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Low-Temperature Thermal Resistance of n-Type Germanium
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It is proposed that the scattering of phonons by donors in germanium at low temperatures results from
the large effect of strain on the energy of an electron in a hydrogen-like donor state. A calculation of the
thermal conductivity with this scattering mechanism is presented. Reasonable agreement with the following
features of the observed thermal conductivity is obtained: the very large scattering power of donors, the
diBerence between the scattering powers of antimony and arsenic, a temperature dependence of thermal
conductivity stronger than T', and a dependence of the scattering on number of occupied donors rather than
on the total impurity concentration.

I. INTRODUCTION temperature, is strongly frequency dependent, ' and
shows a magnetoresistance many orders of magnitude
greater than that expected on the basis of a band
model. " Thus, an explanation of the thermal con-
ductivity based on the localized model would be more
satisfying. In this communication we show that a calcu-
lation of phonon scattering by donors based on the
accepted model of a donor state reproduces, at least
semiquantitatively, the unusual features of the thermal
resistance of m-type germanium. "

ECENT measurements of the thermal conductivity
of germanium at low temperatures have shown

some striking features which are not explained by
established theories of phonon scattering. ' ' In par-
ticular, (1) the scattering of phonons by small concen-
trations of donors or acceptors is far too strong to be
accounted for by the usual mechanisms of scattering
by impurity atoms; (2) at very low temperatures the
thermal conductivity of certain specimens increases
with the temperature more strongly than T', a result
which also is inconsistent with the usual theories of
scattering by impurities.

Carruthers et a/. interpreted these observations as
evidence for scattering of the phonons by excess carriers
(electrons or holes) introduced by the electrically active
impurity. "The model which they used assumed that
the excess carriers were in a band of the usual type at
very low temperatures. While this model is quite con-
sistent with other evidence for impurity concentrations
greater than about 2)&10'~ cm ', various theoretical
and experimental studies of the electrical conductivity
at low temperatures show that in the lower part of the
concentration range spanned by the thermal conduc-
tivity experiments the properties of the "impurity
band" are more appropriately regarded as arising from
relatively weak interaction between electronic states
which are localized on impurity atoms. ' "For example,
the electrical conductivity is an activated function of

Qualitative Discussion

The first eGect mentioned above, . the great strength
of the scattering of phonons by donors, results from the
large effect of strain on the energy of an electron bound
to a donor. "The ground state of a donor in germanium
is fourfold degenerate in the eGective-mass approxi-
mation. Deviations from the effective-mass theory split
this set of states into a singlet and a triplet separated
by an energy 4h, the "chemical shift, " in the usual
nomenclature. " The perturbation of the germanium
band structure by a shear strain produces matrix ele-
ments of order of magnitude „e between the singlet
state and the states of the triplet, where „is the shear
deformation potential constant and e is the magnitude of
the strain in the vicinity of the donor. According to
second order perturbation theory, these matrix elements
give rise to a term of order (P e)'/4A in the dependence
of the energy of a state on the strain. However, a per-
urbation of the energy of a lattice by a term propor-
ional to the square of the strain at a point produces
cattering of phonons of the point. defect type, as con-
idered by Klemensl3 '4 and Pomeranchuk. "This is the
ource of the scattering of phonons by donors.

Carruthers" has suggested the possibility of phonon
cattering due to the production of virtual electronic
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transitions by a phonon. The scattering can be re-
garded as arising from virtual transitions between the
singlet and triplet donor levels.

