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The crossed-level method of atomic spectroscopy is discussed and the angular distribution formula for
both the incoherent and coherent resonance scattering is derived. The form of this distribution function, as
given here, explicitly displays the geometric factors depending on radiation propagation vectors. With the
application to hydrogen in mind, the distribution function is expressed explicitly for single electron transi-
tions with external fields possessing axial symmetry. The properties of the distribution function are dis-
cussed with emphasis on the case of unpolarized radiation. For the case of hydrogen there are two possible
applications of major interest. The first concerns the possibility of a precision measurement of the 2p fine
structure splitting and, hence, a determination of the fine structure constant. Explicit results for the shape
and other properties of the resonance line with a uniform magnetic field obtained. The other application is
concerned with the possibility of measuring the 2s-2p Lamb splitting. This requires an electric field parallel
to the magnetic field. Unfortunately, the level crossings which are sensitive to the Lamb splitting cannot
radiate sufEciently rapidly while those which do radiate appreciably occur at field strengths which are
extremely insensitive to the Lamb splitting.

I. INTRODUCTION

' "N a recent paper Colegrove, Franken, Lewis, and
- Sands' have described a novel measurement of the

fine structure (2 'Pi —2 'P2) splitting in atomic helium.
The method involves the production of level-crossing of
excited atomic states by an external magnetic held. It
depends on the fact that the scattering of resonance
radiation in the case of degenerate or nearly degenerate
excited states is coherent in somewhat the same sense
as in the diffraction of light by a pair of slits, the initial
and final (sub-) states playing the role of source and
detector with which the diffraction pattern is observed.
A more direct description of the phenomenon in physical
terms will be given in the discussion to follow. An
alternative description has also been given by Franken. '

It should be emphasized that the process under dis-
cussion is not new in that it had been discussed in the
literature almost three decades ago. In this connection
the work of Weisskopf3 and of Breit4 is especially worthy
of mention. What is important is the fact that the work
of Franken et al. constitutes the first application of this
method to precision spectroscopy. The measurement of
the spin-orbit splitting in helium gives results accurate
to better than one part in 2X10' and is presumably
capable of even greater accuracy. The application to
hydrogen is immediately suggested, since the more ac-
curately known wave functions for that case would
presumably lead to a highly precise determination of
the fine structure constant via a measurement of the
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2P1—2P1 splitting in a uniform magnetic field. The
accuracy of the measurement would then be determined
largely by the accuracy with which the magnetic Geld

at the center of the resonance could be determined. In
principle the method could be extended to other light
atoms, but the application to hydrogen would appear
most urgent. Another possible measurement would

appear to yield an alternative determination of the
Lamb splitting. In this case, as is almost immediately
apparent, it is necessary to apply an electric Geld as
well. The question of measuring the Lamb shift in
hydrogen by this "crossed-level" method will be taken
up in this paper.

Other applications are possible in principle at least.
For instance, the investigation of very small splittings
in nuclear levels produced by magnetic dipole and elec-
tric quadrupole splittings would be amenable to this
method. The experiment would now depend on coherent
resonance efkcts in a cascade of two gamma rays, say.
Unfortunately, however, in most cases the nuclear spin
Hamiltonian contains too many unknown parameters
to make the envisaged experiment attractive. For in-
stance, in the simple case that a nucleus (spin ~&1) is
embedded in a crystal which provides an inhomogeneous
electric fieM with an axis of symmetry and if there is no
hyperfine coupling, the ratio of quadrupole to dipole
coupling could be determined by placing the sample in
an external magnetic held. We shall not pursue these
applications in this paper.

Although the process under discussion has been de-
scribed to some extent in the references cited, we wish

to present a few remarks which will clarify the sub-

sequent discussion. The situation considered is one
in which an atom (say) undergoes stimulated absorption
from an initial state a to a group of excited states
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b, b', - . . Subsequently, by spontaneous emission the
system undergoes a transition to a state c which need
not be the same as the initial state. If the states a and c
are degenerate or even if this degeneracy is removed,

by a magnetic field for example, the labelling of the
states includes a description of the sublevels and then
a and c will, in general, be different. In our application,
however, the initial and final states will be sublevels of
the same gross state. The states b, 6', will, in the
absence of external fields, be not completely degenerate
and we consider a pair of states, b and b', which in the
field-free case are split by an amount ~0. Moreover,
6o will be assumed to be considerably larger than the
average width, y = s (y+y'), of this pair of states. Under
such circumstances the scattered intensity is an inco-
herent superposition of contributions from b and 5'. If
the b —b' splitting can be "tuned" by application of
external fields so that it can be ma, de zero (crossed
levels) or of order y, then an interference contribution
to the scattered intensity arises. This will be true for
some fixed direction of the outgoing radiation and will

be angle dependent. For the total intensity there is, of
course, no coherent effect; see Sec. II below. As an inci-

dental point, it is clear that the precise description of
the coherent contribution depends also on the polariza-
tion states of incident and outgoing radiation.

This discussion shows that as a function of the ex-

ternal field a sharp resonance will appear. ' The width

at half maximum is about 2y. The fact that the width
is of the order cited will be evident from the following
consideration. If the excited state exists for a time t the
nearly degenerate sta, tes b and b' undergo ra,ndom

phase changes given by exp( —iEt) and exp( —sE't).
The net random phase introduced is exp( —ihEt), where
AE=E E'. Since 3 1—/y it follows that coherence is

preserved perfectly for AE/&= 0 (level-crossing) and is

completely destroyed when DE/p))1.
In this discussion there are two assumptions: (1)

First, the incident radiation is assumed to have a su%-

ciently broad spectrum so that b and b' can both be
excited. Second, the states involved must fulfill the
standard selection rules which in the atomic case implies
that a and c can be connected to both b and b' by electric
dipole radiation. This requirement of the selection rules
renders some level crossings in helium ineffective, and

in hydrogen it requires that s states be admixed with
some P constituent.

Finally, we make the rather obvious remark that the
utility of the method, if the objective is to measure 60,
depends on an accurate connection between 60 and the
values of the field parameters at which the level-crossing
occurs. This is most readily established in the hydrogen
case.

' This is to be distinguished from the resonance as a function of
frequency, which has nothing to do with the coherent phenomenon
considered here.' This statement is modified when the hyper6ne splitting is of
the same order as the width y; see Sec. III.

II'(&)= 2 IZ(~sl&. '+'Ibi&&bol&. ' 'l~i&l' (1)
mim2 b

Here B„(+' is the operator that creates the outgoing
photon with specified frequency, direction, and polariza-
tion, while II,( ) is the operator for annihilating the
incident photon with specified frequency, direction, and
polarization. Clearly the time dependence of the state
amplitude 5& is given by

lb')= I
bs) exp( —iEs——,'I's)1. (2)

In (2) we have used the diagonality of the damping
matrix. ' ' We return to this point in the discussion at the
end of this section. Also Eb represents the eigenvalue of
H for ore of the states b, the label b representing a
composite of quantum numbers referring to the (in
general) nondegenerate states b. We have allowed for
the possibility that the radiative widths I'b depend on
the state b. Also in our units 5=1.

Using (2), the transition probability will be given by

W= W(t,)d&
N p

2 Z&~s I &.'+'
I bo&(~s I &.'+'

I
bo'&*

mim2 bb~

x&b, I
a, '-'

I
~i&&bo'I &,'-'

I
~i&*

Fb b
—ZBb b

A. Abragam and R. V. Pound, Phys. Rev. 89, j.306 (1953).
8 Here and in the following the formalism follows that of angular

correlation theory, which is the precise counterpart of the process
we discuss. The replacement in the initial transition of an emission
process by an absorption does not change this equivalence. See,
for example, L. C. Biedenharn and M. K. Rose, Revs. Modern
Phys. 25, 729 (1953).

II. THE ANGULAR DISTRIBUTION FUNCTION

The transition probability for resonance scattering of
almost degenerate states has been derived by other
authors' 4 but in this section we give a simplified version
of the derivation for the purpose of putting in evidence
some physical consideration. In our formalism we follow
the procedure used by Abragam and Pound in their
discussion of angular correlation. This procedure is not
meant to be more rigorous than the perturbation
methods adopted in the previous discussions but it has
certa, in pedagogic advantages.

In the spirit of the perturbation theory the states
involved in our description are eigenfunctions of a static
Hamiltonian, H, which includes the external fields, and
are also damped by the coupling to the radiation field.
The transition from the initial state a (which actually
constitutes a group of substates which we label by mi)
to the intermediate state b occurs a,t time t=0. We con-
sider the subsequent emission process from 6 to a final
state c, substates labelled by m2, occurring at time t.

The transition probability for this "time-delayed"
scattering is proportional to'
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where we have used the notation

I'
t, ~=2(i't+I'v), (3a)

(3b)

mi and m2 can now be interpreted as the eigenvalues of

j, for the states c and c. The unitary transformation (4)
is obviously unnecessary for a and c.

We introduce the transformation (4') and the notation

~= j+~~'/l~l.

The eigenfunctions
l xp) diagonalize II when the external

fields are absent. Then, dropping the subscript 0,

lb)=p U (b~)l.I )

and the Ub, I" are elements of a unitary matrix. When the
external fieMs have axial symmetry so that j, and H
commute, we write (4) in the form

lb)=Z U"(«) l~u), (4')

where we recognize that b contains p parametrically as
one constituent label and E serves to distinguish the
different states with the same p, . Our considerations will
be almost entirely confined to the case of axial symmetry
and. we use (4') in the following. "The quantum numbers

M. E. Rose, Etementury Theory of Angular Momentum (John
Wiley 8z Sons, Inc. , New York, 1957), Chap. IX."As will be made more evident in Sec. III it is only in the case
of axial symmetry that level crossings (accidental degeneracies)
occur.

Equation (3) agrees exactly with the results given by
Weisskopf and Breit. All the states entering in the
matrix elements are now true stationary states.

Since the "delay time" t is random, it is clear that the
finite lifetime of the intermediate states introduces a
random phase in the state amplitudes: Eb bt is the rela-
tive phase difference due to the precession caused by II.
The interpretation of the resonance as given in the
introduction is now clear. If with blab', E6 q/I's t,))1
the only important contributions are those for which
b=b' and Et, q=0. These are the incoherent terms in (3).
When the external field parameters are so adjusted that
Eb.b-rb. b for some pair b, b' there will be a coherent
contribution arising from this pair of states. This will

certainly occur at and near a level-crossing. In general,
for given external fields only one crossing will occur.

To make the rather formal result (3) more useful we
recognize that the II„(+) operators will usually corre-
spond to emission and absorption of pure multipole
fields and, in our case, of electric dipole fields. Hence,
it is useful to introduce the field-free atomic eigenstates
for a single electron. These are pure angular momentum
states. These are conveniently described by the quantum
numbers a and p (aside from the energy quantum num-
ber). Here p is the eigenvalue of j„the angular momen-
tum along the quantization axis, and ~ gives the total
angular momentum j and parity (—)' according to'

K Q(Kp l
B

l
Kl~l)(rc'p'l If, ' '

l
K&ml) (Sa)

gP&+& =P(~,m,
l

H„&+&
l ~p)(~,m, lH„&+&

l

~'p')*. (sb)

Here we use ~~ and ~2 to complete the description of the
states a and c. Then the transition probability becomes

W= P U~(K~) U~*(Ku) U~'*(KY) U~'(KY)

gQ(+&+(—&

X—
I bjb ZEb~ b

(6)

&„&-&=PMDMP ($)j A, , (7)

where D j/I p' is an element of the rotation matrix of order
three, and the two of the three Euler angles appear-
ing as arguments are the polar and azimuth angles of k
and the third is zero. j is the current density operator
and A&M is the vector potential for a dipole (angular
momentum 1 and s component M). In (7), P= &1 and,
in modern usage, P=+1 refers to right, P= —1 to left
circular polarization. "

"For linear polarization, (7) is to be replaced by

H„& &=X» s ' ~DMS'(k)j Ag

where o. defines the direction of the electric vector with respect to
a plane containing the quantization axis.

and the sum in (6) is over K, K', p, p', a, ~', ~, R'. Of
course, b is an abbreviation for the index pair E, p.
The w and R take on the same set of values and ~' and R'

also take on the same values. The two pairs (~,R) and
(rc', R') do not necessarily have the same range. It is to
be recognized that 5K&+) depend on the polarization and
direction of the quanta and on p and p'. Also 5K( ) de-
pends on k

andric',

5K'+) on a and A.".But K and K' do not
enter in 5K(+). They do occur in the unitary matrix
elements. These matrix elements also depend on the
external field parameters as do I'b b and Eb b. Because 8'
depends on the direction of the photons it will be hence-
forth referred to as the angular distribution function.
For the case in which the external 6elds exhibit axial
symmetry, the angles which enter are those describing
the spherical triangle defined by the symmetry axis and
the two propagation vectors ki and k2.

To exhibit the properties of the angular distribution
function it is necessary to examine the detailed structure
of the 5K&+'. For dipole radiation the absorption opera-
tor, omitting irrelevant multiplicative constants, is
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The result for 5R( & is then

~' ' = (—) "(~ll 1ll~ )(~'ll 1ll~ )*
&&L(2j'+ 1)(2i+ 1)3~ Z„C(11',P, P)—

XC(1j'~; Iiw'—)~(1j1j',j»)D. ;0"—(k), (8)

where m=j' —j+p'+ji. In (8) the first two factors
after the phase are reduced matrix elements for dipole
emission, the C factors are Clebsch-Gordan coefficients,
and S' is a Racah coe@cient. We also note that

(8')

give the angular dependence.
If we sum over polarizations, we employ

-', Pp C(11v, P, —P) =-,'L1+(—)"]C(11;1, —1),

so that v is restricted to even values and, explicitly,
v= 0 and 2. The v= 1 terms contribute to the polariza-
tion-dependent terms. The major part of our special
considerations will be restricted to the resonance Ruo-
rescence of the Iyman alpha radiation, and for ex-
perimental reasons it is sufficient to consider only
unpolarized radiation. Recognizing that the extension
to polarized radiation can easily be made, we shall
henceforth discuss only the case in which the unpolarized
radiations are observed.

For BR(+) we change K, R' to ~, I(.', also j& to j2, and
finally take the complex conjugate of (8). Obviously,
k=k] ln 5R and k=k2 ln 5K'+'.

With these results we can return to the question of
the diagonality of the damping matrix which was tacitly
assumed in writing (2). For this purpose it is necessary
to show that

W..b ——P
blab'

A I',~-~'(k,)Y;—"*(k,)
I b b iEb'b

where 2 contains the four unitary matrix elements and
the remaining factors in 5K(+'5K& ). Since

f & y" (2—~)! '*

I'P(k) = (—)~l —
l

P~~(6)e'"~
&4z ) (2+m) !

where I'2 is the associated I egendre function, we can
write

I'b b cosP —E; bsinP
W,.b l

A
l
P~ '(Pi)Pg»'(8g), (10)

Fb.b'+Eb b'

A second consequence of the result (8) is that the
intermediate states must be linear combinations of
states, at least one of which has an angular momentum

j~&~. Otherwise there is no coherent contribution to the
scattering. To see this, we first recognize that in the
coherent term p —p'&0. This follows from a well-known
theorem of Wigner and von Neumann" which prohibits
crossings of levels with the same symmetry. Hence in
the product 5K&+'5K& ' there is no coherent contribution
from the isotropic terms v=0. Incidentally, this con-
hrms the more or less self-evident fact that the coherence
does not affect the total intensity of scattering. Since
we consider only unpolarized scattered light, v=2 must
occur in both 5R(+& and 5K& &. Hence j, j', and v as well
as j, j, and v with v =2 must form a triangle, which is
impossible if all angular momenta are equal to —,'. This
means that for the 0=2 states in H the role of the pI
level is vital, so far as producing coherence with un-
polarized light is concerned.

The structure of the coherent contribution is now
seen to be of the form

Dbb
—=P„(blII,&-&la)(b'lII, & 'la)*=0 (9) where

P= (~—
I ')(~i—~2)+argA

if the states 6 and b' are different, where the sum is over
all photon frequencies, polarizations, and directions.
We need only to integrate (8) over all directions of k to
see that Dee is proportional to 5» 6„0. Since

Dbb ——Q Q U~*(ICu) U~(IPu')K& —
&,

KK

it is seen that s =0 requires Fc=k'. For those values of
k and k' for which the product of reduced matrix ele-
ments is not zero, this product is independent of R (or ~').
Thus the sum over Fc involves only the U matrix ele-
ments and gives 6~~ . Dbb is proportional to 5~~8„„and
is completely diagonal. "

"An alternative proof is given in reference 4.

A A

Of course, 8~ and 82 are the polar angles of ki and k2

measured from the axis of symmetry and p&
—y2 is the

dihedral angle between the planes formed by this axis
with ky and with k~. This verifies the statement that
for unpolarized radiation only the rotationally invariant
spherical triangle is involved. If the energy difterence
E& b is varied by changing the field parameters, sym-
bolized for the moment by x, the width of the resonance
111 s space is

AX= 2 Fbjb,
~~e e

while in energy (Eb.b) space it is 2Fb b. The resonance

» y. von Xeumann and E. P. Wigner, Physil. Z. 30, 467 (1929).
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line is seen to consist of a Lorentz-shape contribution
proportional to

I'b'b cosp/(I'b'b +Eb'b )

and an asymmetrically shaped contribution propor-
tional to

—Eb b sinp/(I'b. b'+Eb b').

In the foregoing discussion 'we have tacitly assumed
that over the width of the resonance, A is an extremely
slowly varying function of the field parameters. In all
our applications this is extremely well fulfilled; see
Sec. III.

For the case of external fields for which there is an
axis of symmetry, A will be real. A necessary condition
for this is the reality of the relevant products of reduced
matrix elements. That these products are indeed real
can be seen a priori by an adaptation of a well-known
argument of Lloyd. "In this case

and the pure Lorentz shape can be obtained by a suit-
able choice of the dihedral angle.

An additional selection rule which must be fulfilled
for the existence of a coherent term is

as can be seen from (8). For the n= 2 levels of hydrogen
this is fulfilled for all levels which cross, as will be
seen in the following section. For one of the radiations
circularly polarized, the restriction is more severe:

Finally, we observe that if either the incident or
outgoing radiation is parallel (or antiparallel) to the
axis of symmetry, there is no coherent effect. This type
of geometry forces the condition p, =p,

' which precludes
the crossing of two levels.

The incoherent part of the radiation is clearly aniso-
tropic if and only if at least one of the intermediate
states has an admixture of j~&—,'. In any event the inco-
herent part is independent of the dihedral angle.

As far as optimization of the interference signal is
concerned, it is clear that one should make 8~=82=8,
and for

~ p —p'~ = 2 the value 8 =s./2 is optimum while
for ~lb

—p, '~ =1 the value 8=m/4 is optimum. For
( p —p'( =2 the pure Lorentz shape results for

( &pi
—ys (

=Is/2 with m=0, 1, 2, 3; and for
~ p —p'~ =1 the con-

dition is
~
yi —ys~ =0 or x. In the applications given

below, these geometrical conditions will be assumed.

(1) the scattering in a magnetic field only whereby the
2P1—2P; splitting is ascertainable, and (2) the scattering
in combined electric and magnetic fields whereby
(a priori) one might hope to determine the Lamb shift.
Our discussion is intended to be illustrative of the
principles of the method and of some of the difhculties
one may expect to encounter.

A. Spin-Orbit Splitting

From an experimental point of view resonance scat-
tering is simplest between the ground and the us=2
states. However, for reasons having to do with the
absorption of Lyman radiation, it is not practical to
consider polarized radiation. The results of Sec. II will
then apply.

The stationary part of the Hamiltonian of the
problem is

(12)B=Hs+B',

where Hp contains not only the kinetic and Coulomb
energy but also, in a phenomenological way, all neces-
sary radiative corrections. The magnetic coupling is H'
which will be expressed in nonrelativistic form,

t

H'= @PC(j,+s,), (13)

where pp is the Bohr magneton and K, the magnetic
field, is in the direction of the quantization axis. The
eigenvalues of Hp for the m=2 states are 6y cp and e2 for
2P;, 2s;, and 2P1, respectively. We introduce

62 alp (13')

where

E(1 s) = s(G —~+),

E(2 l) = l(G+~+),

E(1 —s) = —
s (G+~-),

E(2 —s)= s(—G+~-)

G= @pe/5,

(14a)

(14b)

(14c)

(14d)

S~= (Gs&ssG+1) &. («)

the spin-orbit splitting plus radiative corrections. We
shall also use

6=6p —61,

the Lamb splitting. In the present case the 2s~ level
plays no role since it radiates with a half-life (1/7 sec)
which is far too large. The coupled states are Pl and P1
with the same eigenvalue p, of j,. The energies in the
field are E(Eli):

III. APPLICATION TO.HYDROGEN For zero field the X= 1, 2 states become Pl, P1 states,
We shall consider the following two applications of respectively. In addition, for j=~, p, =&—,'the energy is

the resonance scattering at crossed levels in hydrogen:
El(W-', )= W2G+-', ,

'4 S. P. Lloyd, Phys. Rev. 81, 161 (1951). and these states remain pure.
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The energy levels are shown in Fig. 1 where the
Lamb-shifted s sublevels are also shown. There are only
two crossing between p states and these are marked
(e) and (h) in Fig. 1. In the present approximation
these occur at

G= 4/9 (e crossing),

G= 2/3 (h crossing).

Clearly in a precise analysis many small corrections
would be considered as well. For instance, relativistic
corrections (of order u') would increase G by one part
in 10. Other corrections, arising from finite nuclear
mass, hyperfine coupling, and so on, are readily applied
as discussed by Lamb. ' To a good approximation the
effect of hyper6ne coupling is to broaden the coherent
resonance. Thus, each level in Fig. 1 becomes a doublet
with nsz, the nuclear magnetic quantum number, equal
to ~~ so that a given crossing is replaced by four cross-
ings. However, as a consequence of the selection rule
DnsJ=O only two of these crossings will contribute to
the scattering. Hence, a single Lorentz peak is replaced
by two peaks which are shifted by an amount equal to
hyperfine splitting. Since this splitting is 1.776 Mc/sec
for the m=2 state and the width I' (the same for all p
states) is 99 Mc/sec, the resonance will appear as two
separated peaks.

Crossing (e) corresponds to
~ p —p,

'
~

= 2 and for opti-
mum geometry the incoherent scattering is

FIG. 1.Energy levels for the n = 2 state in hydrogen as a function
of G=poR/B. The symbols are defined in Eqs. (13) and (13').
The s levels are shown with the Lamb shift taken to be 1057
Mc/sec. The letters in parentheses serve to distinguish the various
crossings.

14"-=(9/8)+Ex.{1+FLU"(E—2))'
—%2pU" (E1)U"(E—2))'. (19)

With the same normalization the coherent scattering is

For future reference we note that
49 t' 540 i 1

W...('&=—
~

1— g ~

88 & 847 J 1+L(24/11)x]'
(20)

where

1 (o —1)
2 (o.+1)

(17
where g is a measure of the magnetic field measured from
the center of the resonance; that is,

C2 61=——1=9.350.
(EP

—61

The expansion coe%cients U"(Es) are:

g= 6—4/9,

@=g5/I'.

(20a)

(20b)

U" (1 1)= Ls (1+~+/5'+) 3*',

U" (2 1)= L-:(1—+/5'+) j'*

U"(1 —2) = —Ll (1—~+P+)j"
U"(2 —2)= Ls (1+~+/~~) 1',

(18a)

(18b)

(18c)

(18d)

p~
——1mG/3.

Of course, ((= 1, —2 refer to pi and p„respectively.

The linear factor in g appearing in (20) arises from the
distortion of the wave functions by the magnetic field
and, as a consequence, the shape of the resonance is not
exactly of the Lorentz type. Since x=1 corresponds to
g=0.009, this deviation from the Lorentz shape is small
but may be significant enough to take into account in
applications where precision is a consideration. At half
maximum, the deviation from the pure Lorentz shape
due to this distortion is Ax——6.7X10 '.

» 7V. E. Lamb, Jr., Phys. Rev. 85, 259 (1952).
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0.6

0.4

IX
/

equal to Ax=11/12 which corresponds to a magnetic
field width of 65.2 gauss. The position of the resonance
is, in the approximation considered, K„,=3480 gauss.
Since the relation between 3'.„,and 8 is linear, the fine
structure (or better, 2p; —2P;) splitting can be deter-
mined to the same accuracy as the measurement of the
magnetic field at resonance.

B. Lamb Shift

0.2

0-1.2 -0.8 -0.4 0 0.4 0.8 1.2

t i I t t 1

O. f 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 ).0
8

FIG. 2. Coherent scattering for zero electric Geld as a function
of magnetic Geld. The ordinate scale is arbitrary. The geometry
is 8q ——8s=s/2, C =O. The resonance arises from crossing (e) in
Fig. 1. The lower portion of the Ggure shows an enlarged version
of the resonance curve. Splitting due to hyperfine coupling has
not been included here. The small deviation from the Lorentz
shape is not noticeable.

The ratio of t/t/'„h to t/t/';, at the resonance is

It is immediately clear that the position of the cross-
ings (e) and (h) of Fig. 1 do not depend on 6, the
2s;—2p*, splitting. On the other hand, the position of the
other crossings shown do depend somewhat sensitively
on 6 but these crossings cannot be utilized in resonance
scattering from the 1s; ground state. Hence, it is neces-
sary to introduce an electric field 8. For reasons to be
made apparent at a later stage of the discussion it is
advantageous to make the two fields H and 8 parallel
(or antiparallel). In this case the system considered
still exhibits axial symmetry and p is a good quantum
number.

For 8&8=0 the eigenvalues are determined from
the roots of the secular equation

W,.h/W;, =0.0895,
where

det(Hg' —E8,;)=0,

which should correspond to a coherent signal of ample
strength.

The crossing (h) corresponds to tp —p, '~ =1 and the
conditions of optimum geometry (Bi=Ps= pr/4) are not
as convenient as in the ~ii

—p'~ = 2 case. Nevertheless,
we give the results for the incoherent and coherent
scattering for this crossing:

H'=
p p3C (j,+s.)+ebs.

The secular determinant splits into two cubics (ii= %is)
and two one-by-one determinants (ii=&ss). With the
notation

x(SC) =pp3'. , x(8)= —V3eaph,

where ao is the Bohr radius in hydrogen, we have for p = —,
'

x(Se)+ ep —x(h) %2x(h)

detH; = —x(b) six(X)+ei rs&2x(K) . (23)

&2x(h) -,'v2x(Se) -,'x(Se)+.,

81
W,.„,=—+P 1—-,'[U (Z—2)]'

32 +II

1 2

+ i U~(E1) U~(E—2) (21)—

1) 10' 1
W,.i,i"'=—1——g [

24 4 3 ) 1+(4x/3)'
(22a)

Here

6 2 (22b)

The ratio W„z/W;„, at x=0 is only 0.0068 and, hence,
this crossing is not quite as interesting as crossing (e).

Figure 2 shows the coherent peak for crossing (e)
superimposed on the incoherent background. In this
figure the coherent resonance is also shown on an en-

larged scale. The effect of hyperfine coupling, not shown

here, is readily taken into account by superimposing two
resonance curves of the type shown. The total width at
half maximum, which is 21' in energy units, is, in x space,

(24)E(ass) = W2x(BC)+ ep.

Of course, the sum of the eigenvalues for both p= &2 is
unchanged by the presence of the fields and the center of
gravity of the levels remains at s (ep+ ei+ ep).

At any nonzero value of the electric field there are

In (23) the rows and columns refer to s;, p;, and pi
states, respectively. For p= ——,

' the sign of x(BC) on the
diagonal and the sign of x(8) in the s;—pi matrix
elements must be changed. The characteristic equation
for p= —~~diGers from that pertaining to p=~~by a
change of sign of x(K). For p= &'sthe energies are
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TAsr.E I. Information relative to eight level crossings of the 7/I, = 2 states of hydrogen in parallel electric and magnetic Gelds.

Intersecting states

(a) Pi(-', ):Pi(—-.')
(b) Pi(2):Pi(p)
(e) s;(—l):Pi(p)
(d) P;(-l):»(!)
(e) Pi(——;):P;(-,')
(f)»(-:):Pi(—l)
(g) Pi(—-'):»(—-'*)

(b) Pi(- l):Pi(--:)

Energy at intersection

2G+ (2—L)/3
2G+ (2 L)/—3

—1/12 (X+1)
—2G+ (2—L)/3
—2G+ (2—L)/3

1/12(i —1)
—2G+ (2—L)/3
—2G+ (2—L)/3

Field strengths at intersection

—'&G&-',
G& i.-l

V'=3G(G+4/9) (1+3G—L)/L(13/3) G+1],
V'=G(G+-', ) (1+G—L)/L(3/3)G+1],
G'= (1/~) (Js—»)
V'=9G(4/9 —G) L(1—L)/3 —G]/L(13/3)G —1], 3/13 & G &~(1—L)/3
V'= 3G(G—4/9) (3G+L—1)/P(13/3) G—1], G & 4/9
G'= (1/~) (0+»)
V'= G (8-G) (1-L-G)/E(3/3) G-1],
V'=G(G —3) (G+L—1)/L(3/3)G —1],

eight distinct level crossings, not counting the de-
generacies at BC=0. In general, these occur at different
values of 8, K so that the degree of accidental de-
generacy does not exceed two. Also, as a general rule,
these crossings are sufficiently well separated so that
where one crossing occurs, the level separation of other
pairs appreciably exceeds 1'. In Table I information
relative to the various crossings is given. The table de-
scribes the crossings in terms of the spectroscopic desig-
nation of the zero-field states from which the states in
question arise (first column). The second column gives
the energy at which the accidental degeneracy occurs
with respect to the center of gravity p (ep+ei+ep). The
third column gives the equation which determines the
relation which must be fulfilled between the field
strengths for each crossing. The entries in the table are
listed according to increasing BC for given 8. The nota-
tion employed is

V =x(8)/8, L=6/8,

and G defined in Eq. (15). In addition the following
abbreviations are used.

to note that the intersection labelled (i) in Fig. 1 re-
ferring to zero electric field has disappeared. This inter-
section between s; and p;, both with p, = —pi, is not a
contradiction to the Wigner von Neumann theorem"
since it corresponds to a "touching" of the levels, In
a 2-by-2 secular determinant,

Hgg —E H»
=0

Hgg H22 —E
with roots

Z, ,,=-,'(a„+a„~L(e„—a„)'+4~@„~pj-:), (26)

this intersection corresponds to H» ——0 and Hgj ——Hg2.
Identifying the levels with these two roots, E&&~E&

always. Introducing the electric field makes H»/0 and
hence E~=E2 is impossible. This "repulsion" of the
levels is responsible for the fact that when 8 and H are
not aligned all the level crossings of Fig. 3 disappear.
OG-axis components of 8 introduce nondiagonal matrix
elements between all s and p states with

~
p, —1i'~ =1,

as is clear from the fact that

a=16(12V'+1),
8 r —h, s=-', L(h.+i8„)(x—iy)+(8, —i8„)(x+iy)g.

(25a)

P =320V4+ (8/3) V'(9L' —24L+ 26)
+ (2/9) (45L' —36L+16), (25b)

V= c+9L',

pi= (8/9)+2L(4V' —1).

(25c)

(25d)

In Fig. 3 the energy levels for the eight m= 2 states are
shown as a function of magnetic field with V=I . Using
the value 1057 Mc/sec for the Lamb shift, this corre-
sponds to an electric field of 477.6 volts/cm. For other
values of the electric field similar energy level patterns
are obtained.

It will be noted that even for BC=0 the separation of
the s1 and p*, states is slightly more than twice the
Lamb shift. Intersection (c) between s,. with ii= ——,

'
and p; with p'= —,

' is clearly the most sensitive to the
value of L, or the Lamb shift.

Before discussing the intersection (c), it is of interest

It is for this reason that we assume aligned fields
although it is to be recognized that in an actual experi-
mental arrangement the fields can be aligned accurately
over only a limited volume of the scatterer. When the
angle 0 between fields is small, two levels which cross for
0=0 will approach each other within a minimum separa-
tion which is, in general, of order 8, (see Eq. (26)j.The
coherent scattering still exhibits a resonance but the
maximum coherent scattering intensity is slightly
diminished; that is, in the ratio

r /pr +(az);„j,
as compared to the coherent intensity at a crossing. The
geometry for the Lorentz shape is assumed. Hence,
small misalignment of the fields is, in itself, not a
catastrophe. It is only necessary that (hE); &I'.

When the mixed states have different radiative widths
in the zero-field limit, the states with fields present will
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obviously have different widths. It is easy to see that
if a state is represented by

1.8

1.6

(

Es ('&z)

'I'b=Z~ ebA'~

then the width of this state is, to lowest order, "
&b=Z&Ieb IsV&, (27)

1.4

1.2

1.0

0.8

where y, are the zero-field widths of the states P, . With
this result the angular correlation function is easily
obtained for the present case from the results of Sec. II.
In the present application there are three terms in the
sum (27) and we can take ys. ——0 with ys); ——ys);.

If we now consider intersection (c) for electric fields
which admix appreciable p state in the originally pure s
state, it is seen that the position of this crossing rapidly
becomes insensitive to the Lamb shift. Physically, this
is an expression of the fact that the Stark eGect simply
dominates the radiative eGects leading to the Lamb
splitting at all 6elds for which V&L. Since this un-
fortunate circumstance also influences the crossings
which are useful for the determination of the one struc-
ture splitting, it is always advantageous to have no
electric 6eld present.

In quantitative terms the lack of sensitivity of al/ the
crossings to the Lamb shift can be seen by considering

CU

+

+
O

I

VJ

1

cu

0.6

0.4

0,2

-0.2

-0.4

-0.6

-0.8

—1.0

-1.2

—1.4

-1.6
0

r &j ()~z)

0.1 0.2 0.5 0.4 0.5 0.6 0.7 0.8 0.9 1.0

where

dG dU
&g +&V

G V

rg=B 1nL/8 lnG, rv=B lnL/() lnV.

(28)

(28')

FIG. 3. Energy levels for the n =2 state in hydrogen as a function
of G (see caption to Fig. 1) for an electric Geld of 477.6 v/cm
/V =I,, see Eq. (25)7. The electric Geld introduces new crossings
(a) and (b) and removes the "crossing" (i).

For a sensitive determination the relative error dD/6
should be small or at least not large compared to dG/G
and dV/V. Hence rg and rv should be of order or less
than unity. These quantities 70 and 7& can be deter-
mined from the third column of Table I. For example,
for crossings ((b), (d), and (e),

For crossings (t)), (g), and (Q),

(30a)

2
rv= (L+G 1)——

L
(30b)

1 G V' 5
70 2G L+- —

L, G—2/3 G' 3'

1 G U'
Vg ——18G+7 3L, —

3L G—4/9 G'
For crossings (f) (upper sign) and (c) (lower sign),

2G'
rg —— g 16V'(3L—4)+4(SL—2)

L2
r v (I.+3G 1).——— —

L
(29b)

& )&. (8V' —2)+9I=
X

(31a)
'6 The simplest proof of the result quoted is to recognize that

to the order considered the width is proportional to the square
modulus of the matrix element of H„(+) summed over all quanta.
The matrix element is Z; cb& ()br ~

e.&+&
~ p;); and after squaring and

summing, the cross-terms vanish by the same argument used to
deduce the diagonality of the damping matrix. An alternative
proof from the equations of motion of the probability amplitudes
can be devised; see W. E. Lamb, Jr. and R. C. Retherford,
Phys. Rev. 79, 571 (1950). This method involves the solution of
the determinantal equation,

det(a; —I'S;;+-',~;S;;)=0.
Solving to Grst order in y; gives the same result,

8V'7.g —24Gs+80Vs+3Ls —8L

26
+—~(L)i+12~/) ) . (31b)

3

In Figs. 4 and 5 the quantities 7-t- and ry are given as
functions of V. It is to be remembered that G is a func-
tion of V (for given L) as indicated in the third column
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FIG. 4. The parameter rg, see Eq. (28'), as a function of electric
Geld. For deGnition of V see Eq. (25). The letters attached to the
curves refer to the various crossings in Fig. 2.

-50
0 0.2 0.4 0.6

Y

0.8 1.0

Fio. 5. Same as Fig. 4 except that the ordinate
represents rr, see Eq. (28').

1.2

of Table I. For rg only the (c) crossing can give sensi-
tivity, but at the expense of small p admixture and very
low scattering intensity from the initially pure s state.
For 7.~ the same remark applies to several crossings,
including (c). It must be recognized that both rg and rv
must be small for a crossing sensitive to the Lamb shift
and this never occurs in a practical case. For small
V/L the expansion coeKcients feb, or Ul'(Elr)] are such
that the p admixture in the initially pure s state is very

small (of order V'/L' as is obvious from perturbation
theory). The only exception is the case p, = —sr where in
the absence of an electric field a "touching contact" of
two levels was obtained. The rapid repulsion of these
two levels in an electric field precludes the possibility
of observing any coherent scattering in this case as well.
Moreover, the fact that these states are essentially pure
j=—, mixtures at small fields would eliminate any possi-
bility of coherence in that case.


