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A strongly coupled system—the limiting case of a highly degenerate many-fermion system for which the
variation of the kinetic energy is neglected, and the interaction restricted to a region of momentum space
neighboring the Fermi surface—has been analyzed in a manner not dependent upon assumptions about the
convergence of power series expansions or on partial summations of infinite series. The vacuum expectation
value of the resolvent operator, (1/(H —z))o, is expressed as the Laplace transform of the exponential of a
function linearly dependent on the volume of the system. It is shown that the linked-cluster expansion of
the vacuum expectation value of the resolvent operator has a zero radius of convergence as a power series
in the coupling constant. The most serious physical consequence of this is that a nontrivial interaction

never results in a “normal” system.

INTRODUCTION

N spite of the complexity of the quantum mechanical
many-body problem, progress has been made in
recent years towards the understanding of both
“normal” and “superfluid” systems. What has been
achieved, however, has often been founded on approxi-
mations or conjectures which determine the qualitative
nature of the resulting solutions from the outset, and
whose validity is difficult to establish on a rigorous
basis. The investigation described in this article has
been undertaken in an attempt to approach the many-
fermion problem in such a way that one retains the
possibility of obtaining qualitative information as long
as possible, and so that one can obtain information
which does not depend on assumptions about the
convergence of power series expansions, or on partial
summations of infinite series.

A salient feature of the many-fermion system is its
extreme degeneracy before the effects of interaction are
taken into account. The system to be analyzed is the
limiting case of the degenerate many-fermion system in
which the degeneracy is so great (the Fermi energy is
so large) and the interaction so weak, that the variation
of the kinetic energy can be neglected in the zero-order
approximation—the kinetic-energy operator being re-
placed by its constant expectation value. We thus
begin with a system all of whose “unperturbed” levels
have precisely the same energy, the interaction term
producing the entire level structure. The first step is
then to diagonalize the interaction and to remove the
degeneracy.

In this sense the situation is similar to that in
strong-coupling meson theory!; however, what is really
at issue here is the tremendous degeneracy of the
system and the relatively weak interaction which
couples only single-particle states close to the Fermi
surface so that the variation of ‘the kinetic energy is in
fact relatively unimportant.

*Work supported in part by the U. S. Atomic Energy Com-
mission.
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Although the strongly coupled system is a simplifi-
cation, it is still in its essence a many-body problem—
one for which most of the intricacy of the many-body
dynamics has been retained. We thus present a simpli-
fied, intrinsically many-body problem from which we
can obtain detailed information about analytic proper-
ties of the perturbation type expansions used in the
analysis of many-body systems, and from which we
hope to obtain qualitative information concerning the
spectrum of such systems. This limit is thought to be
of special relevance in the theory of finite nuclei? and
in the theory of superconductivity; in the latter case
it has in fact been shown? that the strong-coupling
limit gives both qualitative and quantitive results
similar to the full theory. One might hope, therefore,
that the analysis of the strongly coupled system could
be used to clarify the underlying pairing approximation
in the theory of superconductivity.*

In this paper we develop the theory of the strongly
coupled system with special emphasis on the separation
of the volume dependence in a manner not assuming
convergence of any series, and obtain explicit infor-
mation on the analytic properties of perturbation
expansion used for many-body systems. It seems likely
that some of the results can be generalized to the full
many-fermion problem.

In the first section the strongly coupled system is
defined and the resolvent operator introduced. The
vacuum expectation value of this operator is evaluated
in the second section; this is obtained as the Laplace
transform of the exponential of a function proportional
to the volume of the system. The analytic properties of
the resolvent operator are discussed in the third section.
In particular it is shown that the linked-cluster expan-
sion of the vacuum expectation value of the resolvent
operator has a zero radius of convergence as a power
series in the coupling constant.

2 See, for example, B. R. Mottelson, in T/he Many-Body Problem,
edited by C. Dewitt and P. Nozitres (John Wiley & Sons, Inc.,
New York, 1959), p. 283.

3D. J. Thouless, Phys. Rev. 117, 1256 (1960).

4J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev.
108, 1175 (1957).
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1. THE STRONGLY COUPLED SYSTEM

The Hamiltonian of a system of particles interacting
via two-body forces is written

H=Ht+gV,

where the kinetic term, H,, is

(1.1)

Hi=X f ¢a*(r)(— Zh—;v“’)%(r)dr, (1.2)

the potential term is given by

V=13 | drdrs o™ (r)ys*(x2)
a,B
Xo(t1—1)s(t2)¥a(r1),

and the coupling constant, g, is written explicitly to
make the investigation of analytic properties more
convenient.

For a nonrelativistic Fermion system, y is a two-
component spinor which satisfies the anticommutation
relations

W Ws(t)}=0; {Yal)¥s*(r')} =08apd (r—1').

The strongly coupled system is defined by neglecting
the variation of the kinetic-energy term in the Hamil-
tonian. This is done by replacing H, by its expectation
value, (Ho)=T, the constant average kinetic energy of
the system. In order that such a system have a ground
state it is necessary to limit the region of interaction
to some finite domain in momentum space, to provide
the cutoff usually provided by the energy denominators.
This can be done by using a momentum cutoff or, as
we shall do, by limiting the interaction to a shell
surrounding the Fermi surface. The last, which pre-
serves the symmetry between particles and holes, is
particularly germane since, if the strong coupling
approximation is to make sense, the single-particle
states involved must not vary widely in kinetic energy.
This implies that they are restricted to a small region
surrounding the Fermi surface.

These conditions are most conveniently formulated
in momentum space. Expanding y(r),

(1.3)

(1.4)

1
lﬁa(r):% g‘; Ck,ota"€™ T, (1.5)

where Q is the volume of the system and #%,° is also a
two-component spinor, we obtain [for a spin-inde-
pendent v(t;—r2) ]

H.=T+gV=T+y ¥

k,k’,q,0,0"
k,k’,k+q,k’—q € shell

* *
Cktq,o Ck'—q,0’

XCk',v'Ck,.ﬂ)(Q), (16)

with

1
v(q)=s—2 f'u(r)e““l"dr,

COOPER

and where we assume that v(r) is bounded. The commu-
tation relations for the ¢ operators are
{Ck,v,ck’cr’}=0; {Ck,mck’,a’*}=5k,k’5v,v’~ (1-7)

We will simplify the notation by setting the constant
T equal to zero, thus shifting all energies by T'. By the
notation: k, k’, k+q, k—q € shell we mean that the
magnitudes of the vectors k and k’ satisfy the condition:

ky—3< |k| <k, (1.8)
where presumably 6/k,<<1, while the vector q ranges
over all values such that k+q and k’—q also satisfy
(1.8). This has the effect of allowing only those scat-
tering processes which take a particle or hole in the
shell defined by (1.8) into another particle or hole in
this shell.

In our treatment we shall assume that the total
number of single-particle “unperturbed” states of both
spins in the shell defined by (1.8) is 4V and that the
Fermi surface is symmetrically placed so that the total
number of particles is 2N. N, of course, is proportional
to @ for & constant. The vacuum state of the unper-
turbed system is defined so that all single-particle levels
below kr are filled, while all single-particle levels above
kr are empty. All other “unperturbed” configurations
|#:) (there are a total of (4N)!/[(2N) ! configurations)
can be obtained by creating holes below and particles
above the Fermi surface, keeping N constant. These
are constructed from the vacuum by operating on the
vacuum with the creation operators ci,*, ¢, where k
lies above the Fermi surface and 1 lies below :

,¢k1' <kgilye- ~Is>=Ck1*' . 'Cks*[)ll' . 'Clsl¢o>. (19)
We thus are presented with a well defined problem—
that of diagonalizing a finite dimensional matrix whose
matrix elements are those of the operator gV between
unperturbed states.

Creation and annihilation operators can be defined,
as has been pointed out by Hugenholtz and Van Hove?,
for arbitrary definitions of the vacuum states. One can
consider as the vacuum state any of the unperturbed
states of the system, referring all other states to this
vacuum by the addition of particles or holes. With
respect to this arbitrarily defined vacuum, c¢«* is a
creation operator if k is one of the states unoccupied
in the vacuum, and it is an annihilation operator if k is
one of the states occupied in the vacuum. On the other
hand, cy is considered a creation operator if k is one of
the states occupied in the vacuum. Any results obtained
for vacuum expectation values of operators not depend-
ing explicitly upon a particular choice of the vacuum
state are equally valid for any diagonal matrix elements
with all quantities suitably redefined.

To analyze the strongly coupled system, we make use

5 N. M. Hugenholtz and L. Van Hove, Physica 24, 363 (1958).
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of the resolvent operator, R(2), defined by

1 1
R(z)= = .
H—z gV—z

(1.10)

This operator has been discussed previously in connec-
tion with the many-body problem by Hugenholtz® and
Van Hove.” An arbitrary matrix element of R(z) can

be written
(¢i| R(3) | $5)=(R(2))s;. (1.11)

If we expand the states (¢;| and |¢;) in eigenfunctions
[+ of the Hamiltonian, gV, where

gV ¥n=E.|¢,), (1.12)
so that
we have
1
(R(2))ij= 2 (an®)*an? (1.14)
n E,—z

The analytic properties of (R(z));; are immediately
evident from this last expression, since the sum is finite.
The matrix elements of the resolvent operator are
analytic everywhere except for poles on the real axis,
and these poles are bounded both above and below by
the maximum and minimum energy levels Ey< ELE,,.
Such maximum and minimum energies exist, since the
strongly coupled system is finite and »(7) is bounded.
This will be discussed further in Sec. 3. An arbitrary
matrix element of the resolvent operator, (R(z)):;, may
be expanded in powers of the coupling constant to give

1
R(@)ij=— . 22(g/2)™V "), (1.15)

where (V7);; is independent of g or z. From (1.14) we
know that (R(z)):; is analytic in 1/z for |z|> | Emax|
and so can conclude that (1.15) has a nonzero radius
of convergence and that the radius of convergence is
determined by the energy level of maximum absolute
value

[2¢] = | Emax(g) ] (1.16)

It is further true that the poles of matrix elements of
R(z) reveal the energy levels of the interacting system.
However, it is clear that the absence of a pole from a
particular matrix element at a point on the real axis
does not indicate the absence of an energy level there.
It may only indicate that a particular coefficient a,
does not appear in the expansion of the wave function.
If, for example, we were considering the poles of
(#0] R(2) | ¢op as is done in order to obtain the Goldstone
formula® and if the “true” ground state [¢o) had a
different symmetry character from the state |¢o), then

6 N. M. Hugenholtz, Physica 23, 481 (1957). See also N. M.
Hugenholtz, in reference 2, p. 1.

7L. Van Hove, Physica 21, 901 (1955); and 22, 343 (1956).

8 J. Goldstone, Proc. Roy. Soc. (London) A239, 267 (1957).
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the coefficient @y would be zero and this pole would not
appear. This may be related to the difficulty uncovered
by Kohn and Luttinger.®

2. EVALUATION OF THE RESOLVENT OPERATOR

To evaluate the resolvent operator we make an
expansion in powers of the coupling constant

1 o
R(@)=—-2 (¢/9)"V", 1)

2 n=0

having established that such an expansion has a finite
radius of convergence. We will be interested primarily
in diagonal elements of the resolvent operator and,
keeping in mind the possibility of defining any state as
the vacuum state, we consider the vacuum expectation
value of the resolvent operator {¢o| R(2)|poy={(R(2))o:

1
(R(2)o=— ; E) (&/2)"(V")o. (22

The crux of the problem lies in the evaluation of
vacuum expectation values of powers of the interaction
V.

For an interaction of the form (1.6) the evaluation
of matrix elements like (V”), has been treated in detail
in many places. In a form particularly convenient for
this discussion one can refer to Hugenholtz.® In brief,
these matrix elements are evaluated using Wick’s
theorem.!® Each matrix element is given by a sum over
contractions of the operators and can be put into one-
to-one correspondence with Feynman-like diagrams.
There are two basic types of diagrams; the first, called
connected diagrams, are proportional to the volume of
the system; the second, or disconnected diagrams, have
a volume dependence depending upon the number of
connected diagrams of which they are composed. A
connected diagram is defined as one which cannot be
divided into two separate diagrams without cutting
at least one line. A disconnected diagram can be so
divided.

A traditional problem in the perturbation analysis
of many-body systems is the volume dependence of
higher order terms in the perturbation expansion. Both
Goldstone® and Hugenholtz® have solved this problem
by showing that the interesting physical quantities can
be obtained from ‘linked-cluster” expansions which
have a linear volume dependence, but their proofs
depend upon the assumptions of convergence and exist-
ence which we would like to verify. For the strongly
coupled system the volume dependence can be sorted
out in a particularly transparent way and in such a
way that no unwarranted assumptions concerning the
analytic properties of the functions introduced need
be made.

