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Application of the Impulse Approximation to the Scattering of Electrons by Atoms.
I. Inelastic Scattering by Hydrogen Atoms*
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A calculation of the ionization cross section and the excitation cross section to the 2S and 2P states of
hydrogen atoms by collision with electrons is carried through by the use of an impulse approximation. The
results are then compared to the experimental data and to various other theoretical calculations. The cross
sections obtained compare favorably with experiment. The calculations carried out by these methods are no
more complicated than the usual approximation methods and are easily adaptable for use with more com-
plicated atoms.

I. INTRODUCTION

LTHOUGH the system consisting of a hydrogen
atom and an electron is a relatively simple three-

body system, and the forces between all particles are
known, the theoretical analysis of the inelastic scatter-
ing of electrons by hydrogen atoms has not progressed
very far in recent years. The methods which have been
used have been the first Born approximation, the second
Born approximation, the distorted-wave approximation,
and variational methods. Of these methods, only the
first can be readily generalized to more complicated
systems. The Born approximation, which has a wider
range of applicability, generally suffers from the defect
that it tends to overestimate the cross section at lower
energies sometimes by a factor of 2.

In recent years, experimental techniques for the
measurement of the scattering cross section of electrons
by atoms have improved considerably and the signal-to-
noise ratio has increased sufficiently so that a separation
of the various inelastic processes is now possible. With
the accumulation of experimental information, it now
becomes possible to check various approximation
methods for the scattering of electrons by atoms.

We are presenting the first of a series of articles which
will apply the impulse approximation to the problem at
hand. This method had previously been formulated by
Chew, ' and applied by him to the analogous nuclear
problem of the scattering of neutrons by deuterons. The
basic idea of the impulse approximation is that one
assumes that during the collision the interaction be-
tween the bound atomic particles is turned off; this
implies that the incident particle spends a very short
time in the field of the bound particles, and during this
time the atomic configuration is frozen. This assumption
is natural to make when the incident particle has a
relatively high energy. A detailed analysis by Chew and

~ The research reported in this paper has been sponsored in part
by the Geophysics Research Center, Air Research and Develop-
ment Command, under contract, and in part by the Army Rocket
and Guided Missile Agency under contract.' G. F. Chew, Phys. Rev. 80, 196 (1952).

II. THEORY

To study the problem of the scattering of an electron
by a hydrogen atom, we must solve the following
Schrodinger equation:

Hf(rr, rs) =EP(r, ,rs),
where

and

8 8 8
H= — Ar — As ——+

2m 2m r1 r2 r12

2m

s G. F. Chew and G. C. Wick, Phys. Rev. 8S, 636 (1952).
3 G. F. Chew and- M. L. Goldberger, Phys. Rev. 87, 778 (1952).

Wick, ' and by Chew and Goldberger, ' shows that the
impulse approximation is valid as long as r

~
e

~
&&A, where

v is the transit time of the incident electron and e is the
binding energy of the ground state of the atom. For our
problem, namely, the ionization cross section and the
excitation cross section of the 25 and 2P states of hydro-
gen by electron impact, this criterion implies that the
energy of the incident electron should be approximately
150 ev. We have carried out the calculations in this
approximation to much lower energies in hope that
there would be some fairly good agreement with experi-
ment. A fair agreement would then oGer some encourage-
ment to apply this method to the scattering of electrons
by heavier atoms.

As it turns out, the approximation is fairly good at all
energies and is no more complicated than the first Born
approximation. Ke, therefore, think that we have still
another approximation method which can be used for
calculating the inelastic scattering of electrons by atoms.

In Sec. II we derive the various formulas necessary
for our work. These formulas are then used in Sec. III
and IV to compute the ionization and the excitation
cross sections to the 2S and 2P states of hydrogen, re-
spectively. A short discussion of some of the difhculties
encountered is given in Sec. V.
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In (2) and (3), 61 and 62 are the I.aplacian operators in
the space of electrons 1 and 2, respectively; r& and r2 are,
respectively, the position vectors of the incident and
bound electron. s referred to the proton (we assume that
the mass of the proton is infinite); ki is the propagation
vector of the incident electron before collision and e is
the binding energy of the ground state of hydrogen; A is
Planck's constant, e and m are the charge and mass of
the electron, respectively, and r»= r&—r2.

