/mp) 4~'/X".
O.S

1 2

(~ -~') /P

FIG. 4. Line intensities (in arbitrary units) corresponding
to the correlation functions of Fig. 3.

where V„; is the speed of the emitter in the center-of-
gravity system of the emitter and the ith perturber;
0, and 8,' are the angles, before and after the collision,
between the direction of the observer and the vector
V„.On knowing that in an elastic collision the angular
distribution of the collision partners is spherically sym-
metric in the center-of-gravity system' and assuming
statistical independence between the quantities V„;
we get

sin'(v„';/(v/2 )))Ji.( ) =II
(V„,r;/P. '/2m))'

X(exp( —2~ivpr/g')). (24)

In averaging over the V„, we note that the relative ve-
locity 'U „;of the two partners in the ith collision has a
Maxwellian distribution:

8'
q

r i r—[—
r, )

2kT47r' 1 r' 2~i
Xexp] — ——Tipr [ . (26)

mp X" rD6 X' )

By means of the relation P
—' = ro already cited, Eq. (26)

leads to the line shape:

I ((o—p~') = 2
( 8)

COS M 6) ——7
rl.)

1—A'
q ) 4~'kT

Xexp] — r
I exp() I, Z'2 2m )

This correlation function cannot be considered as cor-
rect for all values of r since the same distribution func-
tion was taken for all the relative velocities, disregard-
ing the persistence of the initial v0, which is taken into
account in the distribution (13); but (25) may be ex-
pected to be correct if we have zero or very few collisions
during the time interval w, in which case the above in-
correct hypothesis concerning the velocity distribution
is of little importance. This happens obviously when
is very small. In this case the correlation function (25)
has the following limit, which corresponds therefore to

G) GO

( 4vr2 2 kTPP
Xexp

I

— — r'
I Ch. (27)

X" p 6m )
P('U«) = (m*/2mkT) l expL —(m*/2kT)'U 'j4~& 'dZ

provided m* is the reduced mass of the emitter (mass

m) and the perturber (mass m'). We thus have for the
distribution of the V„, (with p, =m/m*):

Equation (27), apart from the 2/p factor which takes
into account a possible difference between the masses
of the emitter and the perturber not included in the
distribution (13), is identical to the development of
Eq. (21') up to the terms in r'

P(V„,)= (mp/2~kT) l exp( —(mp/2kT) V„'2]4rrV„2dV„,.
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8'
q P r C'(r) q-

r i rf exp/— —
rl. ) & rr, )

1—A'
F(r) = exp l

X(exp( —2~inpr/X')), (25)

The distribution of the ~;, needed for the evaluation of

(24), will be taken in such a way that the probability
of occurrence of the ith collision is constant over the
interval r. In this way one 6.nds:


