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A variational principle is formulated to determine the single-
particle states, their pairing, and the occupation number distri-
bution for a trial state vector of the Bardeen, Cooper, SchrieRer
type. The equations which are derived generalize those of the
Hartree-Fock method obtained with a Slater determinant trial
wave function. It is pointed out that in a suitable representation
the vacuum state of a general quasi-particle transformation has
such a trial form which exhibits directly the pairing of single-
particle states. Another variational principle determines the
excitation energies.

Two coupling cases are distinguished: the commutative case
in which the self-consistent densities and energies are related to
quantities which all commute, and the more general noncom-
mutative case. The latter is of importance in critical-Geld phe-

nomena. The equations for the commutative case can be written
in a matrix form which retains its validity in the more general
noncommutative case. The simple matrix commutator equations
appear as direct generalizations of the density matrix form of the
Hartree-Pock equations.

The equations for small oscillations have an equally simple
form. Their connection with a diagonal representation of the
quasi-particle energies is exhibited in a way which remains valid
in the general coupling case. The "unphysical" solutions are
excluded by the supplementary condition. The contact with the
Green's function approach is established. The generalized matrix
form of the Green's function equations shows especially clearly
the symmetry properties of the method.

INTRODUCTION

~ 'HE theory of superconductivity of Bardeen,
Cooper, and Schrieffer' has laid the foundations

of a new approach to describe the behavior of an
interacting fermion system. In a previous paper, '
which will be referred to in the following as (F), the
method was simplified by the introduction of a new
kind of fermion variables, and new equations were
derived for more general two-body interactions which
show the independence of the main conclusions from
the assumption of a constant interaction matrix
element. The same new fermion variables were intro-
duced independently by Bogoliubov' who derived
equations directly from the interacting electron-phonon
field problem. In a more recent paper' Bogoliubov
worked out some of the consequences of considering a
more general form of the quasi-particle transformation,
and pointed out that this point of view leads to a simple
way of describing the effect of an electromagnetic field
in a gauge-independent manner. Many other works'
contributed to a better understanding and to an ex-
tension of the theory. The subject is still in a state of
vigorous development. Starting from the theory of
superconductivity, the concepts of the method pene-
trated the domain of nuclear physics' and attempts are

' J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev.
108, 1175 (1957).' J. G. Valatin, Nuovo cirnento 7, 843 (1958), referred to in the
text as (F).' N. N. Bogoliubov, Nuovo cimento 7, 794 (1958).' N. N. Bogoliubov, Uspekhi Gz. Nauk. 67, 549 (1959).' Especially two main directions of development should be
mentioned: the Green's function approach, started by the paper
of L. P. Gorkov, J. Exptl. Theoret. Phys. U.S.S.R. 34, 735 (1958)
[translation: Soviet Phys. —JETP 34(7), 505 (1958)j, and the
generalized random phase approximation of references 11, 12, and
13.

6 A. Bohr, B. R. Mottelson, and D. Pines, Phys. Rev. 110, 936
(1958), and numerous more recent publications some of which are
referred to in reference 10.

being made~ to explore its consequences in the theory
of elementary particles.

It has been pointed out previously' that the approxi-
mation of independent fermion excitations is related to
a simple linearization of the matter field equations. A
reference to a Hartree-like approximation can be found
already in the paper of Bar deen, Cooper, and
Schrieffer in connection with the trial ground-state
vector which is built up from independent commuting
factors. Some further connections with the self-con-
sistent field method of Hartree and Fock have been
pointed out by Bogoliubov, ' Xambu, ' and others. The
close connection between the two approaches will be
made even more apparent in the present paper. The
equations of the new method will appear as generali-
zations of the equations of the Hartree-Fock method,
with a minimum generalization which takes into
account the existence of a state of bound pairs of
particles. Special care will be taken to show that the
approximation method is really very simple, in spite
of the impression one might obtain from some of the
existing publications.

It has been shown in (F) that the approximate
ground-state properties can be described in terms of
the one-particle density matrix h and a pair field x
which is the expectation value of a pair of field oper-
ators. The new features of the approach are related to
the existence of a nonvanishing g in the case of ap-
propriate attractive forces. The factorizable term
contributed by the pair 6eld p to the two-body cor-
relation function represents coherent long-range cor-
relations. The approximation method attributes a

7 Y. Nambu, Proceedings of the Midwest Conference, Purdue
University, March, 1960 (unpublished).

J. G. Valatin, Proceedings of the Low-Temperature Con-
ference, Geneva, New York, 1958 (unpublished); J. G. Valatin
and D. Butler, Nuovo cimento 10, 37 (1958).

Y. Nambu, Phys. Rev. 117, 648 (1960).
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special weight to this factorizable term which expresses
then an eGective condensation of pairs of particles in a
single bound state.

Besides h and y, it is convenient to introduce a
self-consistent energy v determined by h and a self-
consistent pairing potential p determined by p. In the
simple coupling case considered in (F), the quantities
h, x, v, p, all commute, and the equations were derived
in a representation in which they are all in a "diagonal"
form. It will be convenient to refer to this case as the
commutative coupling case, in contrast to the more
general noncommutative case. The latter is of im-
portance in critical magnetic field phenomena or in the
analogous effect in rotating nuclei" where the electro-
magnetic interaction energy or the rotational coupling
term does not commute with the pairing potential p.

The simple equations of the commutative case will

be cast in the present paper in a new matrix form which
will retain its validity in the more general case. The
simple pair structure of the ground-state vector also
remains valid in the general case, though the repre-
sentation which exhibits this will in general not lead
to a diagonalization of the quasi-particle energy.
Variational principles will be applied to determine the
pair structure of the ground state, the excitation
energies, and the matrix form of the equations. The
new expressions obtained will not merely mean a
considerable gain in the length of the equations but
will lead to a deeper insight into the nature of the
approximation. The whole approach should be looked
at as a self-consistent zero-order approximation of a
more general expansion procedure. The next approxi-
mation which leads to a natural extension of the method
is provided by the generalized random phase approxi-
mation investigated by Bogoliubov, " Anderson, " and
others. "

The notation will be kept close to that introduced
in (F), and the reader is referred to this publication for
details which will not be repeated here.

GROUND-STATE PAIRING AND
VARIATIONAL PRINCIPLE

In terms of the quantized fermion field operator f(x)
and its adjoint P (x), the Hamiltonian of a system with
two-body interactions can be written in the form

(»)
1

+— dx dxi' P*(x)P*(x')V(xx', xrxr')f(xr')f(xt).

'OB. Mottelson and J. G. Valatin, Phys. Rev. Letters 5, 511
(1960).

"See reference 4 and other references given there, especially
concerning the approach through the "method of approximate
second quantization. "

"P.W. Anderson, Phys. Rev. 112, 1900 (1958)."G. Rickayzen, Phys. Rev. 115, 795 (1959); D. J. Thouless,
Ann. Phys. 10, 553 (1960); A. Bardasis and J. R. Schrieffer (to
be published).

The letter x denotes the space coordinates, spin,
isotopic spin, etc., of a single particle, and the integral
sign includes the corresponding summations. The
constant chemical potential which enters into the
description because of approximations which do not
conserve the number of particles is included in the
single-particle energy e. This may equally contain a
contribution from interactions with an external field.
The kernel of the two-body interaction V is chosen in
a su%ciently general form to include velocity-dependent
forces.

The trial ground-state vector of Bardeen, Cooper,
and Schrieffer is of the form'4

a„= I dx &p„(x)P*(x). (1c)

The real number h„ is the expectation value in Co of
the number of particles in state a,

h. =(a.a.'), (1cl)
and one has

0&a„&t, h, =h, . (1e)

The values of h„are to be determined by minimizing
the expectation value of the Hamiltonian (1a) with
respect to the state (1b). The trial form of this state
includes the possible choice

h„=1 for

For this number distribution, the state (1b) reduces to
a simple product state which corresponds to a plater
determinant wave function in con6guration space. The
variational principle and stability considerations deter-
mine, according to the nature of the Hamiltonian (1a),
if the ground state is better approximated by an
occupation number distribution (1f) or by some other
distribution h, .

In the original assumptions for an infinite system of
electrons, it has been assumed that ~ stands for a single-
particle state with definite momentum and spin, and
—~ for a state with opposite momentum and opposite
spin. The distribution (1f) is still a possible choice,
and the variational principle is to determine the values
of h, . In the Hartree-Fock method, the form (1f) of
the number distribution is assumed, but the states

'4 An opposite convention a ~a*, o$~ u is often used for
creation and annihilation operators. Reasons for the present
notation are explained in the author's Naples lectures, Lectures on
Quantum Iield Theory, edited by R. E. Caianiello (Academic
Press, New York, 1960), p. 113. The state vector (1b) is written
in an algebraic form. A more conventional notation would put
behind the symbols a sign ~0), indicating the state in which there
is no particle present.

Cp=g [(1—h„)'+(h„)la„a .],
«)0

where the creation operators a„of a single-particle
state g, (x) are related to f*(x) through
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q „(x) are to be determined from the variational
principle. The point to be made here is that assuming
a trial state vector of the form (1b), with the single-
particle states y„(x) the pairing», —» and the occu-
pation numbers h„all unknown, the variational prin-
ciple leads to a straightforward generalization of the
Hartree-Fock method.

By introducing the fermion operators

g„= (1—h.)la.w(h. )*a .' for»)0 or»(0 2a)
g."=(1—h,)'a,'W(h. )ia,

the simple argument given in (F) shows that one has

e„=~„„=~"dxdx' q.*(x)e(x,x')q. (x'), (5c)

(»»
~

V
~
»i»i )= )~dx dxi' (p„*(x)(p„.*(x')

The last expression has the form of a trace, and can
be expressed in terms of the "diagonal" elements

v„=v„„=E„+'P"((« I VI«) —(« IVI»»)}&" (5a)

u'=~, —=P" (» —»I VI»', —»')x" ««&0 (5b)

with

g„')Cp ——0 (2b) X V(xx j xlxl ) p"1(xl) p"1'(xl ) ~ (5d)

for all values of a. The operators g„g,~ satisfy the same
anticommutation relations as a„a„.As explained in
(F), a simple way to obtain expectation values of opera-
tors in the state C o is to express the operators in terms
of g„g„~ and to order the factors in each term in such
a way that creation operators act after the annihila-
tion operators.

One obtains in this way for the density matrix h the
expres

One obtains in this way

Wo ——-', Q„{(e„+v„)h„+p,„x„}. (5e)

Considering this expression as a function of h„, y„, and
p„(x), the expression is to be minimized under the
supplementary condition

(1—2h.)'+ (2x )'= 1 (5f)

which follows from the definition (3c), and under the
P(x& x) g,e(x)P(xl)) P P + (xI)+ +(x) (3a) constraints

and for the pair field x the expression I dxq „*(x)p„(x)=8... (5g)

where
x„=+[h„(1—h„)]l for») 0,

(3c)

which express the orthogonality and normalization of
the one-particle states.

For a fixed system cp, (x), one has

The summations extend over both positive and nega-
tive values of ~. From the definitions, one has

t (x,*')=a*(x',x), ~(x,x') = —x(x',x). (3d)

v„=BWD/Bh. , p.= BWO/By„, (6a)

and minimizing Wo with respect to h„and x, under the
supplementary condition (5f), one obtains the equations

The self-consistent energy v can be defined by v, =E„(1—2h„),

pg = Eq2xg.

(6b)

(6c)
v(x x )= 6(x x )+ dxllxl (V(xxl x xl )

—V(xxi, xi'x') }h(xi',xi),
An elimination of the Lagrangian multiplier E„gives

(4a) the relationship

and the self-consistent pairing potential p by
v„2y„+p„(1—2h„)=0, (6d)

g = (v 2+@ 2)k (6e)

whereas for E„one obtains with the supplementary

„(x,x')= ~dx dx
' V(xx'; x x')x(x,x '). (4b)

Wo ———,dxdx'{ (e(x,x')+ v(x,x'))h(x', x)
2~ —p (x,x')X*(x',x)}. (4d)

With a Hermitian single-particle energy e, and a
Hermitian and symmetric interaction energy V, one
concludes from (3d) that

v(x', x) =v*(x,x'), p, (x',x) = —p(x,x'). (4c)

The expectation value Wo=(H) of the Hamiltonian
(1a) can be written in terms of h, x, v, p, as

As shown in (F), in the commutative case this repre-
sents the energy of the independent quasi-particle
excitations. In the more general case, E„is related only
to the energy difference,

Z„=v„(1—2h„)—p„2X„,

between the expectation values of the Hamiltonian in
the states f)„~C'o and Co. If the equations (6b, c) are
satisfied, one obtains indeed from (6f), 8„=E„.

If the states» are known, the equations (5a, b, f)
and (6b, c, e) determine 14 and x„.
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with

dx E(y,x) p„(x),

E(y,x) = dx'{v(y, x') h(x', x)—p(y, x')x*(x',x) ), (7b)

where the last equality is obtained by using the form

(3a, b) of h and X. With the constraints (5g), and
Lagrangian multipliers X„,one obtains in this way the
equations

) dx E(y,x) q „(x)=P X.. p. (y). (7c)

With the expressions (3a, b), (4a, b) of h, g, p, v, these
are nonlinear equations to determine the single-particle

system y„(x). In the case that X„=O for all ~, they
reduce to the Hartree-Fock equations.

From the expressions (3a, b, c) of h and y, one obtains
immediately the equations

h(x', x) — dy{h(x', y)h(y, x) —x(x',y)x*(y,x)) =0, (Sa)

/

For h„, X„6xed, a variation of S'p with respect to
the functions q,* gives

bS"p
=h„) dx' v(y, x')(p„(x')

&v.*(y)

+x. d*'~(y, x')p-.*(x') (7a)

simple pair structure (1b) of the trial state vector of
Bardeen, Cooper, and Schrieffer. Indeed, the Hermitian
matrix h can be brought to the diagonal form (3a), and
assuming a more general form

(Se)

for g in this representation, one obtains from (Sb)

(h„—h. )x„„=0.
If the eigenvalues h„of h are nondegenerate, apart from
the twofold degeneracy h „=h., one concludes im-
mediately x„, =x„b,, „ for ~)0. If there are other
degeneracies, a further transformation in the subspace
of degenerate eigenvalues h„might be needed to bring

p to this form" and to determine a pairing ~, K.

INDEPENDENT QUASI-PARTICLE EXCITATIONS

If the Hamiltonian (1a) is expressed in terms of the
quasi-pa, rticle operators (2a), a part of the interaction
energy can be separated' which after the ordering
process of the quasi-particle creation and annihilation
operators contains terms with genuinely four factors
g, g~. The remaining part of the Hamiltonian' ' which
contains the single-particle term of (1a) and terms
resulting from the interaction energy by contractions
represents a Hamiltonian for an independent quasi-
particle motion. In terms of the particle creation and
annihilation operators a„a„ it can be written as

H= cosn+tpQ {V II GIIILG IIVKK QII GK'

dy{h(x', y)p(y, x) —x(x',y)h (y,x)) =0. (Sb)

Apart from a change in notation which makes apparent
the matrix character of these equations, these are the
relationships derived by Bogoliubov' for the expectation
values formed with respect to the vacuum state Cp of
the quasi-particle operators

EIT Elf (+Ktl+K+~IItl+II )y

)IT P K (PKIT +If+ +KIT +K )
(Sc)

The index ~ stands in the present reference for an
arbitrary system of one-particle states, and one has

p,t~Cp=0. (Sd)

Bogoliubov has shown that the relationships (Sa, b)
express the necessary and sufhcient condition for the
quasi-particle transformation (Sc) to be unitary.

The important point to note is that the relationships
(Sa, b) which follow from the form (3a, b) of h and x
imply conversely that h and x can be brought simul-
taneously to that form, and that the vacuum state of
the general quasi-particle transformation (8c) has the

ZQII QK (PKK GII +P KIGIK ))
' t- t

ZQII ~K ( @IIII GII PKK GK )
(9b)

In the case dealt with in (F), one can write
v« = v,6«, p« =p,„b„, „ for z)0, and the quasi-
particle Hamiltonian (9a) is diagonalized by introducing
the operators (2a). This will no longer hold in the
general coupling case, and a further transformation

$e=pII CnIIgIIq $a =+II &aII 'g II (9c)

will be needed, where C,„ is unitary, to bring H into
a diagonal form

8=wp+Q. E.g.g.t. (9d)

From Eq. (2b) a similar equation (Sd) follows for the
linear combinations (9c). The operators (9c), expressed
in terms of a., a„t are of the form (Sc), but represent
now that special transformation which diagonalises the
quasi-particle energy. The one-quasi-particle eigenstates

"The conclusion that h and x can be brought simultaneously
to the form h„„=h„B„„., x„„=x„b„,„was pointed out independ-
ently by V. G. Soloviev (private communication).