Use of standard techniques converts the Schrodinger
equation into an integral equation with the scattered
part of the wave function given by

m expgi7„r j
g, (ri, r2) — P 4 (r2)

00 2 A2

matrices

(k„,l
~

R&"&
~
k„o)

i—)~dk2 gp(k, )

X ~ "dridr2 expL —ik„ri]p„*(r2)V

Xf», k2(ri, r2) (7)
for direct scattering and

( „,~)R& &~k„O)

i d—k2 gp(k2)

X)r dri'dr2'y„*(r2')

Xexpp —ik„r2'] Vp(ri', r2') (4)

dridr2 expL —ik„r2)g„*(ri)U

Xpk
1

k2(ri, r2) (8)

for direct scattering, and

nz expLik„rpj
4 (r,r ) —— Z- 4-(r )

27rk2 r2

X~ dri'dr2'g„*(ri')

XexpL ik 'r2'3U&(ri', r2') (5)

for exchange scattering. Here, g is the wave function of
an electron in the field of a proton in the state 22, k„ is
the propagation vector of the scattered electron,
V= (e'/r12) —(e'/ri) and U= (e'/r12) —(e'/r2)

Chew' points out that it is simpler for our purposes to
use the R matrix notation in expressing the various
formulas that we need. %e shall, in the following, follow
the parallel derivation of Chew for the problem of the
scattering of a neutron by a deuteron. Ke assume that
f(ri, r2) appearing under the integral sign in (4) and (5)
can be expressed in the following approximate form:

g (ri, r2) =p, (ri, r2) = dk2 gp(k2)kkl k2(rl r2), (6)

where the subscript a indicates that f,(ri, r2) is an ap-
proximation to the true wave function of the system,
gp(k2) is the Fourier transform of the wave function for
the ground state of the hydrogen atom, and ski, k2(ri, r,)
represents the wave function of an electron of momentum
pi ——Ski in the field of an electron of momentum y2 ——Akp.

Equation (6) is equivalent to considering the interaction
of the incident electron with a free electron whose
momentum distribution is given by the Fourier trans-
form of the ground state wave function of hydrogen.

Substitution of (6) into (4) and (5) leads to the R

for exchange scattering. If we define

f.= (m/2&ii)(k„, l (R& i
~
k„o)

g = (222/2'&') (k,22
~

R~'&
~
k,,O), (9b)

then the cross section for excitation to the state e will be

/yi)(4lf-+ g-Ipyf If-—g-I2} (1O)

For ionization, we de6ne

f(k, ,ki', k, ') = (ki', k2'i R&+
i k, ,O)

g(ki ki k2 ) (k1 k2 ~R"
~
ki 0).

The cross section for ionization will then be

(11a)

(11b)

~dki'dk2'= (221/Aui)(-',
i f+gi2+-,'

i f—gi'}
X8(Ef Ep)dki'dk2'. (12)

Here, ki' and k2' are, respectively, the propagation
vectors of the incident and bound electrons after
scattering and Eo and Ef are the initial and final
energies of the system before and after scattering.

We now note that ipki, k, (ri, r,) can be factored into
the product of two functions, one representing the mo-
tion of center of mass of the two electrons, and the other
the relative motion about the center of mass:

(k„,e~R~k„o) =)" t dkpdk2"g„*(k2")

X (kn k2
~
R

~
ki k2)gp(k2) (14)

ski k2 (ri r2) = (21r) '*
pe(x,'i (k +1k ).-2(ri+ r2) }

Xg'-,'(ki —k2) (1'1—r2). (13)

Substitution of (13) into (7) and (8) and replacement
of the hydrogen wave function p„(r) by its Fourier
transform, we are led to the general expression
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(k )kp I
Ri "&

