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Frequency Shifts in Hyperfine Splitting of Alkalis: a Correction*
4
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The effect of the deformation of the wave' functions by Van der Waals interactions, previously ignored,

upon the hyperfine shifts of alkalis caused by rare gas atoms is computed. It is found to be large and clearly

in need of consideration. When applied to the experimentally observed shifts, the model proposed earlier,

with the new values of the interaction constants, leads to "interaction radii" somewhat greater than before

and more nearly equal to gas kinetic radii.
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FTER the appearance of an article' by the title
above, Adrian published a calculation' which led

to a formula for the differential Van der Waals forces
between a hydrogen atom in its separate hyperfine
states and a perturbing atom, quite different from the
one computed in reference 1 for alkalis. Adrian's result
is

discussion Eq. (19) of I.

(p'I vl p)'=
4e4 r L3(2jr+1)(2J'+1)(2J+1)]''

9+6 m=—I (1—M)!(1+M)!

XC(jr1jr', mr3f) IF(Jjr'' jr' ', l1)W(OJ1J'; 51)

AE (hyperfine)
= bI 1/(E+I2)+2/E jAE(dispersion). (1)

Here AE(hyperfine) is the hyperfine energy shift, b is
the unperturbed hyperfine energy, E is an "average"
energy of the H atom (taken to be the average of the
resonance P-state energy and the ionization energy
relative to the ground state), I2 is the ionization energy
of the perturber (in the cases of interest a noble gas
atom), and AE(dispersion) is the Van der Waals dis-

persion energy (a negative quantity). In I the second
term in the brackets in Eq. (1) is missing.

If Adrian s result is applied to the alkalis, his pre-
dicted DE(hyperfine) is as much as 5 to 10 times that
of I; for hydrogen the predictions differ by a factor

3. This has caused us to reconsider the problem and
to look for the source of the discrepancy. We shall show

that the added term in (1) is indeed present, even

though it is overestimated when computed by that
formula.

Physically, the added term arises from the defor-
mation of the wave function by the hyperfine inter-
action itself, which was neglected in I. It disappeared
from the mathematics of that paper in its later stages
through an approximation which equated the f values
for the higher and lower hyperfine states of the alkali
atom. When this approximation is avoided, terms like
those in question, but with a somewhat different mean-

ing of E, come into evidence.
The correct result may be obtained from Eqs. (5)

and (19) of I. We take as the starting point of our

In the case of cesium, for which the derivation was

carried out explicitly, the hyperfme quantum number

jr ——4 in connection with the matrix elements (p'
I
V

I p)
appearing in Eq. (5) of I; for (q'IVlq), Jr=3. The
dePendence on jr in all factors of (2) is indicated,
except in the radial matrix elements (L'I rrIL) and

(j2'lr2I j2). The latter matrix element, which refers to
the noble gas atom, needs no further attention, but
(L'

I
r&

I
L) must be more closely examined. With a fuller

display of quantum numbers, this radial matrix element
reads

which is meaningful for the one-electron system to which

the present theory applies. The present theory is
limited to the ground state of alkali atoms; hence
L=0, L'= 1, and the hyperfine quantum number
j&'= jr (which is either 3 or 4); e labels the ground state
and e' the various excited states.

First, we evaluate the difference

(e'14 rrl e04) —(e'13
I rrl @03)=6(e,e'). (3)

To do this, we expand the function |Projr by perturbation
theory using the hyperfine operator K as the per-
turbation. Note is taken of the fact that in making
the expansion, matrix elements diagonal in L and J
are large compared with nondiagonal elements. We
may therefore use the hyperfine operator for 5 states4:

BC= constX8(rr, 0)I S.
*Research supported by the OfEce of Naval Research.
' H. Margenau, P. Fontana, and L. Klein, Phys. Rev. 115, 87

(1959); referred to as I.
2 F. Adrian, J. Chem. Phys. 32, 972 (1960).
'This is in complete accord with a comment made by Dr. P.

Bender at the Ann Arbor Conference on Optical Pumping,
University of Michigan, June, 1959, (unpublished), of whi
the present authors were not aware.

To obtain terms of the same form as Adrian's, we

neglect the perturbation in |Pn'rjr, which yields almost
no net contribution to AE(hyperfine). One therefore

ch 4 A. Abragam and M. H. L. Pryce, Proc. Roy. Soc. (London)
A205, 135 (1951).
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finds
(n04

I
X

I
n"04) —(n03

I
3C

I

e"03)
h(e, n') =P'

E„—E

X (n"0
I
r

I
n'1). (4)

According to Eq. (5) of I, the hyperfine energy differ-
ence is given by

, (p'I vl p)'
AEo vv)

E Ey u'

, (p'Ivlp)' (n'»lr(ln03)',

n' E„E„h—(n'14—
I r( I

n04)'

where now every (p'I Vl p) refers to states j&=4. Hence,
by the arguments of I (E here is the resonance energy
of the alkali atom),

, (p'I vl p)'
AE(hvar&) = — ++

8+Is u' E„E~—
(n, '13 lr, I

e03)'
X (5)

(n'14lr(l e04)'

and the bracket, by virtue of the near equality of the
two r~ elements, becomes

2A(n, n)/(n 14l., lno4).