The matrix element (V™) is the sum of all vacuum-

9 W. Kohn and J. M. Luttinger, Phys. Rev. 118, 41 (1960).
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to-vacuum graphs of order #. Some of these are con-
nected and thus are linearly dependent on I; others
are disconnected and have a dependence upon N
proportional to the number of disconnected graphs of
which they are composed. In order to make the volume
dependence of the matrix elements explicit, we con-
struct all graphs of a given order from connected graphs
only. This is done by observing that if a number of
connected graphs are combined to make a disconnected
graph the weight of the disconnected graph is just the
product of the weights of the connected graphs. This
differs from the situation in the usual case in that one
here does not have to consider the combinations of the
energy denominators. One has only to consider the
number of different ways connected graphs can be
combined in order to produce disconnected graphs.

To explicitly decompose (V) into products of
connected graphs we introduce S,, which is the sum
over all connected vacuum-to-vacuum graphs of order
n; letting So=0, we can write

Vme=Sat 2 SaSsCop™ X SaSsS,Casy™

atf=n atpft+y=n

+-o FS81Crrn™. (2.3)

Determining the coefficients, Cagy...” is a simple combi-
natorial problem. The number of graphs which can be
made of s connected graphs of order ai, az---as,
where ay;Zas#as- - - Za, is just

(eatagt---as) !/ (arlas!- - -asl). (2.4)

Taking into account duplications that occur if any of
the o; are equal, and those that occur in the summation
over ay+az+ -« ‘a;=n, we obtain

1 n!
2.5)

stagl - -aq!

Inserting (2.5) into (2.3) and (2.3) into (2.2), we can
write the vacuum expectation of the resolvent operator

(R(2)yo=— z _ 2 é (g)

n!

1
X{Sn'*'_‘ Z SalSa

2! artaz=n

+-- -+51”}. (2.6)

[e4} !Ozz!

It will be shown later that the term proportional to
the first power of the volume in (2.6), which is related
to the Goldstone series,® does not exist as a power series
in g. This is so because (2.6) is not absolutely con-
vergent. To proceed further, we introduce an integral
representation of the gamma function:

T'(n+1) n! °°
- =—f dt et (— )7,
Zn+1 Zn+1 0

.7

COOPER

which is defined for Rez<0; we can then rewrite (2.2)
to get
® (=g
(R(2))= 22 | dt
n=04d,

etV ™). (2.8)

The domain of definition is now the left half-plane with
the semicircle |z]| <|z,| omitted.

The integration and summation can be interchanged
if the sequence {u.(¢)} is uniformly and absolutely
convergent, where

()=

_tn

etV ™), 2.9

n!

since (R(z))o as defined by (2.8) exists in the domain
defined above. Using the asymptotic expansion of the
gamma function, it is easy to show that

[ ()| <1 (g7/5)XV "ol (2.10)

so that, since the series (2.2) has a finite radius of
convergence, we conclude that {u.(f)} is absolutely
and uniformly convergent.

We can then write

o © Vn 0._ Hr
<R(z)>0=f etzdtzs_)(_g)_;

n=0 n!

(2.11)

inserting (2.3) into (2.11) and using (2.5), we have

(R(2))o= J;we”dt[l—f— él {%(_gt)n

1 Sa Sﬂ
= 2 —(—g)—(—g)f
2! atp=n ! ,3'

S
+---+—(—g¢)n”. (2.12)
n!

The series above is shown in the Appendix to be
absolutely convergent so that the orders of summation
now can be interchanged. We then obtain

® 1 1
<R(Z)>o=f Etzdlf[l‘l—Bo"l‘;Boz—l—;Bos—l— .. '], (213)
0 . .

where
» S,
Bo('“gt)= 2 —

(2.149)
n=1 73!

(—ghm

The bracketed term in (2.13) sums to an exponential
yielding

(R()yo= f ctdtexp[Bo(—g)]. (215

0

It is convenient at this point to recall that

Sp= > (0| V| o),

connected graphs
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and that each such graph is linearly dependent on N as
N — . To make this dependence explicit, we write

Snzo"nN, (2.16)

where o, is a number which contains the details of the
diagrammatic sums. Using this, we can rewrite (2.15) as

0 ® On
(R(z))o=f di et* exp[NZ —~'(-—gt)"]. (2.17)
0 . n=lpn!

We have in this way expressed (R(2)), as the Laplace
transform of a function proportional to N. This function
is a sum over connected diagrams and will be shown
shortly to be convergent. We can invert (2.15) to
obtain!!