I ki, kp)

dridr, exp[ —i(k„r 4+k p"r,))
(2~)P" ~

XexP[-,'i(ki+kp) (ri+rp)]UP;;(ki —kp)(ri —rp) (15)

for direct scattering and

(k.,kp" IR" lki, kp)

rdr—exp[i(k —k') r)F[(—i/2apk); 1; ikr —ik r]

4x (k—k')' —2k (k—k')
—lIt (k)

(k—k')' (k—k')'
(22)

Now, let us consider I2. This represents the contribu-
tion, to the inelastic process, of the wave that has been
scattered from the proton. Thus, I2 represents a multi-
ple scattering effect that is of a higher order and should
be negligible compared to I~. To show this, we carry out
the integrals represented in Ip. We let r= r and p'= I&+ ,'r-
in (18b) which separates the r and I& integrals and leads
to

"dridrp exp[—i(k„rp+kp" ri))

XexP[-,'i(ki+k2) (ri+rp)) UP,*( i-kp)(ri —rp) (16)

for exchange scattering. We will now proceed to compute
(15) and (16). We will confine our remarks to the R
matrix for direct scattering and give the results for ex-
change since the same treatment is applicable. Ke
substitute for the potential U the expression (e'/rip)
—(e'/ri) into (15) and carry out the transformation

(k—k') 4

$(k)
[k (k—k')]4(k —k')'

I2=

2k (k—k') '+&'""P&

X
(k—k')'

These steps lead to
When (21) and (22) are combined and k and k' are
replaced by their values as given in (19), we find that

where Ip~l/ki' and Ii~1/ki'; thus, Ip/I&~1/ki'. It follows
then that we can neglect the 1/ri term in (15) and 1/rp
term in (16).This is to be expected, since if we consider
I~, the orthogonality of the initial and Anal states of

Xexp[—ik .r]fk(r) (18a) hydrogen will give zero contribution in the Born ap-
proximation. By combining (14), (15), and the expres-
sion for I~, we obtain

t' drdI&
Ii I

——exp[—i(k„+kp"—ki —kp) g)

and

Brdlo
IQ ~

— exp[ —i(k„+kp"—ki —kp) p)
I e+lrl

Xexp[—ik' r)pk(r) (18b)
(k,n

I
R& "&

I ki,0)

where the R matrix under the integral sign is given by The r integral has been carried through by various
authors, ' and leads to

with
k= p (ki —kp) and k'= —', (k„—kp"). (19)

= —ie' dkpg *(ki+kp —k ) (k'I r'd& lk)gp(kp), (24)

Now It k(r) represents the motion of a charged particle
in a Coulomb field and is given by'

f (r) =I&) (k)e"'R[(—i/2a k); 1:ikr —ik r), (20a)

for direct scattering. The kq" integral has been carried
through. Here,

where Ii is the conQuent hypergeometric function of its
argument and

X(k) = (m/Ak)lr[IP (i/2aok))e ""~ (20b)

Here, I'[1+(i/2apk)) is the gamma function of its
argument. When pk(r) is substituted into (18a), we
obtain

(k—k')' —2k. (k—k') 'i"o"

(k—k')'

k=-,'(k, —k,); k'=-,'(2k„—k, —k,).

(25)

(26)

Ii= (24r) PE(k)8(k„+kp"—ki —kp)

pdr—exp[i(k —k') r]

XF((—i/2apk); 1; ikr —ik r). (21)
4L. I. Schi8, Qganfgm Meclzmsics (McGraw-Hill Book Com-

pany, Inc. , New York, 1949), 1st ed. , Chap. V, p. 117.

The above treatment applied to exchange leads to

(k„,NIR& & Ik„o)

ie' dkpg—„"(ki+k,—k„)(k'
I
r('&

I k)gp(kp), (27)

5 T. Pradhan, Phys. Rev. 105, 1250 (1957). A. Nordsieck, ibid.
93, 785 (1954).
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where
4x

(k'Ig&'& Ik) = E(k)
(k+k')'

(k+k')' —2k. (k+k') *"'"
X—

(k+k')'

with k and k' as given in (26).