+VIIII'&II+II' @IIII' +II &II' j ~ (9a)

The linearized operator equations i at = fat, Hj,
id=(a, H], take the form
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of H will be given by

f~
~

C 0 P z CrzrrPOq (9e)

where Cs is of the form (1b), and the definitions (2a),
(9c) and the relationship rt„~Cs ——a.Ce have been used.
This represents a state with an additional unpaired
particle in the sea of coupled bound pairs. Whereas
(1b) can be considered as an approximation for the
ground-state vector of a system with an even number
of particles, the corresponding trial approxin1ation for
an odd number of particles will be of the form (9e).

Since the interaction terms of the difference H —II
give zero expectation value in the state (9e), the
eigenvalues We+8, of H can also be obtained by
minimizing the expectation value of the Hamiltonian
H with respect to a trial state vector of the form (9e).
The expectation values h, x can be expressed in terms
of the unknown coefficients I, v of the quasi-particle
wave function, and one obtains a set of self-consistent
nonlinear equations. The self-consistency requirements
become of importance in approximations to systems of
finite size, as in the nuclear physics applications. For
large systems with extended single-particle wave
functions, as in the case of a metal, where the addition
of one particle does not inhuence much the self-con-
sistent fields, the values of h and X obtained from the
variational principle for a system with an even number
of particles can be used in the equations to determine
the excitation energies E, and wave function com-
ponents m, v of an additional particle. The equations are
then linear, and are simply the eigenvalue equations
related to the linear operator II given by (8a). This
relationship of the quasi-particle energies E, to a
variational principle gives further justification for
interpreting these quantities as excitation energies. "

X2= X) (10a)

MATRIX EQUATIONS

The quasi-particle transformation (2a) or (8c)
introduces a single-particle space of twice as many
dimensions formed by linear con1binations of the wave
functions ir„(x) .and their conjugate complex y„*(x).
According to a remark by Bogoliubov, ' the subsidiary
conditions (8a, b) for the quantities h and X can be
considered as expressing the projection operator
character,

introducing further quantities in the space (cp, p*), the
equations obtain an extremely simple form. At the
same time, they appear as direct generalizations of the
commutator equations for the density matrix in the
Hartree-Fock method.

The form (9b) of the linearized operator equations
suggests the introduction of the Hermitian matrix,

OR=
]

& —
t
* —v')

(11a)

in the (p, y*) space. It follows from the symmetry of
this matrix that if (u,v) is an eigenvector of OR with
eigenvalue E., then (s*,u*) is an eigenvector with
eigenvalue —E,. The quasi-particle energies E, deter-
mined by the operator H are all positive. The matrix
5K has twice as many eigenvalues ~E„ the absolute
values of which are the quasi-particle energies. The
eigenvectors of BR determine the coeKcients of the
quasi-particle operators $. and P,t.

The variation of the expectation value (4d) of the
Hamiltonian can be written in terms of RL and the
variation 8X as

Adding to this
~H/'0= 2 Trace 5fQX. (11b)

6(x'—x)=xsx+3xx —sx, (11c)

with a Lagrangian multiplier ——,'A, summed over the
diagonal elements of the product, and equating the
resulting expression with zero, one obtains the equation

OR =A.X+XA —A..

Because X'= X, this means

AX= XXX=X5K,

and gives the commutator equation

[oR,X]=0.

(11d)

(11e)

If one varies the expectation value of the operator
i (r)/Bt) H, instead of t—he expectation value Ws of the
Hamiltonian H, one obtains the time-dependent
equation

i r)X/r)t = /OR, X] (11g)

~,-; The analogous equations of the Hartree-Fock
method' in terms of the density matrix h are of the
form

of a matrix X defined in this space (y, y*). With a
compact notation and the simplification indicated
after the equations (8a, b) one can write X in the form

and
fv,h]=0,

iah/clt = Lv,h].