1 i
exp[Bo(—gt)]=—f (R(2))oetdz, (2.18)
2w Y i
where n=9*<—|Emax|. This is defined for />0 but
can be analytically continued into the entire ¢ plane.
If we now insert (1.14) into (2.18) and do the inte-
gration, we are left with

exp[Bo(—gt)]=2 | an |2 "nt. (2.19)

The right-hand side of (2.19) can be identified as the
vacuum expectation value of the U matrix,

<U(—it)>0: Zm l (129 [ 2e_Emt)

exp[Bo(—gt) J=(U (—it))o. (2.21)

It is clear from (2.14) and (2.21) that the ground state
is proportional to N and to g. This is a direct conse-
quence of the restrictions implicit in the strongly
coupled system.

(2.20)
so that

3. ANALYTIC PROPERTIES

The analytic simplicity of the strongly coupled
system is due largely to the fact that an expansion in
powers of the coupling constant, g, is at the same time
an expansion in powers of 1/z so that analyticity at
g=0 is equivalent to analyticity at z=». We now
proceed to an investigation of some of the analytic
properties of the strongly coupled system.

It was stated in Sec. 1 that the expansion of
(R(2))i; in powers of g/z had a finite radius of conver-
gence. This depended upon the existence of a bound on
the energy levels of the system. Now using a device
similar to that employed by Yennie and Gartenhaus,?
we can obtain an upper bound on the absolute value
of any eigenstate—albeit an almost uselessly large
upper bound—and thus establish explicitly the con-
vergence of the power series expansion of (R(2))i;.

10 G. C. Wick, Phys. Rev. 80, 268 (1950).

1 D. V. Widder, The Laplace Transform (Princeton University
Press, Princeton, New Jersey, 1946). See especially theorem 7.6a,
p. 69.

2D. R. Yennie and S. Gartenhaus, Nuovo cimento 9, 59 (1958).
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We note first that the vacuum expectation value of
products of fermion operators satisfies the inequality

[{po] -+ vcrergkerr -on [poy| < 1. 3.1)

In fact, such vacuum expectation values will usually be
zero. Referring to (1.6), we can then write

[V < (B) \ 2z IPIRICHEERICH]

Lok ke Eknty Qi egn
o1+ 0n; 01’ <+ 0on'

=@N) | Zqv(9 ™ (3.2)

Defining
v |20 v(g)] =0, (3.3)

we have
(V5] < (8uV2)7, (3.4)

where v is independent of g, z, or N.
We can now introduce a comparison series
T(z)= 2 (g/=)"(8vN?)™, (3.5)
n=0

which is larger in absolute value term by term than
|%(R(2))s;| defined using (1.15) as (8uN2)"> [(V7")y].
The series (3.5) can be summed to give

1 1
Te)=- 87)N2(g/z— 1/8vN2) ’ (36)

so that T'(z) has a pole at g/z=1/8uN? and is analytic
elsewhere. Since |2(R(2))s;| is bounded term by term
by T'(z), (1.15) must be analytic for g/z<1/8uN? so that

lEmax,SIngN2|. (37)

In spite of the fact that this upper bound has the
wrong volume dependence it is sufficient to prove that,
for IV finite and for v bounded, a ground state exists
and the expansion of (R(z));; in powers of the coupling
constant has a finite radius of convergence.

The fact that the coupling constant expansion of the
resolvent operator has a nonzero radius of convergence
does not guarantee that the related linked-cluster
expansion which is linear in the volume of the system
has a finite radius of convergence. We show below, on
the contrary, that the linked-cluster expansion related
to the resolvent operator expansion is not analytic in g
at g=0.

To demonstrate this it is sufficient to consider the
linked vacuum expectation value of the resolvent
operator which is denoted after Hugenholtz® by Bo(z)

(¢o| R(2) | $p0)o=By(z)

1 »
g Z (g/z) "(V”)O connected. (38)

2 n=0

This function is used by Hugenholtz in his derivation
of the Goldstone expression for the shift in ground-state
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energy of the many-fermion system, and closely related
functions are fundamental to his further conclusions
concerning the many-fermion system.