III. IONIZATION CROSS SECTION

(28)

incident and bound electrons, respectively, after colli-
sion, the E. matrix for direct scattering becomes

(k~' kp'I ~'"' Ik~ 0)

= —ie' dk2gtp'*(kq+kp —k~')(k'I r "
I k)gp(kp). (29)

Recalling that

%e are interested here in the case where the bound
electron emerges in the continuum state after collision.
We will assume it can be represented by a plane wave.
If we let k&' and kp' be the propagation vectors of the

we can compute gp(kp); since we are assuming that the
final state is a plane wave, gv2' will be a 6 function and
thus:

(kg', kp'IR& "i
I
kg, 0)=

gp&gPv2 1
1V(-,'I 2k( —kg' —kp'I)

(ky —ky ) [1+gp (ky +kp ky) ]
(kg —kg') (2k' —kg' —kp') —(kg —kg')' '~ap~'"&-'&'-""~

~ (30)
I—12

In a similar way, we obtain for exchange scattering:

Gp~8pv2

(kg', kp'I R~'&
I kg, 0)= E(2 I 2k' —ki' —kp'I )

(kg —kp')'[1+ap'(k, —k, '—k,')']'

(ky —kp~) ' (2k' kg~ —kp~) —(ky —kp~)& ~/apl&&z —&z'—&p'I

X
1 2

2

The scattering cross section is obtained by combining (30) and (31) with (12) which leads to

me4 exp[—pr/ap
I
2k' —k, '—kp'

I ] 5 (Z '+8 ' E)—
0;.„dkg'dkp' ——2'n-'

5'apk~ sinh[vr/ap
I
2k' —kq' —kp'

I ] (2k' —kq' —kp')'f 1+up'(kq —kq' —kq')']'

(31)

1 1 1
X +1- 1'4 1- 2'4

cos8 dk&'dkp', (32)

where

I
24—k, '—k, 'I

((2k' —kg' —kp') (kg —kg') —(kg —kg')'}((2k' —kg' —kp') (kg —kp') —(kg —kp')'}
(33)

1 1 1 2

The total cross section is obtained by integrating (32)
over the entire space of k~' and kp'. The limits on kp' are
set by the 8 function. The limits on the magnitude of k&

are 0 and (kP —1)& which correspond to the limiting
cases where the emerging electron carries off all the
excess energy and where the incident electron carries it
oG. However, as can be seen, the integrals cannot be
carried through as they are, and certain transformations
must be performed. We let K= 2k' —k~' —kp' and
K'=k&' —k&' which simplify the integrals. The angular
integrations and the E' integral can then be carried
through leaving us with one integral over E which must
be computed numerically. Further, the transformation
leads to the fact that, on the right-hand side of (32), the
third term cancels the second. All this leads to

2'X4 64 8 4 7
0'i+ op+ &—p+—0'4+~—&p 7—&p (34)

k12 15 5 15 3

e—x/KdE
&n= E'" ' sinh(m/K)

[4kgE—2k / —E'—2]i

[1+(kg—E)']' "

[4kgE+2kP+E'+2]&
(35a)

[1+(P +Q)2]P—n

with e= j, 5; and

where we have put e=k=m=1 and tT~ is expressed in
units of xa02. Here,
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l.4 When this integral is carried through, we obtain

0 g const' 6.
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jJ

This is in agreement with Massey, ' who points out that
on the basis of the available evidence, the threshold law
for ionization is a~ ~ e and in disagreement with
Wannier, ' who obtains 0.