(12a)

(12b)

x=/
h

k —X* 1-h*)
' (10b)

The aim of the present section is to show that by

"A relationship of 8 to a variational principle was indicated in
the simpler commutative case by H. Koppe and B. Muhlschlegel,
Z. Physiir 151, 613 (1958).

The density matrix h is then given by the expression
(3a) with a number distribution (1f), and the self-
consistent energy v by the corresponding expression
(4a). For 7t=—0, the equations (11f, g) give a sym-
metrized version of these density matrix equations.
The projection operator X defines in this case a new

"P. A. M. Dirac, Proc. Cambridge Phil. Soc. 26, 376 (1930).
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vacuum state by interchanging the role of particles
and holes.

Dirac's argument" given in connection with Eq.
(12b) can be immediately extended to the present case
to show that the energy expectation value (4d) is an
integral of motion of the time dependent equation
(11g), if e and the interaction energy V in the Hamil-
tonian (1a) are time-independent. It is perhaps even
simpler to refer to the expression (11b) for 6Ws, which
shows immediately that one has

BX—TV0 ——~ Trace 5K =0.
dt Bt

The last equality is a consequence of the equation
(11g) and of the rule of permutation of factors in a
trace.

Solutions of the stationary equation [OR,X]=0 can
be built up from the projection operators of the spectral
decomposition of 5K which all commute with 5K. The
quasi-particle excitation energies E. in the expression
(9d) of II will be positive, if X is chosen to be the
projection operator of the negative energy spectrum
of OR. X devides the space (q, y*) into two subspaces
and defines the approximate ground-state vector Cp.

If the notation is modified so that the matrix char-
acter of the equations is no longer recognizable, the
components of the equations (11f, g) lead to the equa-
tions given by Bogoliubov. ' "The matrix commutator
equations exhibit in a compact form the equations
valid in the simpler commutative coupling case, and
represent at the same time the form of the equations
which remains valid in the more general case.

The more detailed form of the commutator equations
becomes especially simple if a representation can be
found in which all matrix elements are real. The fol-
lowing expressions will be given in such a representation.
An illustration of the equations with a complex repre-
sentation of X and OR is provided by Eqs. (Sa, b).

In such a real representation, X and 5K can be
written in the form

(14a)
t'h x) f~ ul

1—h)'

I
"—~'

ORs=
(

& [v,p] v' —p')

If [v,y]=0, this form of ORs shows that the eigenvalues
of OR can be expressed as &(v„'+p,')'* in terms of the
eigenvalues v and p, of v and iIJ,. In the noncom-
mutative coupling case when [v,p]AO, the quasi-
particle energies will be given in general by less simple
expressions. "

For the commutator [OR,X] of Eqs. (11f, g) one
obtains with the expressions (14a, b)

where

[1 2X OR] =2 [OR X]= 2
~

f'S 8~

(p)

20', = {2X,v)+{(1—2h), p),

2(B=[(1—2h), v]+[2X, p],

(15b)

(15c)

(15d)

and the bracket {,) stands for the anticommutator
of two quantities. The equation [OR,X]=0 is equivalent
to

has eigenvalues & 1, and in the stationary case when it
commutes with 5K its product with 5K has positive
eigenvalues 8, instead of the negative eigenvalues
—Err Of 5K.

The condition X'= X implies

((1—2h)' —(2x)' [(1—2h), —2)f] q

(1—2X)s=
~([(1—2h), —2x] (1—2h)' —(2X)')

(14c)
which gives the equations

(1—2h)' —(2X)'=1, [h,y] =0.

The first of these expresses the relationship (Sf) in
any nondiagonal representation which can be reached
from the diagonal representation by means of a real
orthogonal transformation. The additional minus sign
comes from the anti-Hermitian character of x. The
second equation in (14d) indicates that h and x can
be diagonalized simultaneously.