It is easy to see that the donor scattering is very
strong compared to the sources of point-defect scatter-
ing usually considered. For example, comparing the
perturbation of the lattice energy by a donor with that
due to the difference in mass between a substitutional
atom and a host lattice atom, "'4 we see that the
replacement

i& MsV +(-—'/46) e'

II. PHONON SCATTERING BY AN ELECTRON
IN THE SINGLET STATE

The matrix of the
of an electron bound

u(')
H= —6

Hamiltonian of the ground states
to a donor atom in germanium is

u "& —4 —6, (2.1)
u(3)

u~4~

in the formulation of the problem of the eGect of strain
on the ground states described by Price." Here the
zero of energy has been chosen as the energy of a
hydrogen-like state'~ derived from a single valley in the
"decoupled" approximation and the basis of the repre-
sentation (2.1) is the set of decoupled wave functions.
The quantity u&') is the displacement of the energy of
the "decoupled" state arising from valley (i) by the

"C.Kittel and A. H. Mitchell, Phys. Rev. 96, 1488 (1954); M,
Lampert, Phys. Rev. 97, 352 (1955); W. Kohn and J. M. Lutt-
inger, Phys. Rev. 97, 1721 (1955); 98, 915 (1955).

has been made, where e is the elastic wave velocity.
For an antimony atom in germanium AMe'=10 ev
while '/44= 5X 10' ev.

The second eBect mentioned above, the increase of
thermal conductivity with temperature at a rate
greater than T', we attribute to the fact that the
donor scattering as described above is only effective
for phonons with wavelength long compared to the
effective Bohr radius of the bound state; for shorter
wavelengths the donor state cannot be considered as a
point defect. The scattering by the donor becomes very
small at short wavelengths because the value of the
strain averaged over the electronic wave function de-
creases very rapidly with decreasing wavelength for
wavelengths less than the diameter of the bound state.
Thus there is a range of phonon energies in which the
phonon relaxation time is a rapidly increasing function
of phonon energy. This phenomenon can produce a
temperature range in which the average phonon mean
free path is an increasing function of temperature and
in which the thermal conductivity therefore increases
more rapidly than T'.

In the next sections we will present a more quantita-
tive version of the arguments of this section.

strain, and has the value

uio — t ~(i& e(r)p(osdp' (2.2)

E= —3A+ (1/4) (u"'+ u "&+u"&+ui")
(1/64/) [4(u (i&s+.u (s & sy u (s & s+.u (4& s)

—(uu&+u(s&+u(s&+u&4&)s] (2 3)

From this point on, the calculation of the thermal re-
sistance can be continued by following closely the
methods of Klemens. 's'4 The strain, F., in Eq. (2.2) is
expanded in terms of phonons and the resultant u&"

are substituted in Eq. (2.3). The phonon scattering
comes from the last part of Eq. (2.3), the part which
depends quadratically on the u"' and on c. The details
in the present problem are somewhat more tedious than
in the problems considered by Klemens because of the

' C. Herring and E. Vogt, Phys. Rev. 101, 944 (1956).
"H. Hasegawa, Phys. Rev. 118, 1523 (1960).
0 H. Pritzsche, Phys. Rev. 115, 336 (1959); 120, 1120 (1960).
"G.Weinreich, W, S. Hoyle, H. G. White, and K. F. Rodgers,

Phys. Rev. Letters 2, 96 (1959);3, 244 (1959);D. K. Wilson and
G. Feher, Bull. Am. Phys. Soc. 5, 60 (1960).

Here l'& is the deformation potential tensor, " e(r) is
the strain tensor, which is a function of position, and
lt &'& is the envelope wave function'r of the hydrogen-like
state associated with valley (i). We treat (2.2) only in
the isotropic approximation used by Hasegawa, " ac-
cording to which the effect of the averaging over the
electronic wave function in (2.2) is to reduce the defor-
rnation potential tensor by a factor (1+~ra"k') ' for a
phonon with wave vector of magnitude k. Here a* is
an appropriately averaged Bohr radius of the hydrogen-
like donor state.