~
~ ~' "'.

go(k2) =
sr (1+k22)2

(36a)

IV. EXCITATION CROSS SECTIONS

Before we proceed to compute the excitation cross
sections, one more approximation must be discussed. It
is quite clear that, because of the complicated depend-
ence of the R matrix on k2, it is not possible to carry out
the k2 integral given in (24) and (27). We must attempt
to take the r matrix out from under the integral sign at
some suitable value of k2. To this end, we tabulate first
the various Fourier transforms which arise in our
calculations; namely,

I3.65
ELECTRON ENERGY, ev

FIG. 1. Comparison of experimental and theoretical results: total
ionization cross section for electron-hydrogen collisions.

4 —1+4E'
g.oo(K) =-

n (1+4E')'
(36b)

L4krE+2k P+E'+2]-*'
tanh —'dE e

—f~
06—

E'o sinh(n/E) E(E'+2kP+2)
L4krE —2kP —E'—2]&—tanh-r, (35b)

E(E'+2kP+2)

2'n' t dk, '
o 2= I e—(kr')2].

kP " (kr —kr')4

6 W. L. Fite and R. T. Brackmann, Phys. Rev. 112, 1141 (1958).' N. F. Mott and H. S. W. Massey, Theory of Atomic Collisio22s
{Oxford University Press, London, 1949), 2nd ed. , Chap. XI, p.
235.

where the limits of integration are 2kr& (kP —1)*'. The
numerical computation of (34) led to the curve given in
Fig. 1. Two other curves are also given on this 6gure:
the experimental result of Fite and Brackmann, ' and the
theoretical result obtained by them when they carried
out the numerical integration of the Born approximation
formula as given by Mott and Massey. ' The Born
approximation gives a maximum at a lower energy than
the experimental and overestimates the cross section
below 150 ev. Our result leads to a value for the cross
section which is the same as the experimental although
it is shifted to the higher energy. An examination of (35)
shows that the cross section at high energies behaves as
1/kt'o. In fact, our approximation goes into the I3orn
approximation at about 150 ev.

To examine the behavior at threshold, we go back to
(32). Since we can write here kP=1+e(e~0), both
(kr')2 and (ks')' are small and

k, K
gsro(K) =

in. kr(1+4E2)'
(36c)

f210

grip

cos8 in(1+4E')'.

Thus, the only eGect of the cosine is to change the scale
of gsto(K). In view of the previous discussion, we shall
assume that we can take the r matrix out from under the
integral sign at k2=0 since it is around this region that
the main contribution to the integral takes place. The
above considerations apply to both direct and exchange
scattering.

Once the procedure described is carried through, we

8 H. S. W. Massey, Handbuch Der Physik, edited by E, Fliigge
(Springer-Verlag, Berlin, 1956), Vol. XXXVI, p. 571.' G. Wannier, Phys. Rev. 90, 817 (1953).

where K=k,+k2 —k&'. Now go(k2) has a maximum at
k2=0 and falls oG very rapidly as k2 increases. We note
that at high energies most of the scattering takes place
in the forward direction and hence kr —kr' 0. Thus,
g2pp and g2~p will depend strongly on k2. If we now ex-
amine the products gyppg2pp and gyppg2yp we see that the
main contribution to the k, integral will come from the
region in which k2 is small. An examination of the r
matrix shows it to be a slowly varying function of k2

over any given range of this variable. It has no singu-
larities in the k2 plane and furthermore is bounded. The
last point to be discussed occurs in (36c). In the
numerator the term kr K occurs; (36c) can be rewritten
in the form
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are left with the integral

I„II— dk,g„'(kx—kr'+ko') go(ko).

t dry„*(r)e'(I" "') 'Qo(r).
aJ

(3&)

Qy substituting the Fourier integrals for gp and g~, we

obtain

for direct scattering and

(kg', 200
I
R(8)

I k„100)

2»lo7re'ao'Q(~ok, ) (k,—kq')' exp[—~/aok4 ]
(k ')'[9+4ao'(4 —ki')'j'

k~~' (kI —kg~) 4l&&o4'

(39b)

We are now in a position to calculate the excitation
cross sections.