Using the notation defined immediately preceding
(2.3), we can write

Bo®) = — ~[1+ 5 s (g/z)n] (3.9)

n=1

We will show that (3.9) has a zero radius of convergence
by demonstrating that the related series Bo(—g?)
defined by (2.14) has a finite radius of convergence. It
then follows that (3.9) has a zero radius of convergence.'®

We can show that Bo(—gf) has a finite radius of
convergence as a power series in gf as follows. From
(2.21) we see that (U(—1¢))o can have singularities or
zeros at points in the complex ¢ plane only if Bo(—gt)
becomes singular at these points. We conclude from
(2.20) that (U(—it))o is an entire function of ¢, but
from (2.20) we can also show that in all but trivial
cases (U(—1it))o must be zero at some point in the
finite ¢ plane. In fact we can show that either

(U (—it))o=AeB,

where A and B are constants, or (U(—1i)), has at
least one zero in the finite ¢ plane.

The last statement is established by using Hada-
mard’s factorization theorem! which in this case asserts
that an integral function of order p with no zeros can
be written in the form

J@)=e2,

where Q(z) is polynomial of degree not greater than p.
Since Y |a@n|% Fmt can increase as {— o« no faster
than AelFmexlt it is of order one. Therefore

Q(z)=Bz+C, (3.12)

so using (3.12) and (3.11) we see that if (U (—1£)), has
no zeros in the complex ¢ plane it must have the form
(3.10).1%

It follows that Bo(—gf) has an infinite radius of
convergence if and only if the system has only a single
energy level. We can therefore conclude that for the
strongly coupled system, if the energy spectrum con-
tains more than one energy level the expansion of Bo(2),
which is the connected diagram expansion of (R(z))o,
has a zero radius of convergence as a power series in
the coupling constant.

(3.10)

(3.11)

13 By the Cauchy test, the radius of convergence, R, of a series
2, a. X" is given by R= hmnwlan/an“[ Suppose two series,
denoted by S: and S, are given by S1=2 0,X", and S2
=2 (b,/n!) X Then, if the radius of convergence of S; is finite
so that lim,,o(®#+1)|0n/bnp1| =Re<M, it follows that R,
<lim,,.M/(n+1)=0.

1 E,. C. Titchmarsh, The Theory of Functions (Clarendon Press,
1939), 2nd ed. See especially Chap. 8.

15 The author wishes to express his appreciation to Dr. C. Davis
and Dr. J. Werner for pointing out the relevance of Hadamard’s
theorem to the problem of the zeros of (U (—1t))e.
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The linked-cluster expansion, Bo(2), is most closely
related to zero-temperature perturbation expressions.
Related finite-temperature perturbation expansions,
such as those used by Matsubara'® or by Bloch and
De Dominicis'” involve the grand partition function
whose analytic properties are similar to those of the U
matrix, whose diagonal elements are expressed by (2.21)
as the exponential of a linked-cluster expansion Bo(— g?).

We can show that the power series expansion of
Bo(—gt) given by (2.14) has a finite radius of con-
vergence by combining (2.14) and (2.19) to get

eXp(NZ —( gt)

n=0 1/[

) U=id  (313)

Since (U (—1t)), is, as noted above, an entire function
of ¢, singularities of Bo(—gf) must correspond to its
zeros. However (U(0))=1 and there must exist some
neighborhood surrounding ¢=0 for which (U (—1£))¢O0.
Therefore Bo(— gf) must be analytic in the neighborhood
mentioned above. It then follows that its series expan-
sion has a finite radius of convergence. Such quantities
as the ground state can be obtained using (2.19) as

Bo(—gt
Fo= —ym[liﬁ], (3.14)
—00 t

but they cannot be calculated as a power series in g
since the series (2.14) has only a finite radius of con-
vergence in gt.

Nondiagonal matrix elements of the U matrix can
be related to the linked-cluster expansion of such
matrix elements by

@ U[5)=GlU] ) O]U]0). (3.15)

The diagrams of which (i|U| )1 is composed contain
no vacuum-to-vacuum components—that is, no compo-
nents of the form (¢o¢| A4 |po)—but they are not neces-
sarily connected. Since the matrix element of any
scattering process in the presence of the “real” vacuum
is composed of linked graphs only, we must compute

U pe=U5/0]U[0). (3.16)

From the previous arguments we can conclude that
(¢|U| ) is an entire function of g; the matrix element
(0|U|0) we know has zeros in the finite g (or ¢) plane,
but there exists a neighborhood about g=0 for which
(0]U|0)£0. Therefore (z|U| 7)1 has a finite region of
analyticity about g=0 and a finite radius of convergence
as a power series expansion in g. This last result is
similar to one obtained by Yennie and Gartenhaus.'?