The 6's in Eq. (2.1) are matrix elements between the
decoupled hydrogen-like wave functions. For further
discussion and justification of Eq. (2.1) the reader is
referred to the paper of Price" and the references therein.
The energy levels of the Hamiltonian of Eq. (2.1) in the
unstrained state are E= —3A and K=A (triply de-
generate). The experiments of Fritzsche" and others"
show that 3 is positive so that the singlet state is
lowest in energy for both arsenic and antimony donors.
The best demonstration of the adequacy of Eq. (2.1)
to describe the e8ects of strain on the donor states in
germanium is furnished by the low-temperature piezo-
resistance experiments of Fritzsche. " These experi-
ments can be very accurately Q.tted by the model
def&ned by Eq. (2.1) and provide a good determination
of the parameters of the model.

The strain of interest here is that due to the phonons
and we will calculate the phonon scattering for elec-
trons in the lowest, or singlet, state. From the Hamil-
tonian of Eq. (2.1), the energy of an electron in the
lowest state to terms of second order in the u&" is
found to be
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[I i 0] III. DISCUSSION OF THE THERMAL
CONDUCTIVITY

In this section we attempt to evaluate the effect of
the phonon scattering described by Eq. (2.4) on the
thermal conductivity of germanium in the liquid helium
temperature range and we compare the results with the
experimental curves given by GoR and Pearlman. '

[ooi]— —[ooi] A. Role of the Triplet Level

anisotropy in the dependence of E, Eq. (2.3), on the
wave vectors and polarization vectors of the phonons.
The principal additional complication in the calculation
is the necessity for including angular variables in the
integration of the phonon transition probabilities over
the possible 6nal phonon states. Significant numerical
factors which reduce the effective strength of the
perturbation of the phonon energies by a factor of about
30 with respect to the order of magnitude estimate
given in the previous section are introduced in this
process. We assume for simplicity that the crystal is
elastically isotropic.

We find for the relaxation time of a phonon of
circular frequency ~ in a crystal containing Sl donors
per unit volume

1 Nrt ')' oi4 2 1
+ 4 (e,k)x(k) (2 4)

4rp' ( 6 ) 2'3'5 3til.r tir'

Here p is the density of the crystal, ™is the shear de-
formation potential constant, " and el, and ny are, re-
spectively, the velocities of longitudinal and transverse
elastic waves. g(e, k) is a dimensionless anisotropy
factor which has the value

y(e, k) = 1+k '$(k e)'—2(eg'kg'+ey'ky'+em'kg')]. (2.5)

Here c is the polarization vector of the phonon and the
(x,y,s) axes are the fourfold axes of the crystal. The
form of g when k is in a (110) plane is shown in the
polar plot of Fig. 1. The factor x(k) in Eq. (2.4) repre-
sents the effect of the cutoff of the scattering at wave-
lengths short compared to the extent of the electronic
wave function. In accord with the discussion of this
effect given in connection with Eq. (2.2), this factor is

x(k) = (1+4k'~*') '. (2.6)

Note that, apart from the factors p(e, k) and x(k), the
expression for r in Eq. (2.4) is a form of the formula
for point-defect scattering, since 7 is proportional to co '.

FIG. 1. A polar plot of the anisotropy factor, p(e, k), Eq. (2.5),
which appears in the phonon scattering rate, Eq. (2.4). The plot
refers to phonons with k J L110j.The values for the longitudinal
phonon (eJ~k) are labelled I.and those for the transverse phonons
T& (e~~[110j) and Ts (eJ L110]). The resolution of the two
transverse branches is arbitrary with the assumption of elastic
isotropy used in the text. However, in a cubic crystal the two
transverse phonons with k~~[ 110$ are resolved as shown here.

Throughout part of the temperature range of interest
an appreciable number of electrons are thermally ex-
cited from the singlet to the triplet state of the donor;
at 4.2'K about 3 of the electrons are in the triplet in
the case of antimony donor. We have not worked out
the theory of scattering by the triplet in the same detail
as that by the singlet. It is to be expected that the
scattering by an electron in the triplet will be about the
same as that due to an electron in the singlet, however.
This follows from the fact that the trace of the Hamil-
tonian, Eq. (2.1), contains no term quadratic in the
strain. Therefore, the net quadratic term in the energies
of the triplet levels must be of exactly the same size as
the quadratic term in the singlet energy. The scattering
by electrons in the triplet states must therefore be
roughly the same as that due to electrons in the singlet.
We will neglect the difference here and assume that all
of the electrons scatter phonons according to Eq. (2.4).
This approximation can only have a serious eRect on
the results near 4.2'K, since in the low-temperature
part of the range of interest practically all of the
electrons are in the singlet level.