A. 18~28 Transition

We recall that

for exchange scattering. The scattering cross section is
obtained by combining (39) and (10) which leads to

217~e—2m / k1

0 1S-+2S
klkl'[sinh(r/kj') 1[9+4(k1 kl ) I'

and
po(r) (s.aoo)-;e-rl ao X 1+ exp[—2or/k, 'j

(k&')4

2»l's. e'E(-,'kg) k&. (k& k&') 'l o

[9+4ao'(ki —k~')'$' (k—k~')'

g&oo(r) = (2'~ao') —l(2—r/ao)e """.

Substitution of tt o and P,oo into (37) leads to

2""(kg —kg')'

[9+4(kg —kg')']'

By combining (38), (25), and (24), we obtain

(k, ',200
I
Z«)

I
l „100)

(38)

(39a)

(kg —kg')' exp[—4r/kg'j

(kg')'
Xcos —In . (40)

kg' (kg —k, ')'.

Here we have put e=A=m=1 and o. is expressed in
units of ~ap'. The total cross section will be obtained by
integrating (40) over all scattering angles. Because of
the interference term in (40), the integral involving this
term was computed numerically. The total cross section
led to the curve given in Fig. 2. We have also plotted on
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L4

FiG. 3. Comparison of experi-
mental and theoretical results:
1S—2P total cross section for elec-
tron-hydrogen collisions.
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this figure the results of Marriott" and the Born ap-
proximation as given by Massey. "It is quite clear that
we do not agree with Marriott's results and that the
Born approximation is quite large. The experimental
results of Lichten and Schultz" give a maximum of
0.35map' for the total cross section. This is higher than
the maximum given by the Born approximation. Al-

though our result is in disagreement with Lichten and
Schultz, Fite and his co-workers" point out that their
measurements indicate an agreement with our result'":
The maximum in our case is again shifted to the higher
energies but the shape of the curve and the magnitude
of the cross section agree quite well. We have also in-
cluded in Fig. 2 the total direct cross section. Exami-
nation of this shows that exchange contributes about
20% of the scattering at 50 ev and a higher ratio as the
energy decreases. As the energy of the incident electron
increases, the exchange contribution approaches zero.
We feel, however, that exchange can be neglected for
heavier atoms in our approximation.

B. 1S—+2P Transition

In this case, the wave function for the final state of
the atom is

r'
ttsrtt(r) = (2'vratts) &—e "ls 0 cosg',

Cp

which leads to a value of I210,100

3i2'si'(kr —ki' cos8)
1210,100 ~ (42)

I 9+4ao'(kx —ki')'j'
' R. Marriott, Proc. Phys. Soc. (London) 72, 121 (1958).
"H. S. W. Massey, Haedbuch Des Physik, edited by E. Flugge

(Springer-Verlag, Berlin, 1956), Vol. XXXVI, p. 354.
'2 W. Lichten and S. Schultz, Phys. Rev. 116, 1132 (1959)."R. F. Stebbings, W. L. Fite, D. G. Hummer, and R. T. Brack-

mann, Phys. Rev, 119, 1939 (1960).'" See Note added in proof.

The scattering cross section will then be:

(kr —kr' cos8)'216~&—2~/a1

01' 2m=9
krkr' smh(~/kr') (kt —kr')'L9+4(kr —kr')']'

V. DrSCUSSrom

In addition to the basic assumptions of the impulse
approximation two additional approximations have

'4 W. Rothenstein, Proc. Phys. Soc. (London) 67, 673 (1954).
"W. L. Fite and R. T. Brackmann, Phys. Rev. 112, 1151

(1958).
S. Khashaba and H. S.W. Massey, Proc. Phys. Soc. (London)

il, 574 (1958).

1 1 1 1

1+ expl —2~/k&'3+
(kr')' (kg')'

(kr')'
XexpL —~/kt'j cos —ln, (43)

kr' (kr —kr')'

where 0- is again expressed in units of vrap'. The total
cross section is obtained by integrating over all angles of
scattering. The result is plotted in Fig. 3. Also given
here are the first Born approximation, "the second Born
approximation, " Fite's experimental results, " and the
distorted wave approximation. " As can be seen, our
result is better than the other approximations although
it is again shifted to the higher energies.