4. CONCLUSION

The basic result we have obtained is that, for the
strongly coupled system, the linked-cluster expansion

16 T, Matsubara, Progr. Theoret. Phys. (Kyoto) 14, 351 (1955).
17 C, Bloch and C. De Dominicis, Nuclear Phys. 7, 459 (1958).
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of the vacuum expectation value of the resolvent
operator has a zero radius of convergence as a power
series in the coupling constant. The related linked-
cluster expansion—that which occurs in the U matrix
or the partition function—is, however, a convergent
series for small enough values of the coupling constant.
We therefore have available a method for calculating
the properties of the strongly coupled system in terms
of quantities which have a linear dependence on the
volume.

A question that occurs immediately is whether these
arguments can be generalized. Although this has not
yet been done, comparison of the linked-cluster expan-
sion of the resolvent operator for the strongly coupled
system and the full many-body system seems to make
it unlikely that one should converge if the other does
not. The many-body resolvent operator is not likely in
any case to have an expansion in powers of 1/z, but
this is not related so easily to an expansion in powers
of g as in the strongly coupled case.

For those many-fermion systems for which the
strongly coupled system is a good limiting approxi-
mation, the most serious implication of the divergence
of the linked-cluster expansion (aside from the doubt
it casts on any formal results obtained from a manipu-
lation of this expansion) is that such many-fermion
systems are not ‘‘normal” systems. This already
appears to be quite generally true for attractive
potentials where superconductivity occurs, and has also
been suggested for repulsive potentials.!® In the case of
the superconductor it is known that the qualitative
nature of the actual solution is entirely different from
that of the ‘“normal” solution. Whether or not this is
the case for repulsive potentials is not known. The
divergence of the linked-cluster expansion may be
related to some phenomenon such as zero sound® while
a physically interesting class of normal solutions still
exists. On the other hand, it may indicate that even for
repulsive potentials there are qualitative changes in
the system that are not yet understood. At the very
least, one should be cautious in drawing conclusions
from calculations of energy shifts and other properties
of many-body systems using expansions that may not
be convergent. One has from the beginning guaranteed
that no new qualitative features will be introduced in
a situation where they may very well exist.

In spite of this, one can be somewhat sanguine about
the use of even nonconvergent linked-cluster expansions
as some manipulations do lead to correct results.
Hugenholtz,% for example, has shown that the ground-
state energy shift for the full system is given by

18L. Van Hove, International Congress on Many-Particle
Problems, Utrecht, June, 1960 (unpublished). During this
conference Van Hove also presented an analysis of the ideal
Fermi gas which showed that a linked-cluster expansion had
poorer convergence properties than the corresponding expansion
including all diagrams.

BL. D. Landau, Zhur. Eksp. i Teoret. Fiz. 32, 59 (1957)
[translation: Soviet Phys.—JETP 5, 101 (1957)].
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lim,-o[22Bo(z)]. This also can turn out to be the case
for the strongly coupled system, but one must not
expand By(z) in powers of g; that expansion does not
exist.

In conclusion we should like to suggest that the
strongly coupled system treated here offers the possi-
bility of obtaining information concerning the many-
fermion system by approximations quite different from
those usually made, approximations which may be
more appropriate for many-body systems or which
may serve to illuminate some of the qualitative proper-
ties of many-body systems. It also suggests a possible
connection between the theory of entire functions of
finite order, or the theory of Dirichlet series, and the
many-fermion problem as the zeros and rate of growth
of the U matrix will be intimately connected with the
degeneracy and spacing of the energy spectrum.

Work is being continued on these and related
questions.

APPENDIX. PROOF OF THE ABSOLUTE
CONVERGENCE OF (2.12)

The U matrix is defined by
U(—it)=exp(—gVD); (A1)

its vacuum expectation value expanded in power of g is

o (—g0)"
(0= & ——(V"h (a2

Since the radius of convergence of (2.2) is finite, that
of (A2) is infinite,® so that (U(—if)) is an entire
function of gf. Further, (U(0))o=1, so there exists a
neighborhood, |g¢| <7, about g¢=0 in the complex gt
plane in which (U (—i£))e0.

We therefore have

(U(—it))o=exp[L(—gH], (A3)
where £(—gf) is analytic in the neighborhood defined
above, and can be written

©
L(=g)= 2 —

n=0 7!

