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Dissociation of Molecular Ions by Electric and Magnetic Fields*f
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A general discussion of the dissociation of diatomic molecules and molecular ions by electric fields is
presented. These calculations pertain primarily to the ground electronic states of the molecular systems.
The H~+ ion is treated in considerable detail; the required fields for the dissociation range from 10' v /em for
the uppermost vibrational state to 2&(10' v/cm for the ground state. The many-electron homonuclear ions
are treated in successive charge states. The HD+, HT+, HD, LiH+, and LiH++ heteronuclear ions are con-
sidered. The dissociation of homonuclear ions and heteronuclear ions exhibit distinctly different features.
The HD+ and HT+ ions are more susceptible to discussion than is H~+. The extent to which the dissociation
by an electrostatic field and by the Lorentz force, evXB, are equivalent is considered. The rates of induced
dipole transitions to lower vibrational states can be made negligibly small compared with the dissociation
rates. The application of this work to particle accelerators and to the injection problem for fusion devices is
discussed.

I. INTRODUCTION Detection of the electric dissociation of the successive
vibrational states would provide a means for studying
directly the vibrational levels of molecular ions. '

Aside from its general physical interest, such a
mechanism may have application in the particle-
accelerator field and to the injection problem for fusion
experiments. A process for changing the charge state of
an atomic or molecular system which utilized the
action of the Lorentz force has application as an injec-
tion method for fusion devices that have large magnetic
fields. Such change-of-charge-state mechanisms for
trapping energetic particles inside a magnetic field
region have previously been proposed utilizing con-
ventional ionization processes. ' 4 It is common practice
in many cyclotron establishments to accelerate H2+ ions
as a source of protons. As cyclotron energies are
increased, it is of interest to inquire into the stability of
successive vibrational states. The work presented here
should be useful as a basis for estimating these successive
stabilities.

These considerations had prompted a study of the
dissociation of the simplest molecular structure, the
hydrogen molecular ion. ' In a first approximation to the
dissociation by a magnetic field, the problem was
replaced by the simpler one of the dissociation by a
purely electrostatic field, in the belief that the solution
of this latter problem would exhibit the basic features of
the dissociation by the Lorentz force. ' Here we extend
this earlier paper to calculate the electric fields necessary
to dissociate the successive vibrational levels of H2+.
The extension of this problem to the many-electron

' "F an atomic or molecular system is placed in a steady
~ - electric field, the Coulomb binding forces are supple-
mented by an additional force which tends to separate
the charges. One would expect that a sufIiciently intense
external electric field would lead to a dissociation of the
system. Oppenheimer calculated this effect for a
hydrogen atom in its ground state and found that the
instability of the atom was inappreciable for field
intensities much less than 10' volts per centimeter
(v/cm). ' These calculations have been extended to
various excited states of the hydrogen atom by Lanczos. '

In this paper we consider the electric dissociation of
the general diatomic molecule or molecular ion in its
ground electronic state. The dissociation of a molecular
system exhibits distinctive features compared with the
atomic case, The nature of this difference for the two
cases is a consequence of the fact that the only mode of
dissociation available to the atom leads to a transition
of the electron into a free state. For the molecule,
however, there is an infinite number of possible final
states leading to dissociation, corresponding to the
successive bonding and antibonding electronic states of
the system.

One might expect that a loosely bound ion in which
one of the uppermost vibrational states of a particular
electronic state is occupied would provide an example
of a system that would dissociate in an appreciably
smaller field than is required for atomic dissociation.
Such an excited vibrational level is found here to be
susceptible to a mode of dissociation in which the
molecular system divides into two atomic systems,
form of predissociation induced by the electric 6el
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3f =M~b/(3f, +Mb),

m. =m(M, +3fb)/(3f, +M b+m),
IL THE GENERAL EQUATIONS

A. Separation of the Motions
and where V represents the mutual Coulomb inter-
actions between the nuclei and electrons and expressed
in terms of the relative coordinates.

In the interest of separating the relative nuclear
motion from the electronic motions, we proceed by
assuming a solution of the form

In this section we discuss the Hamiltonian for a
general many-electron diatomic molecule moving inan
electrostatic field. The development given here follows
closely that of Dalgarno and McCarroll, and of Cohen,
Judd, and Riddell. Insofar as is convenient, we adopt
the notation of the latter.

Consider an m-electron diatomic molecule with nuclei
of masses M and Mb and charges ea and eb in the
presence of an electrostatic field. Iet r„rb, and r„
represent the coordinates of the two nuclei and the ith
electron, respectively, all measured with respect to the
laboratory system. Take the direction of the s axis along
the electric field. The Schrodinger equation for this
system is written

&(r- «) =Zx 4x(r-, r')Xx(r. )

Inserting this expansion into Eq. (II.2), multiplying by
Itb*, and integrating over all electronic coordinates,
we have

faMb bM, )—
Is-+&b(r-) —~ Xb+Obx

& M.+M, jP f f ]
V' '+ V'b'+ QV—' ' f

2 M, Mb A2

+Z Xx 4b* — Q '7'+U
2m, ,=i8

+(Ui+U~)4=EN' . |t =El—,
——(11»)

2 Bt (a+b —n)m
+eh 1+ Q s;—Eb(r„)

M +Mb+nmwhere V~ is the sum of all the Coulomb terms and

system and to heteronuclear molecules has been facili- with
tated by the recent work of Dalgarno and McCarroll, '
and that of Cohen, Judd, and Riddell. ' and

n

U2 = el[as, +bs b
—Qs„]. —

i=1
(II.1b)

The center-of-mass motion can be separated from
the equation for the internal motions by introducing
n+2 new variables —a center-of-mass coordinate r„a
relative nuclear coordinate r„, and e additional coordi-
nates r, , measuring the distance of the ith electron from
the center of mass of the two nuclei. The resulting
equation for the center of mass describes the motion of
a particle of mass (3f,+M b+ nm) and charge e(a+ b n)—
moving in an electrostatic field. '

The equation for the internal motions becomes

52 1 1 n n

g 2+ EZ~' ~+—2&" 0
2 M„M,+Mb ' ~~~ m, a

XP&d'ri d'r„, (II.3)

where 0~~ is an infinite series of terms coupling the
electronic and nuclear motions, ' and V, is the Coulomb
potential describing the interactions of the electrons
moving in the field of the nuclei.

The electronic functions Px are defined by setting the
bracketed quantity in the integrand of Eq. (II.3) to
zero. The remaining terms serve to de6ne the nuclear
motion. In a first approximation to the nuclear motion,
it is customary to set the 0),~ series to zero. The various
vibrational states belonging to a particular electronic
state, Eq, are then determined by the equation

A2

'I7 2x),2'„
aMb —Mf,

+ Ui —eB, Sn
M,+Mb

abe2

- rn

aMb —Hf,—eB s„+Eb(r.) IU Xb=0. (II.4)—
M.+Mb

(a+b —n) m
+eh 1+ Es' 4=IUD, (II2)

M,+M b+nm. i

VA. Dalgarno and R. McCarroll, Proc. Roy. Soc. (London)
A237, 383 (j.956).' S. Cohen, D. L. Judd, and R. J. Riddell, Phys. Rev. 119, 384
(1960l.

J. R. Hiskes, University of California Radiation Laboratory
Report UCRL-9182, 1960 (unpublished).

For homonuclear molecules, the 0~~ series is a simple
correction to the nuclear potential, the leading term in
this series contributing a quantity of order m/M „. For
the heteronuclear one-electron problem in lowest order,
there is a degeneracy at large r„ for the two distinguish-
able cases in which the electron is associated with either
mass a or mass b. It has been shown that in this latter
case, in addition to providing a correction to the poten-
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tial, the leading terms in Oq~ also provide a means for
removing the degeneracy that exists at large r„. The
motion is now determined by a set of coupled equations,
and the notion of a potential is no longer appropriate. '
In this discussion we shall usually neglect the effects of
these higher-order corrections, since the primary effect
of the electric field is already pronounced in lowest
order; the use of a potential in describing the effects of
the electric field for both the homonuclear and hetero-
nuclear cases is then valid.

Y(z)

B. Vibrational Transitions

1. Spontaneous Emission

Here we are concerned with vibrational transitions
between the various vibrational states belonging to the
ground electronic state of the molecule. The lifetimes
of these states can play an essential part in the inter-
pretation of various experiments involving molecular
processes. There have been convicting statements in the
literature regarding these vibrational transitions, par-
ticularly with respect to quadrupole transitions in
homonuclear molecules.

In reference 9, the spontaneous-transition rate for
dipole transitions is shown to be

4 e' Vp -aMg —bM.-'
i(xblr-Ix )I'

Tg 3 c' fi M.+Mb

In the case of homonuclear molecules, the dipole transi-
tion rate is identically zero. As an example of these
transition rates for heteronuclear molecules, consider
the HD+ ion for which we have @Vip 0.22 ev and
r„=2ao. The lifetime of this first excited state is ap-
proximately 200 microseconds (psec). For the upper-
most states, the lifetimes will be about two orders of
magnitude longer than for this lowest transition. Since
the time of Right of an ion in an electrostatic accelerator
is some tens of microseconds, we. conclude that for the
purposes of many experiments these states are suS.-
ciently long-lived to be considered stable.

For homonuclear molecules, the quadrupole transi-
tion rate is given by

These quadrupole lifetimes are approximately a factor
of (2X/ar„)' longer than are the dipole lifetimes.

Z. Induced Transitions

The presence of the electric field has the effect of
inducing vibrational transitions. One is generally con-
cerned with the rate of these induced transitions com-

pared with the dissociation rate. In reference 9 it is
shown that the induced transition rate is given approxi-

FxG. 1. The electronic potential for a diatomic molecule in the
presence of an electric field and for some particular internuclear
separation. This potential is exact for a one-electron system and is
schematically correct for the many-electron case.

mately by

1 4 e' Up, 8'—
I (Axb I

r~r- co»-
I 0~x ) I'

Tl

The transition rate given in reference 5 is in error. The
selection rules for these transitions have been discussed
previously by Condon. "

This transition rate exhibits a simple power depend-
ence on the electric field value. The dissociation rate, on
the other hand, is exponentially dependent on the field
value. For any particular level, therefore, it is possible
to choose a field value for which the over-all transition
rate will exceed the dissociation rate, and vice versa.

III. APPI ICATIONS

A. Homonuclear Molecules

Having derived the general equations in the preceding
section, we shall now apply these results to several
particular molecular ions. In any discussion of the
theory of diatomic molecules, the symmetry features of
homonuclear molecules lead to a clear distinction be-
tween the properties of homonuclear and heteronuclear
molecules. This distinction becomes even more evident
in a treatment of the dissociation by electric fields.
Accordingly, we shall divide the problem at this point
and consider erst the dissociation of homonuclear
molecules.

For homonuclear molecules, we have a = b and
M, =3fb, the coeKcient of s in Eq. (II.3) vanishes and
there is no explicit dependence on 8 appearing in the
equation for the nuclear motion. Ke shall see, however,
that an implicit dependence on 8 is contained in the
electronic eigenvalue, Eq(r„).

1. Dissociation of H2+

The simplest molecule and the one for which an
exact treatment of dissociation can be given is the

"E.U. Condon, Phys. Rev. 41, 759 (1932).
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hydrogen molecular ion. We begin the discussion by
considering the electronic equation for this one-electron
system:

g2 e2

Vy + ehsg QIK

Ir2+lr-I
=Ex(r„)|PIr, (III.1)

It2 ——A&(g) sinh[pqp(r, )pr ]exp[ —2Pp(r )$r„]. (III.2)

where e= [1+m/(2M+m)]e.
The potential function seen by the electron is

illustrated in Fig. i for the case in which the two nuclei
are oriented along the field direction and for some
particular internuclear separation. It is clear from the
figure that the electron may leak out toward the left,
away from the region of the two protons. This would
correspond to a complete dissociation of the system, i.e.,
dissociation into a free electron and two free protons.
Although this represents a possible mode of dissociation,
it is not the primary mode. Rather, the primary effect
of the term ebs1is to perturb the electronic eigenvalues.
This perturbation in turn leads to a disruption of the
nuclear motion.

Equation (III.1) for h=0 is separable in confocal
elliptic coordinates $, q, P. These coordinates are
defined by

(r.+=—'p)/r-, ~=—(r p
—")/r-,

where r and rb measure the distances of the electron
from proton a and proton b, respectively.

On introduction of these coordinates into Eq. (III.1),
there result three separated equations —one elementary,
the other two requiring numerical integration for their
general solution. " "These integrations have also been
carried out by Bates, I.edsham, and Stewart for several
electronic states; the results are tabulated over a range
0 &&r /ap ~& 10."

Another set of functions has been given by Cohen,
Judd, and Riddell, using a variational calculation in
confocal elliptic coordinates. Their variational functions
are of the form

p&= A y cosh[pql(r. )gr.]exp[ ——,'pl(r )$r

The matrix elements are given by

FI11 ~1) +22 ~2)

H gp
——H2g ———',m e h (cos8„)A gA pr„'[EpD g

—EgDp].

The additional terms that appear in the FI11 and H22
matrix elements,

-',+eh(coso )A Pr„'[EpgCg —Eg~Cp],
and

s'&e h(cos8„)A &'r„'[E»F&
—E»Fp],

respectively, are each identically zero, In the limit as

8 =0' all m

&0; Ap, AB

V(z)

loses its validity for large internuclear separations. This
degeneracy of 1t & and p& for large internuclear separation
suggests that in a first approximation we consider
diagonalizing the Hamiltonian (III.1) but retaining
only the submatrix formed from these two electronic
states.

For the evaluation of FI12 we must first transform the
term ebs1 into the x", y", and s" system oriented with
respect to the internuclear axis. Introducing Eulerian
angles X and p, we have

ehs& ——eh[@&" sinX+y&" siny cosX+s&" cosy cosh].

The functions (III.2) are independent of p, and the
terms in g" and y" vanish under the P integration.
Noting that cosy cosh= cosa„, where 0„ is the angle be-
tween the internuclear axis and the electric-field direc-
tion, the relevant perturbation is then

6 Bsi—6 Bs1 cosO.

In the evaluation of II12 using the functions given in
Eq. (II.2), the relevant perturbation expressed in
confocal elliptic coordinates is written.

ehsy =
p ehr„gy(g co'sO~.

Here the variational parameters p(r ) and q(r ) are
tabulated for the interval 0~&r„/up&&20.

Consider now the effect of the term ~bs1 on the un-
perturbed electronic states. For large internuclear
separations, the bonding and antibonding states tp~ and

Pp are degenerate; a perturbation treatment of theterm
eSs&, though adequate for small internuclear separations,

"O.Burrau, Kgl. Danske Videnskab. Selskab, Mat. -fys. Medd.
7, 1 (1927)."E.Teller, Z. Physik 61, 458 (1930).

'3 E. A. Hyllerass, Z. Physik 71, 739 (1931)."D. R. Bates, K. Ledsham, and A. L. Stewart, Phil. Trans.
Roy. Soc. London, Ser. A, 246, 215 (1934—4).

FIG. 2, The nuclear potential for a diatomic molecular system in
the absence of an electric field. The vibrational states are indicated
schematically by the light horizontal lines. In the presence of an
electric field this potential remains unperturbed in lowest order for
heteronuclear molecules and homonuclear systems in even charge
states.
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sponding to proton u lying in the direction of the electric
Geld with respect to proton b. We have

pg ~gr '*e "' f —1 gr 'e "' (III.4b)

L

FIG. 3. The nuclear potential for a homonuclear ion in an odd-
charge state in the presence of an electric field. The asym totic
potential for the lower electronic state falls o6 as —26'g

~ 8„.

r ~ ~, we have Hi~~-,'&br„coso„. The integrals 8,
C, D, E, and Ii are defined in the appendix.

With these matrix elements, diagonalization yields
two new electronic states, Pg and P„, whose eigenvalues
are, respectively,

Eg,.= 2 (E1+E2)
~2 (E,—E1)[1+4H12'/(E2 —E1)'] . (III.3a)

For large values of r„, these reduce to

E,=Z ,'p Br„lcos—9„—I,

E„=E,+2pSr„l cosg„l. (III.3b)

In Fig. 2 is shown the unperturbed nuclear potential
for the two lowest electronic states. Figure 3 indicates
the distortion of the nuclear potentials in the presence
of the electric Geld; the potentials are drawn along the
electric-Geld direction. The symmetry of the potential
about the origin follows as a necessary consequence of
the variance of the Hamiltonian (II.3) for a homo-
nuclear molecule under inversion of the nuclear coordi-
nates. From this Ggure it is clear that as the electric
Geld increases, the nuclear potential deforms until the
uppermost vibrational state becomes unstable. The ion
will then dissociate into a free proton and a hydrogen
atom according to H2+ —1 H+p. This mode of dissocia-
tion is a special form of predissociation.

At first glance, the symmetric potential of Fig. 3
might convict with one's intuitive feeling that the
potential of either electronic state should fall off
approximately monotonically from left to right. This
point can be clarified by examining the new electronic
wave functions appropriate to the diagonalized Hamil-
tonian. For the perturbed electronic states, one Gnds

kg= [(Eg E2)'+&12'] '((Eg—E2)$1+&12&2), (II—I.4a)

and

fg, [(Eg E2) ++12 ] ( +12/1+ (Eg E2)$2}~

Consider the limit as r„becomes large and the
nuclear axis is aligned along the electric field, corre-

Equations (III.4b) are to be interpreted as meaning
that in this limit of large internuclear separation, the
ground electronic state is one in which the electron is
associated with proton b and proton u is free, and the
excited electronic state is one in which the electron is
associated with proton u and proton b is free. For the
lower electronic state, this corresponds to moving the
positively charged proton u in the positive field direc-
tion, hence lowering the potential. For the excited
electronic state, the positively charged proton b is
moved against the field direction, thus raising the
potential. Upon rotating the internuclear axis 180' with
respect to the electric field, a similar argument shows
that the electron becomes associated with proton u and
proton b is free. The variation of the potential illustrated
in Fig. 3 is then understood.

The higher-order effects which were neglected in
diagonalization can be estimated by using perturbation
theory and taking as the basis functions the two solu-
tions of Eq. (III.4a) together with all the unperturbed
higher-state functions. In the limit as r„goes to zero,
the molecular ion degenerates into a He+ ion in its 15
state. The Stark shift for this state is

d E= —(9/64) ap'h2

In the limit of large internuclear separation, the elec-
tronic state is that of a hydrogen atom in a 15 state. The
Stark shift for this state is

AE = —(9/4) ap'82.

For the range of electric-Geld values of interest for
dissociating the upper vibrational states, these higher-
order corrections are negligible. For dissociating the
lowest vibrational states, these corrections, though not
negligible, are not too significant. Their effect on the
transition rate is comparable to ignoring them com-
pletely and increasing the electric field value some
S to 10%%u~.

The potential function for the nuclear motions has
been determined, and we consider the nuclear dissocia-
tion. The equation for the nuclear motion is given by

(—(h2/2M p) 7'„2+ (eprn)

+E,(r„,0„,8) W i„)X1„0. (III—.Sa)——

The subscript m is introduced t.o distinguish the various
vibrational states belonging to the lowest electronic
state. In the limit of large internuclear separation, the
asymptotic form of this equation is

(—(A2/2Mp) V'~2+ E1(r.)
—-'2phr

I
cosO„I —W1„}X1„——0. (III.Sb)

In the asymptotic region, the E1(r„) is constant and
can be absorbed in the 8'i„.
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Fio. 4. Binding energy measured
from the unperturbed dissociation
limit vs electric field for the various
vibrational states of the H2+ ion
and for J=O. The intersection of
the horizontal line with the curve
marked "classical" determines the
electric field necessary to dissociate
the ion in 10 '4 sec. The diagonal
lines marked 10 sec and 1 sec
determine the fields necessary for
dissociation in these times, respec-
tively. The two horizontal lines
for @=18 and m=17 indicate the
range of uncertainty in these
calculations. The results of the
WEB calculations are also in-
dicated.
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It is clear from Fig. 3 that if the maxima of the poten-
tial lie above an eigenvalue, the proton may leak. away
from the region of the hydrogen atom. This effect of
barrier penetration is not negligible. To treat the nuclear
dissociation taking into account these effects of barrier
penetration, we have used Oppenheimer's formula for
the transition rate. ' Using the exact bound-state wave
functions, ""the electric fields necessary for dissociat-
ing the ion in 1 sec and in 10 ' sec have been calculated
for the nonrotating molecule, that is,

J=no=0.

The results of these calculations are summarized in
Fig. 4, which is a plot of binding energies, expressed in
Rydberg units, of the bound vibrational states against
the electric field value. The intersection of the horizontal
lines with the sloping lines marked 1 sec and 10 ' sec
determines the electric-field values necessary to dissoci-
ate the ion in these times. Included on these graphs is a
curve marked "classical, " which would give the field
necessary for dissociation in the absence of barrier
penetration. For this case, the ion would dissociate in
a time comparable to its classical vibration period,
i.e., 10—'4 sec.

The electric field gives rise to a first-order perturba-
tion that has the effect of lowering the unperturbed
vibrational states prior to dissociation. If we use the
curve labeled "classical" to determine the electric-field
value, the first-order perturbation of the various vibra™
tional states has been calculated and plotted in Fig. 5.

"S. Cohen, J. R. Hiskes, and R. J. Riddell, University of
California Laboratory Report UCRL-8871, 1959 (unpublished).

'6 S. Cohen, J.R. Hiskes, and R. J.Riddell, Phys. Rev. 119,1025
(1950).

These perturbed eigenvalues have been used in the
calculations summarized in Fig. 4.

The calculations of the vibrational eigenvalues of the
unperturbed molecular ion are uncertain by perhaps as
much as 0.005 ev. The range of this uncertainty for the
two upper states is indicated in Fig. 4 by plotting two
horizontal lines for each of these upper states.

The transition rate given above is based on the final-
state eigenfunctions, which ignore the bonding molec-
ular potential. This rate is such as to lead to an over-
estimate of the field required to dissociate the ion in a
particular time. An underestimate of the required field
can be made by assuming the perturbed potential to
be spherically symmetric and using a one-dimensional
WEB barrier-penetration formula. The calculations for
dissociation in 10 ' sec using this formula are indicated
in Fig. 4 by the dashed curve. The discrepancy between
these two calculations together with the uncertainty in
the unperturbed eigenvalues provides a basis for
estimating the over-all errors in these calculations.

The calculations summarized in Fig. 4 refer to the
transition rates of nonrotating (J=O) molecular ions.
In the more general case the effects of rotation must be
considered. As an illustration of the significance of these
rotational effects, let us compare the fields required for
dissociation in 10 ' sec for an ion in the v = 15 vibrational
state and for the rotational states J=4, m=0, 4, with
the fields required for dissociating an ion in the same
vibrational state but in a J=O rotational state. For
m=O, the electric field necessary for dissociation is
approximately 30% less for J=4 than for J=O. For
J=4, nz=4, the required dissociation field is approxi-
mately 40%%u~ larger than J=O. We conclude that the
presence of rotation has the effect of lowering the thresh-



0 I SSOC I ATION OF MOLECULAR IONS 1213

old fields necessary for dissociating a particular vibra-
tional level.

fp2

Z. Dissociation of Many Ele-ctron Systems

Turning our attention to the many-electron problem,
we find relatively little quantitative information in the
literature on potential functions for many-electron
molecular ions. Only for the He&+ ion and the I i2+ ion
has there been any attempt to calcuIate the ground-
state-potential functions, and here the emphasis has
been primarily on determining equilibrium internuclear
separations and potential minima. ""Accordingly, our
treatment of these many-electron ions cannot be as
precise as for the one-electron systems, and quantitative
estimates of the 6elds necessary for dissociation will
have to be made largely on the basis of extrapolating
the properties of the corresponding neutral molecules.

The many-electron problem is treated by using the
molecular-orbital approximation. In this approxima-
tion, the many-electron molecular system is constructed
by filling the successive two-centered orbitals of the
hydrogen molecular ion. In its most primitive form, the
interaction between the electrons is ignored, and the
molecule is constructed by using the unperturbed
ground-state and excited-state orbitals. For this work
we shall require only that the orbitals possess the
proper symmetry features and have the correct asymp-
totic form. The wave function for the entire system is to
be expressed in determinantal form.

For the evaluation of the matrix elements, we have
recourse to standard theorems on matrix elements be-
tween determinantal wave functions. The general form
of the perturbation with which we shall be concerned
occurs in the electronic Eq. (11.5) and has the form

(a+b n)m- n

R=eh 1+ P s;=-,'e8r„cos8
M,+M s+nm

Let f, represent a determinantal function describing
the ith electronic state, and uI, a particular spin orbital
in f,. We have then

(it I
R lit') =o

if lt; and lt, differ by more than one set of quantum
numbers, and

g,

IRIS';)

=& as*(1)R(1)ttt(1)d'rr, (III.6a)

lO

ip4 ip5
t t

tO6 l07

$ (Y/cm }
ios

FIG. 5. First-order perturbation vs electric Geld for the various
vibrational states of the H2+ ion, The perturbation for each
vibrational level has been calculated using for the electric Geld the
value given by the curve labeled "classical" in Fig. 4.

diagonal elements we have

n

Q, I
R

I f,)= P ~a,*(1)R(1)a;(1)der t. (III 6b)

We shall also use the first of Hund's rules to determine
the lowest state of several possible spin states. According
to this rule, we choose the maximum value of spin
consistent with the Pauli principle. These theorems and
rules are adequate for a general discussion of the many-
electron problem.

(a) The Hs molecule For th. e ground state, the lowest
orbital is occupied by two electrons with spins opposed
to give a 'P,+ state. The wave function for this ground
state is given by

lt.=(alt (1) (1)~t (2)P(2).

Here 6, is an antisymmetrizing operator, the o.'s and
P's are the conventional spin functions, and the Pr func-
tion is of the form given in Eq. (III.2). Asymptotically
this electronic state goes into Hs-+ H+H.

For the first excited state, which asymptotically is
degenerate with the ground state, the ground-state
orbital fr and the first excited orbital its are each
occupied. Hund's rule calls for a spin-one state. The
wave function for the sp„+ antibonding state is given by

P,= e'er(1)a(1)its(2)a(2).

Following the procedure for H2+, we again diagonalize
the appropriate 2-by-2 submatrix. The matrix elements
are now

where the values of us and at differ by no more than their +'r= (0'el se~r cos~ (ir&r+ ts&s) I&.)+Er=O+Er=Er~
spin functions or their orbital quantum numbers. For Hss (P„Ise8r„cos8——„(rtib+gs)s)IP„)+Es=O+Es=Es,

'r S. Weinbaum, J. Chem. Phys. 3, 547 (1935).
"H. M. James, J. Chem. Phys. 3, 9 (1935)."E.A. Mason and J. T. Vanderslice, J. Chem. Phys. 29, 361

(1958).
'o E. U. Condon and G. H. Shortely, The Theory of Atomic

Spectra (Cambridge University Press, New York, 1935), pp.
169-171.

and

+12 +&r (y-I sehr- coso-«r(r+»&slIlt'. ) =o.
For homonuclear molecules, the diagonal terms will

always be unperturbed, since the perturbation is an
odd function. The H~~ term vanishes because of both the
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orthogonality of the spin functions and the cancellation
of the orbital integrals. This result could have been
obtained immediately by noting that P2 and Pi differ by
two sets of quantum numbers and invoking the first of
Eq. (III.6a). The ground state and first excited state of
H2 are therefore unperturbed in this approximation.
The asymptotic potential in the presence of the field is
illustrated in Fig. 2; predissociation of the H2 molecule
will therefore not occur. For the H2 molecule, the mode
of dissociation is one in which an electron is stripped off,
as is suggested in Fig. 1.

The above argument for H& is readily generalized to
any neutral homonuclear molecule that has a 'Pg+
ground state, corresponding to a molecule with closed
shell orbitals. The first excited state will be occupied by
one electron which, according to Hund's rule, will couple
its spin with the last electron in the unfilled orbital to
give a spin-one state. Using the first part of Eq. (III.6a),
we have our result. For those molecules that do not have
a 'P,+ ground state, similar arguments together with
successive Hund's rules lead to the same conclusion.

(0) Dissociatiori of singly ioriized motecules In th. e
limit of large internuclear separation, the ground
electronic state of a general singly ionized molecule A2+

goes over into a state consisting of a neutral atom and a
singly ionized atom, according to A&+ —+ A+A+. The
molecular ion will have an odd number of electrons, with
the last electron unpaired in its respective orbital. The
first excited state will consist of a state in which the
unpaired electron occupies the next-higher orbital. How-
ever, since it remains unpaired, Hund s rule is inappli-
cable, and our result is given by the second part of
Eq. (III.6a). This matrix element is always nonzero,
since a&&') and a&('& will have different spatial sym-
metries. The result is analogous to the H2+ case illus-
trated in Fig. 3, with the asymptotic potential varying
as ——,"Sr.

I
cose„l.

(c) Dissociatiorl, of doubly ionized motecules The.
ground electronic state of the doubly ionized molecule
dissociates according to Az~ —+ A++A+. For these
molecular ions, the argument is similar to that for the
neutral molecules. The first excited state contains an
electron in the next-higher orbital which couples its
spin with the remaining unpaired electron such that the
first theorem of Eq; (III.6a) applies. The asymptotic
potential is unperturbed as in Fig. 2.

We conclude this section with the general observation
that, for a homonuclear molecule with an even charge
state, predissociation will not occur, and the ground
electronic state is as illustrated in Fig. 2. In the case of
an odd charge state, predissociation will occur, and the
electronic states are as illustrated in Fig. 3, with the
potential falling off asymptotically as —zehr„~ cos8„~.

B. Heteronuclear Moleeules

For heteronuclear molecular ions, the invariance of
the Hamiltonian (II.3) under inversion of the nuclear

1. Dissociatioe of HD+

We begin the discussion by considering the one-
electron HD+ system. In the general discussion of the
heteronuclear problem, we shall take M, to be the mass
of the lighter nucleus and M~ to be the mass of the
heavier nucleus. Before considering the analytic form
of the electronic wave functions, we note that the origin
of the electronic coordinate system has been taken at
the center of mass of the two nuclei, whereas the origin
of the confocal elliptic coordinate system is taken at the
center of the two nuclei. For the heteronuclear case, the
Eulerian transformation ), p must be followed by a
translation along the internuclear axis.

The Kulerian transformation X, p of the perturbation
~Is& into the x', y', s' system oriented along the inter-
nuclear axis is given by

cBzi= Eh[xi' sinX+yi' sin@ cosX+zi' cosy cosh].

If so is the position of the center of mass with respect to
the origin of the x", y", s" system, we have

zo ——(r„/2) L(M,—Mi)/(M, +Mi)].
The perturbation in the x", y", z" frame is then

zi= eh[xi" sinX+y&" sinu cosh+ (z"—zo) cosh cosy].

The terms in x" and y" will vanish under the g integra-
tion as before. Our relevant perturbation term expressed
in the it, $, g coordinates is now written as

E hi=z—Ehr cos8 I 8111—(M —Mb)/(M +Mb)].
In the limit of large internuclear separation, the

ground electronic state of the unperturbed HD+ ion
goes over into a state in which the electron is associated
with the deuteron, and the first excited state goes over
into a state in which the electron is associated with the
proton. The appropriate wave functions are given,
respectively, by'

ij i, A Lc ish o(Q
——g/2i) e ~'&i'

—sinh(Q2q/2) e '&"] (III.7a)

f,=A Lcosh(Qiq/2)e ~'&"

+ sinh (Q~il/2) e

In the limit as r„goes to ~, we have A q=A, =m ', and

gb~m :e-—& ~—:jc-&u (III.7b)

coordinates is no longer a restraint on the problem. As a
consequence, the dissociation of heteronuclear molecules
exhibits essentially distinct features compared with the
homonuclear case. The nuclear potential is now affected
both by the implicit dependence on b contained in the
electronic eigenvalue and the explicit term

eSD—aM bM.—)/(M. +M,)]z„
contained in the nuclear Eq. (II.4).



D I SSOC I ATION OF MOL E CULA 2 IO NS

Although these two states are not degenerate, in the approximation we proceed as with H2+ and diagonalize
limit of large internuclear separation, these eigenvalues the appropriate 2)&2 submatrix. The matrix elements
E& and E2 are sufficiently close to suggest that in a first are now:

H»= (pb I 23&- COS8-[n1f1—(M.—Mb)/(M +Mb)] lyb}+E1
= 23& cos8 {2Ab r [D3E112 D1E312] (M ™b)/(M+Mb) }+El

H2, ——(p,
~

2e&-cos8„[2t1)1—(M, M—b)/(M, +Mb)]
~
f~}+E2

= 23& cos8 (2A rn [D1E312 D3E112] (Ma Mb)/(Ma+Mb)}+E2i
H» ——H» ——(p,

~
,'e&—„cos 8[ 2t1$1

—(M, Mb—)/(M. +Mb)]~lt b) =0.

(III.Sb)

In the limit of large r„, II~i and H22 reduce to

H11 —+—13(2'e&„) cos8„+E1,

H22 ~+3 (2e & ) COS8 +E2.

If we combine Eq. (III.Sb) with the term

ex[—(aMb tM.-)/(M. +Mb)]..
which occurs explicitly in the nuclear Eq. (II.4), the
asymptotic potentials for the nuclear motion are
given by

Eb 33&——„cos—8„+E1,
aild

E,= +33&„cos8„+E2.

These potentials are illustrated in Fig. 6. It is clear that,
in the "classical" limit, the HD+ ion is more susceptible
to dissociation than is H2+. One can readily show that,
for the HT+ ion, the coefficients in the asymptotic
nuclear potential are —

4 and +4, respectively.

Z. Dissociation of HD

The electronic wave function for the ground state of
this two-electron system is taken to be

|t.= 84.(1)~(1)A(2)P(2).

The pertinent matrix element is written

H11——(P, ~
23 &„COS8„

X [P1q1+P2q2
—2 (M.—M b)/(M. +M b)] ~ P,)+E1.

According to Eq. (III.9b), this reduces to

H»= (a I 23&- COS8.(1~1la.)
+ (tt b ~

3e& COS8 'g 1/1
~
lp b) + 3e& cos8„+E1.

If we use the results obtained for HD+, the first two
terms cancel. Combining B~~ with the explicit term
—-', ebZ„appearing in the nuclear equation we have

+11 +1~

The nuclear potential is as illustrated in Fig. 2.

3. Dissociation of LiH+

The ground state of the LiH molecule has a large
equilibrium separation and a relatively shallow potential

minimum. No data exist on the properties of LiH+ ions,
but we can suspect that these ions also will be loosely
bound structures and hence relatively susceptible to
dissociation.

The correlation diagram given by Herzberg indicates
that the ground state of LiH+ consists of two occupied
pb orbitals and one p, orbital. "In the limit of large r„,
LiH+ —+ Li++H. Our ground-state wave function is

Pg= Qfb(1)n(1)gb(2)P(2)f, (3)n(3).

The matrix element becomes

Bi.~ =—,'~ br„cos8
X(28 bI P1q, Iyb)+ Q. l g,~1I4.)+9/4}+E1;

Hll ~ 33& cos8 +El.
Combined with the term ——,'ebZ„ in the nuclear equa-
tion, the asymptotic nuclear potential becomes

E,= se&„cos8„+E1.

4. Dissociation of LiH++

It is not known whether this ion possesses a stable
ground state; however, a comparison of the asymptotic
potential of this case with that of LiH+ illustrates the
sensitive dependence of the problem on the charge states
of the ion and its dissociation products. The LiH++

D+H+

FIG. 6. The nuclear potential for HD+ in the presence of an
electric field. The asymptotic potential for the lower electronic
state varies as ——;BE .
"G. Herzberg, Spectra of Diatomk 3IIolecules (D. Van Nostrand

Company, Inc. , New York, 1950).
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dissociates according to LiH++ ~ Li++H+'. The wave p= (x'+y')&. The Hamiltonian for the system is given by
function is now

&.= ~t&~(1)~(1)&~(2)&(2)i

and the matrix element is

Hii=-', c&~ cosa„{2(|t g
~
$irti

~
Pt)+-', }+Ei.

In the limit of large r„, we have

Hii ———~c &„cosset„+Ei.

Combining H~i with —~ehZ„ term in the nuclear
equation, we have for the asymptotic potential

E,= 4e—& cosa„+Ei.

'1 ( e )' 1 ( e

( P.—-A. I+ 11&—-A&
I

. 2M' c i 2M& c

1 t' e y' - 8
+

~
1.+-A.

I
+l'i 0= (~/-i)

2m( c ) at

IIO
eA 85

(A. v.+At, vb).+ A. .v.
inc ZtÃC

Introducing the transformation which led from Kq.
(II.1) to Eq. (II.2) and writing Ho for the Harniltonian
when A=O, we have

C. Classical Treatment of Dissociation

We conclude Sec. III with an elementary discussion
of the classical dissociation of two bodies. Let eA and
eB be the charges of two dissociation fragments of
masses Mz and Ms, respectively. Let f(r~ re) be—a
function describing the equivalent of the molecular
binding forces and van der Waals forces. In the limit
of large r~ r~, choos—e f to be zero. The forces on the
bodies A and 8 are

g2

+ (A 2+A b2)+=A 2

2Mc2 2fPSG

Neglecting quantities of order m/M compared with
unity, using A, = —(H/2)y and A„= (H/2)x, the sum
of the second and third terms can be shown to reduce to

eHIt 1 8 8 1( 8 8 )-
11+111= — + +-I »

2Mic 2 Bti. 8$„2( By, Bx,~

and
M„r'„=f(rg rg)+eA 8—

M~r'~ = f(rg ra)+e&—$. —

eHA 8 ( 8 8 &+ +I *. —y.
2m'c ay, & ay,

Multiplying the 6rst equation by M& and the second by
M~ and subtracting the second from the first, we obtain
the equation for the relative motion:

(M~Mii)/(Mg+Mii)P„= f(r )
ye 8[(AM' —BMg)/(MgyMg)].