In Tables I and II, we give some values for the
differential cross section for excitation of the 28 and 2P
states. We have included also the closest values com-
puted by using the Born approximation (BA) for 100,
200, and 400 ev incident electron energy. Most of our
values at high energy follow the same pattern as BA.
However, at 100 ev our values are all lower. We have
also included the values at 27 and 54 ev and no compari-
son exists for these values.
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TABLE I.Differential cross section, 0 (O), for excitation of 2S state of hydrogen by electron impact. k;, incident energy in ev; O, scattering
angle; 0 (8) in units of a0,' I.A. , impulse approximation; B.A. , Born approximation.

pO

50
10'
20'
30'
400

27
I.A.

0.55
0.51
0.45
0.30
0.16
0.058

54
I.A.

0.73
0.62
0.49
0.29
0.06

100
B.A.

0.89
0.77
0.52
0.133
0.024
0.0042

108
I.A.

0.78
0.75
0.42
0.194
0.019
0.0023

200
B.A.

0.94
0.70
0.33
0.031
0.0024
0.00024

216
I.A.

0.82
0.75
0.42
0.028
0.0026
0.00024

400
B.A.

0.96
0.55
0.013
0.0034
0.0312
0.0578

432
I.A.

0.84
~ ~ ~

0.015
0.0045
0.0001
0.0578

TABLE II. Differential cross section for excitation of 2I state of hydrogen by electron impact. E;, incident energy in ev; 0, scattering
angle; o. (O) in units of oo, I.A. , impulse approximation; B.A. , Born approximation.

pO

50
10'
20'
30'
40'

27
I.A.

22.0
21.0
19.0
10.0
0.13
0.05

54
I.A.

46.0
36.0
20.0
6.0
0.1
0.01

100
B.A.

99 8
23.7
5.01

108
I.A.

50.0
18.0
3.5

200
B.A.

215.0
13.3
1.63

216
I.A.

266.0
10.0
1.65

400
B.A.

450.7
5.43
0.033

432
I.A.

522.0
5.0
0.035

been made in the course of the calculation. One of these
is a difhculty which will always arise when calculating
the ionization cross section. The other occurs when one
calculates an inelastic bound-bound transition.

In calculating the ionization cross section we have
used plane waves for the final-state wave functions of
the electron. This is a crude approximation but it would
be difficult to know what the correct wave functions are.
Coulombic wave functions have a logarithmic phase
factor at infinity and apply only to the scattering by
unshielded charges. In our case we have to describe the
electron in the presence not only of a positive charge
but other negative charges which provide some shield-
ing. Consequently, a Coulombic wave function would
not give the correct asymptotic behavior.

In calculating bound-bound transitions, in order to
carry out the integrals, it is necessary to remove the r
matrix from under the integral sign. In our application
it was possible to do this because the product of the
Fourier transforms of the bound-state wave functions
peaked at some appropriate energy. The recipe that we
have here does not necessarily apply for all bound-bound

transitions. Each individual case must be examined
separately to see what the appropriate value of the
energy should be at which the r matrix is to be evaluated
when removed from under the integral sign.

We have not made a detailed analysis of the nature
of the fundamental impulse approximation and these
additional approximations. We feel, however, that the
results indicate that with labor no more complicated
than that involved in the first Born approximation we
have a supplementary approximation described here
which is applicable to the calculation of inelastic scat-
tering of electrons by atoms. If we were to generalize the
results obtained for hydrogen, we could say that the
true cross section for various processes lies somewhere
in between the first Born approximation and the impulse
approximation. We do not obtain the violent peaking at
very low energies but rather our maximum cross section
is approximately correct but occurs at an energy some-
what higher than the experimental results.

Eofe added ie Proof. W. Fite (private communication)
has informed us that the experimental results for the
1S~ 2S transition should be raised by 50%.