B. Lovr-Energy Divergence

A straightforward calculation of thermal conduc-
tivity with scattering by point defects as the only
source of scattering, i.e., with 7 co

—4, leads to a di-
vergence of the heat current due to the contribution of
the low-energy phonons to the current integral. This
is also true of the r of Eq. (2.4) which is proportional
to ~ 4 for low-energy phonons. This divergence must
be removed by the introduction of some other scatter-
ing mechanism which limits v- at low phonon energies
into the theory. Klemens" introduced phonon-phonon
scattering to cut off v. at low energies and included the
effect in the theory by assuming that phonon-phonon
"S-processes" transfer momentum from phonons of
energy less than AT to higher energy phonons in such
a way that the eRective r for momen{;um loss by
phonons of energy less than AT is equal to the r for
phonons with energy equal to AT. Herman et a/."have
modified the method of Klemens" by using a varia-
tional procedure to determine the point of division
between the two regions. Slack," in a study of point-

"R.Herman, P. T. Nettley, I". W. Sheard, A. N. Spencer, R.
W. H. Stevenson, and J. M. Ziman, Proc. Roy. Soc. (London)
A253, 403 (1959)."G. A. Slack, Phys. Rev. 105, 832 (1957).
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~ph —ph
32'' (ak)'

exp (Aa)/k T),

we find that if T~&4.2'K no phonon has an /ph ph less
than 1 cm. In any case, we have not developed a
suitable method for quantitatively including the effects
of phonon-phonon scattering in these calculations.

C. Divergence in Special Directions

Another divergence is encountered in the calculation
of the thermal conductivity with the r of Eq. (2.4). It
is seen from Fig. 1 that the scattering vanishes for a
longitudinal phonon with k in a [100$ direction and
for one of the transverse phonons with k in a [110)
direction. The integration over angular variables in tne
expression for the thermal current diverges loga-
rithmically in the vicinity of these special directions.
Thus it is necessary to invoke some additional scatter-
ing mechanism to cut off the thermal conductivity
integral in these directions. If boundary scattering is

again resorted to as a cutoff for the angular integra-
tions our calculation predicts that the measured ther-
mal conductivity should depend on the crystallographic
orientation of the specimen length, being greater for

defect. scattering, included the effect of boundary
scattering, which is sufhcient to prevent the divergence
of the thermal current, but also included phonon-
phonon scattering in the same way as Klemens, namely,
by dividing the heat current integral into parts Ace) kT
and Ace&AT. In the present case, in which we are con-
cerned with the temperature range below 4.2'K, it is
satisfactory to entirely neglect phonon-phonon scatter-
ing and calculate the thermal resistance due to the
combination of donor-electron and boundary scatter-
ing. For example, using Klemens estimate of the
phonon-phonon mean free path [Eq. (6.33) of refer-
ence 14,

37r 1 a'M v

the special directions in which there are phonons of
vanishing point defect scattering propagating parallel
to the length. We are not aware of any evidence for
the existence of this effect, nor are we aware of any
record of its having been explicitly sought for. It is
worth noting, however, that Goff and Pearlman' used
specimens of varying orientations without observing
any anomalies worthy of comment.

In any case, we have not found any adequate way of
treating the anisotropy factor for our present purpose.
To get a rough idea of the scattering strength for com-
parison with the experiments we have simply replaced,
g(e, k) by its average over all orientations, obtaining,
for transverse phonons, gr=s and, for longitudinal
phonons, @r, s T——his .method of handling the anisot-
ropy factor is probably the least satisfactory aspect
of the present treatment.