In the limit of large r„, the relative potential is given by

V (r„)= eh[(AMg B—Mg)/(M~+—MIi) )r„.
This relative potential is in agreement with the

asymptotic potential found in the previous sections. It
is quite interesting that the correct classical asymptotic
potential is obtained in the quantum-mechanical prob-
lem through contributions from both the electronic
equation and the nuclear equation. The parameter
(AMg BM~)/(M~+M—Ji) provides a useful criterion
for estimating the stability of various ions.

IV. DISSOCIATION BY A MAGNETIC FIELD

In this section we shall consider the equations of
motion of an H2+ ion moving in a uniform magnetic 6eld.
Our purpose is to examine to what extent the dissocia-
tion of the ion by the Lorentz force is equivalent to
dissociation by an electrostatic field.

Let B be the intensity of the magnetic 6eld which is
taken in the s direction. The vector potential for
this field is in the P direction, A~= (H/2)p, where

Considering the A' terms, we note that we have
r„«r, and r~((r, . If we write p,~p„p~~p„and p ~p„
the A' terms reduce to

(e'/2Mc') (A ~'+A t,')+ (e'/2mc') A,'~ (e'H'/8'') p, .

The second term in II+III is the Zeeman term
in the nuclear coordinates and is equal to (cH/2Mc)
XALJ(J+1))*, where J is the rotational quantum
number. The fourth term is the Zeeman term in the
electronic coordinates. These Zeeman terms are usually
small compared with the separation of the vibrational
levels, and for the purposes of this problem can be
neglected. For the fifth term, we use (A/im)('7i)=vi,
where v~ is the expectation value of the internal electron
velocity. This term can be combined with the 6rst term
and is negligibly small when the center-of-mass velocity
is large compared with v~.

The third term is the term of interest. If we write
(h/2iM) (V',)= (u,), and take the center-of-mass motion
to be a classical circular trajectory, this term becomes

eHfi 1t' 8 8 q eHv,
xi —yi—I

= (xi sin&et —yi cosa&t),
2Mci 2 E By, 8 )x2c

where ~= eH/2Mc.
Consider next a transformation of the electronic and

nuclear coordinates into a coordinate system rotating
with angular velocity cv, the third term becomes
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—(eH/2c)n, y'i. If we set h= t)H/ c, the electronic and
nuclear equations have the same form as Eq. (III.1)
and Eq. (III.5), respectively.

V. CONCLUSIONS

The primary mode of electric dissociation of molecular
ions is predissociation. Neutral molecules and homo-
nuclear molecular ions with an even charge state
dissociate via electron stripping. The asymptotic nuclear
potential for homonuclear ions with an odd charge state
varies as ——',el~ s ~. For heteronuclear molecular ions,
the asymptotic dependence of the nuclear potential and
hence the susceptibility to electric dissociation is a func-
tion of the masses and charge states of the dissociation
products.

The transition rate for dissociation is a sensitive func-
tion of the initial vibrational state of the ion. The
necessary fields for dissociating the H2+ ion range from
10' v/cm for the uppermost vibrational state to
2X10' v/cm for the ground state. The HD+ and HT+
ions are more susceptible to dissociation than is H2+.

The acceleration of H&+ ions in cyclotrons and other
circular accelerators can be extended into the Bev range.
Since the lower vibrational states of the H2+ ion are
generally more densely populated than the upper states,
no significant beam losses from predissociation will occur
in conventional circular accelerators at energies below
1 Bev.

In the application of this work to the injection prob-
lem for controlled-fusion experiments, effective electric
fields of the order of 10' v/cm can be considered. For
those molecular ions in which predissociation is the
primary dissociation mode, several of the uppermost
vibrational states are susceptible to dissociation for
fields within this range. For an electric 6eld of 10' v/cm,
the required time for inducing transitions between the
upper vibrational states is of order 10 ' sec; these
induced transitions will not interfere with the more
rapid predissociation. The recent experiment of Ander-
son et a/. 22 has shown that most of the vibrational states
of the H2+ ion remain populated when such ions are

"S.L. Anderson, K. Gjotterud, T. Holtebekk, and O. Lonsjo,
Nuclear Phys. 7, 384 (1958).

accelerated in Van de Graaf machines. The practical
utilization of the injection method considered here will

require further demonstration that the uppermost
vibrational states can be populated.
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APPENDIX

Various integrals encountered in Sec. III are defined
here. These integrals are readily evaluated with stand-
ard integral tables.

)me&ntJ$ ~,
mn

)me—$(Pi+Pg) rgb ~

~+1
8 = ))"sinh(Qg/2) cosh(Q))/2)dq;

—1

(~+1

C = q cosh'(Q)t/2) d)t;
—1

sinh (Q2))/2) cosh (Qig/2) dq;
—1