(=g, (A4)

with ¢o=0. Since (A4) is absolutely convergent we can
manipulate the expansion of (U (—it)), to obtain

(U(—it))

0 1 QAap
ST = B (g (=g

n=17! a1--.an ay! Olp:

(125}

® (2% 1 Qa1 Qa2
EEUED S )10 pu ey s

n=1 n! 2! artas=n a;! ap!

n

a1
+oob—t, ()
n!

which is valid at least for |g¢| <n.
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Since both (AS5) and (A6) are convergent in the
neighborhood defined, the coefficients of (—g#)” can be

equated to yield

On the other hand, if we insert (2.3) into (A2) we get

Sn 1 Say Say
_+_ [

n! 2! artas=n a1! ag!

U(—it))o=1 —gh*
(U(—it))o +n§1( gt) (A7)
We therefore can conclude that (A6) and at the same
time (2.12) is absolutely convergent. This justifies the
change of order of summation following (2.12).

=3

n

+—'} (6)

n:
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Radiation from Fast Particles Moving through Magnetic Materials*

T. B. Day
Physics Department, University of Maryland, College Park, Maryland
(Received December 23, 1960)

The problem of the generation of a changing magnetic field due to the interaction of a fast particle with a
magnetic medium is studied. This combined Cerenkov-spin wave effect is shown to give rise to a “ringing” of
the spin system under certain conditions of frequency and angle of observation, at least within an approxi-
mate evaluation of the general Green’s function for the problem. Some striking differences from the usual
Cerenkov effect are discussed and possibilities of using this effect as a neutral magnetic moment detector or as

a probe of magnetic materials are mentioned briefly.

I. INTRODUCTION

ONSIDER the lecture-demonstration apparatus
consisting of a two-dimensional array of compass
needles suspended on pins, over which one passes a bar
magnet. Then the short-range magnetic forces between
the bar magnet and individual needles, combined with
the interaction of the needles among themselves, gives
rise to waves of motion of the needles, which could be
used, for example, as a signal that a bar-magnet passed
by.!
In the above demonstration, the waves are short
ranged, and the oscillations rapidly die out. However, if
we consider the microscopic problem of a point magnetic
dipole moving through a nonmagnetic medium, we
would expect a long-range effect, namely Cerenkov
radiation,? although the intensity would be very low.
Now the question arises, would it not be possible to have
the best of both cases, namely, the long-range Cerenkov
radiation, and a reasonably large magnetic field change
due to cooperative waves in a magnetic material? In
other words, could not, at least at certain angles, the
magnetic fields in Cerenkov radiation generate spin
waves, which in turn give changing magnetic fields, etc.,
so that the combined particle-spin system “‘rings”?

In order to answer these questions, we must study the

* Supported in part by a National Science Foundation grant.

! Playing with this simple device shows the marked dependence
of the amplitude of the waves on the velocity and orientation of the
little magnet. (The magnet had better not be big, or the needles
jump off their pins.)

2 See W. K. H. Panofsky and M. Phillips, Classical Electricity
and Magnetism (Addison-Wesley Publishing Company, Inc.,

Reading, Massachusetts, 1955), Chap. 19, particularly problem 8
on p. 313.

equations for the radiation field, and for the spin system
for magnetic materials. In Sec. IT we write the separate
Maxwell and spin-wave equations in a form convenient
for obtaining their joint solutions. In Sec. III we
formally solve these equations for arbitrary external
sources, and see to what the intuitive feeling expressed
in the above question corresponds. In Sec. IV we give an
approximate evaluation of the complete Green’s func-
tion for the problem, while in Sec. V we consider special
cases of this approximate Green’s function and look at
the possibilities, in this approximation, for “ringing’’ the
system. We also consider certain other effects which
arise in this problem and which are different from the
usual radiation in nonmagnetic materials. In Sec. VI we
consider the special cases of point charges and magnetic
moments, while finally in Sec. VII we summarize the
results and consider some applications of these effects.

II. THE MAXWELL EQUATIONS AND THE
SPIN-WAVE EQUATION

Consider a general medium of dielectric constant e
and conductivity ¢, in which there may be a net mag-
netization and through which an external electric charge
current jo moves. Then Maxwell’s equations giving the
electric and magnetic fields,?

v-D=0, V-B=0,
VXE=—-0B/ot, VXH=j+0D/ot, (1)
are to pe combined with
D=¢E, j=jotoE, (2)