D. High-Frequency Cutoff

Even after using the simple averaging procedure just
described for the angular integration, our problem
differs from that encountered in point defect scattering
through the presence of the factor x(k), given in Eq.
(2.6). If the r of Eq. (2.4), combined with a boundary
scattering relaxation time corresponding to a length L
and with the p(e, k)'s replaced by the p's, is substituted
into the integral for the heat current, then it is found
that the thermal conductivity is

(3.1)

Here the summation is over the branches of the vibra-
tional spectrum and I(A,B) is the integral

I(A,B)= (3.2)
~e (e'—1)'1+cfx4(1+Bx') s

0.005

0.1

I(A, B)

0.01

CO 4
I(A, B) =

, I + Ax" (I +

FIG. 2. Values of the integrals
defined by Eq. (3.2) (after Keyes
and Feins4).
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FIG. 3. A comparison of the values of thermal conductivity of
n-type germanium calculated by the method described in the
text with those measured by Go6 and Pearlman. s The antimony-
doped samples represented by the experimental curve contain an
extrinsic electron concentration of about 2&1016 cm 3 and the
arsenic-doped sample an extrinsic concentration of 1.6X10'6 cm 3.

model accounts for several important features of the
data:

(1) The calculated magnitude of the scattering is
about right for both arsenic and antimony donors. The
difference between these two cases is a result of the
fact that 6 for an arsenic donor is about seven times
larger than 6 for an antimony donor. This means that
the scattering strength given by Eq. (2.4) is only
(1/50) as great for the case of arsenic. The factor by
which the thermal conductivities differ is, of course,
considerably less than this, since part of the scattering
is by the boundaries.

(2) The calculated temperature dependence of the
thermal conductivity is nearly correct, but slightly
stronger than that observed in the range 1.5'K to
4.2'K. According to our model, the scattering strength
is greatest for phonons with wavelength about equal to
the effective Bohr radius of the hydrogen-like donor
wave function. The scattering approaches zero for very
high and for very low phonon energies. Consequently,
the calculated thermal conductivity must approach the
boundary limited value at very high and very low tem-
peratures. Qn the low-temperature side, the calculated
curves show that this phenomenon should become
noticeable just at the lower limit of the experimental
temperature range. It should be apparent in measure-
ments extending to 1'K. At the high-temperature end
of the range of comparison, the calculated scattering
rapidly becomes too small as the temperature is in-
creased above 4.2'K. The leveling off of the experi-
mental thermal conductivity with increasing tempera-
ture seen here is very probably a manifestation of
phonon-phonon scattering. It is seen that, even though
the temperature range in which our model predicts
that ~ varies more rapidly with temperature than T' is
quite limited, it coincides very well with the range in
which the stronger temperature dependence has been
observed.

Nrg, „'('kT)4L ( 2 1 )+
2'345irp'v, LVA4 &3vn' vr'I

8=a*'(kT)'j4A'v, s.

(3.3)

(3.4)
Ge.'Sb P. OK

The integrals defined by Eq. (3.2) have been evaluated
numerically by Fein and the author, and have the
values shown in Fig. 2."

E. Comparison with the Results of
Go8 and Pearlman

I

hC
0

E
O

31

lo
non- compensated

o compensated

We have used the approximations and methods de-
scribed above to calculate values of thermal conduc-
tivity for the samples of m-type germanium used in the
recent work of Goff and Pearlman. ' The comparison of
the calculated values with those measured by Goff and
Pearlman is given in Figs. 3 and 4. It is seen that the

'4 R. W. Keyes and A. E. Fein, Westinghouse Research Report
6-40602-3-R2, April 23, 1960 (unpublished).