Hence the second term of Eq. (5) reads

(p'
I
U

I
p)' A (n,n')

S=2 P'" E, E„. (n'14lr, lnO4—)

and e'-independent parts,

(p'I v
I
p)'

AE(dispersion) —P' X
(n'14

I
r(

I
e04)' (E E„)„—

X(e'14lr&I«4)' (7)

where the contents of the bracket are independent of
e'. Performing the summation over e', we obtain

(p'I vl p)
AE(dispersion) —P'

(n'14lr, le04)' (E„E„)„—
X (e04 lr(s

I
n04) (8. )

Substituting this result into (6) yields

2AE (dispersion)5— P (n'14lr(l n04)A(n, n'). (9)
(n04

I
r(2

I
n04')

Here we insert Eq. (4) and perform the summation
over e', obtaining

2AE(dispersion)

(nolrplno)

(n04
I
X

I
e"04)—(e03

I
BC

I
n"03)

xp'
(E„E„„)

X (n"0
I
r('

I
no) (10)

To evaluate this summation for the alkalis we use
hydrogenlike functions with an eRective nuclear charge
Z. Furthermore we take the unperturbed hyperfine
splitting energy to be proportional to the charge density
at the nucleus:

Now a»s seen rom Eq « is pap-, (p'lvlp)'
contains the factor (n'14lr(ln04)'; hence S receives
its largest contributions from terms in which m'=e.
The differences E„E~ which corre—spond to the
elements (p'

I
V

I p) are dominated by the excited state
energies of the rare gas atom. We may therefore write

= &4"(0)/((t'~(0) ~(n/n )'.

(p'I vl p)'
S=2 P'

(n'14l. , lno4) (E,—E„.)„. „

The elements (n"OIr)sI eo), in which we now neglect
the dependence on j&, are evaluated by using formulas
derived for another purpose by Fontana':

where now the contents of the bracket depend on all
quantum numbers indicated by p' except n'. We notice
also that in the expression for AE(dispersion),

(—1)r+s(4+/+v() l

XZ
( ~=o (e"—8—I)!(n —~—1) l(9+I) l(0+I) l~ &'

X(n'14lr(ln04)h(n, n'), (6) a()'
p 1 &

* ] nn" q
'

(n"Olr('lnO) =4—
I I (n —1) (n"—1)

I

Zs (nn")

, (p'l vip)
)" (En En)— 2n q s ( 2n" ) »

xl inyn") &.n+n"J '

only those terms for which e'=n are large. As before, s P Fou(sus Pb D tbesis Yule U I9(jP (to
we may split the summation bn p' into its e'-dependent published).
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and, if e=n", this equation reduces to TABLE II. Comparison of d and e for Cs-noble gas interactions.

Interaction

All terms containing the factorial of a negative integer
in the denominator vanish. Energies are represented by

Cs —He
Cs —Ne
Cs —N2
Cs —Ar
Cs —Kr
Cs —Xe

3.58
3.75
4.24
4.07
4.18
4.27

0.60
0.70
0.50
0.85
0.96
1

E„=—RyZ'/n, ',

S= (2c/I3) BAE(dispersion),

where I~ is again the ionization potential of the alkali,
then the values of c are 1.1 for hydrogen, 1.0 for sodium,
and 1.1 for cesium. This seems to suggest that, with

TABLE I. Values of the constant u, appearing in the formula
d B(hyperfine) = —a/R'.

Gas

He
Ne
N2
Ar
Kr
Xe

g(( s133)

2455X10 '
46.60X 10-5

2133 X10 '
198.6 X10 '
303.3 X10 5

498.0 X10 '

~(Rb»)

15.40X10 '
29.30X10 '

1341 X10 5

125.1 X10 '
1904 X10 '

the values of Z for the groundstates of the different
alkalis being 1.84, 2.26, 2.77, and 3.21 for Na, K, Rb,
and Cs.

In the actual calculation, matrix elements were
computed explicitly for low values of m"; for higher
elements a sum rule was employed. It is necessary, of
course, to include in the summation the inner levels of
the alkali atom even though they are occupied.

The one-electron picture with the same Z for all
states was consistently maintained throughout the
calculation, as is required for the sake of perturbation
theory. To test the sensitivity of the result, we have also
computed S with an assignment of diBerent Z„ to
different states, thus destroying the orthogonality of
the states; the Z were taken from spectroscopy (with
extrapolation for occupied states). This procedure
yielded the same results for Na within a few percent.

If the results are written in the form

sufficient accuracy, c can be taken to be 1 for the cases
in which we are interested.

The complete formula for the shift induced by a
rare gas atom in the hyperfine energy of an alkali thus
reads, approximately,

1 2q
AE(hyper6ne) = AE(dispersion)

~
+—

~
h, (12)

&8+Is I3)

where again I~ and I2 are the ionization energies of the
alkali atom and the rare gas atom, and E is the reso-
nance energy of the alkali.

The constant a= —R36E(hyperfine) is considerably
altered from the values given in I, as is seen in Table I.
The relative magnitudes of the coefFicients remain
about the same, and for this reason the effect of the
change upon the line shifts we wish ultimately to
compute is not very great.

We employ the same reasoning as in I [see formulas
(29) and (30)]and the same notation: d is the distance
at which the "attractive" interaction changes to a
"repulsive" one in analogy with ordinary intermolecular
forces; e is a measure of the steepness of the "repulsive"
interaction. The results are given in Table II. The
parameter e has the same trend as before, and d is now,
curiously, in even better accord with kinetic theory
1adll.

More refined calculations of the shifts, with special
attention to their temperature dependence, were per-
formed by Robinson~ on the basis of the numerical
values given in I. Simple arguments lead us to believe
that his results remain substantially unchanged when
the new interaction constants are employed, except for
slight changes in parameters as in Table II.

3 L. B. Robinson, Phys. Rev. 117, 1275 (1960).