iO'5
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to16 1O'7

Ne„(cm ~)
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FIG. 4. A comparison of the calculated and observed3 thermal
resistance of antimony-doped germanium at 2'K as a function of
extrinsic carrier concentration. The solid line represents the
calculated values.
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(3) The experimental curve given for antimony-doped
germanium in Fig. 3 actually represents results for two
samples, each with about the same intrinsic carrier
concentration. ' In one of these samples the donor con-
centration is essentially the total impurity concentra-
tion; in the other the donor and acceptor concentra-
tions are nearly equal and the total impurity concen-
tration is about one hundred times larger than the
extrinsic electron concentration. The thermal con-
ductivities of these two specimens are about the same
throughout the temperature range studied. This is in
accord with our model, according to which the scatter-
ing strength depends only on the concentration of oc-
cupied donors.

(4) The calculated concentration dependence of the
thermal resistance at 2'K, shown in Fig. 4, is also close
to that observed. The model presented here is expected
to be valid up to a concentration such that the reso-
nance integral between donors is about equal to A. We
estimate this concentration to be 4)&10" cm—' for
antimony donors.

F. Conclusions

In conclusion, our model accounts qualitatively for
a number of important features of the results of Goff
and Pearlman': the very large phonon scattering
strength of donor impurities, the large difference be-
tween the scattering powers of antimony and arsenic,
the unusually strong temperature dependence of the
thermal conductivity between 1.3'K and O'K, and the
fact that the scattering depends on the number of
occupied donors rather than the total number of im-

purities. A quantitative calculation of the thermal con-
ductivity on the basis of this model is hampered by
our failure to find satisfactory ways of treating the
effect of the anisotropy factor, Eq. (2.5), and the
effects of phonon-phonon scattering.

IV. OTHER ASPECTS

There are several other aspects of the thermal con-
ductivity problem which deserve mention. One of these
is the possibility of other mechanisms of scattering by
the electrons in donor states. Phonons are absorbed in
electronic transitions involving the transfer of an elec-

tron from a state localized on one donor to a state
localized on another donor. These are the transitions
involved in the phenomenon of impurity conduction. '
Transition probabilities for these processes have been
given by Miller and Abrahams. ' Using their results we
estimate that the phonon mean free path due to scatter-
ing by this mechanism is never less than 1 cm in the
samples. of Goff and Pearlman. Thus this "impurity
conduction scattering" is probably negligible in these
samples and details of the estimate will not be repro-
duced here. However, this scattering is proportional
only to ~ for small co and thus can furnish a means of
preventing the divergence of thermal conductivity inte-
grals at low frequencies.

Phonons can also be absorbed by excitation of an
electron from the singlet to the triplet state of the
donor. In the case of isolated donors only phonons of
energy 46 are absorbed by this mechanism. Such a
monoenergetic absorption mechanism has no effect on
the thermal conductivity when phonon-phonon scat-
tering is neglected, however, and for this reason we
have not included it here.

Phenomena similar to those reported by Goff and
Pearlrnan have also been observed in P-type germanium.
The mechanism discussed in this paper as an explana-
tion of the large scattering power of donors is obviously
inapplicable to acceptors because the structure of the
valence band is entirely different from that of the con-
duction band. However, the effective Bohr radius of
an acceptor wave function is about the same as that of
a donor wave function, '~ so that scattering by isolated
acceptors might be expected to have about the same
dependence on phonon energy as scattering by donors.
Further, the effect of strain on several properties of the
valence band is quite large. "Thus it is possible that a
detailed theory of the effects of strain on acceptor
states could account for phonon scattering effects of
the order of magnitude of those reported here for
donors.

'5 R. Lawrence, Phys. Rev. 89, 1295 (1953);C. S. Smith, Phys.
Rev. 94, 42 (1954); E. N. Adams, Phys. Rev. 96, 803 (1954);
J. C. Hensel and G. Feher, Phys. Rev. Letters 5, 307 (1960); G.
I cher, J. C. Hensel, and K. A. Gere, Phys. Rev. Letters 5, 309
(1960).