The expression (14a) of OR gives

The matrix Q, =O, $=0. (15e)

t
1—2h —2X

1—2X=
~

(14b)
2X —(1—2h) ~

"A variational derivation of the equations was given by N. N.
Bogoliubov and V. G. Soloviev, Doklady Akad. Nauk. U.S.S.R.
124, 1011 (1959) [translation: Soviet Phys. —Doklady 4, 143
(1959)], by expressing h and x in the expression (4d) of Wo by
the coeAicients u, v of a general quasi-particle transformation
(8c) and varying u, v. Any transformation of the form (9c), with
an arbitrary unitary C,„ leads to the same h and p, and there are
infinitely many such transformations. As both W'0 and the re-
sulting equations are independent of the arbitrary coe%cients
u, v, the introduction of these variables is obviously irrelevant in
the argument. The same remark holds in connection with many
expressions of published papers, where quantities which depend
only on h and x are expressed in terms of the coefficients u, v.

In the diagonal representation of the commutative
case, the equation 8=0 reduces to the equation (6d)
and %=0 is trivially satisfied. The time-dependent
equation iBX/Bt= [OR,X] leads to the equations

iBX/Bt= 8, ir)h/Bt= S. (15f)

The contact with Bogoliubov's expressions' can be
established through the quantities Q, and S.

For the symmetrized product of 5K and 1—2X one

"Such more general expressions for the quasi-particle energy
have been worked out explicitly for simple models in connection
with the work of reference 10.
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obtains the expression
(S 8)

{1—2x, oR) =2~
I&. n) '

with

(15g)

For the nonvanishing matrix elements one has

[oR&»,x&'&]..=a(E.+E.)x...&'&,

[OR&'&,X&'&]..= D'OR..&'&,

(18a)

(18b)
2&:=[2X, v]+[(I—2I), p], (15h)

SMALL OSCILLATIONS

The equations of small oscillations about an equi-
librium solution equally simplify with the compact
form of the equations of motion given in the previous
section. If one writes

X=X"'+X'", OR =OR&»+.OR"', (16a)

in the time-dependent equation iBX/Bt= [OR,X], and
assumes that X") is a solution of the stationary
equation

(16b)[oR&»,x&»]=0,

small changes X"' in the solution are determined by
the equation

i&X&'&/BI=[OR&», X&'&]+[OR&'&,X&»], (16c)

which results by disregarding second-order terms. The
corrections v"), p(') to the self-consistent potentials
which determine 5K") are obtained by replacing h and
p by h") and x") in the definition of v —e and p. If
X&'&, BR"& are known, the equation (16c) is a linear
equation in X").It is supplemented by the condition

x&"x&"+ x&'&x "&=x "& (16d)

which follows from X'= X and

X(0)2= X(0). (16e)

The equations further simplify in a representation
in which X(') and 5R(') are diagonal. With the notation

2$= ( (1—2h), & )+(2y, &&I,). (15i)

In the commutative case, 6 is zero and X) gives the
expression (6f).

where the + sign holds for 0)0, 0.'(0 and the —sign
for 0-&0, 0. )0. Assuming a periodic solution in time
with frequency cv, that is iBX "&/BI=rex&", the equation
(16c) gives, for ~W&(E,+E, ), the relationships"'

X,.(') = —— mr (» for 0.&0, 0-'&0;
E,+E.

(18c)

OR„(') for 0- &0, 0') 0.
E,+E;+&d

They represent a linear equation system to determine
the collective oscillation frequencies or and to investi-
gate the stability of the solution X") of the self-con-
sistent stationary equation (16b). The equations are
written in a form in which they can be used, together
with the definition of 5KO), to give linear equations in
5K('). If one multiplies with the denominators, they
appear in the form of a linear two-particle wave
equation to determine the two-quasi-particle wave
function X('). The term 5R(') represents then an addi-
tional interaction between the two quasi-particles. The
validity of this form of the equations in the more
general coupling case is to be stressed.

The components of the equations (16c) are equivalent
to the equations of the generalized random phase
approximation, " " if the expectation values of the
linearized operator equations of the approximation are
taken with respect to a state vector of the Bardeen,
Cooper, Schrieffer type.

For 0&0, 0.'&0 or 0&0, a'&0, one has

[OR&'&,X&'&]„=+(E,—E, ), [OR "&,X&'&]„=0, (19a)

which leads to solutions of the equation (16c) which
satisfy

iBx &'&/R = & (E E.)X &'& —(19b)

e,=0 for o &0
=1 for o &0,

one has in such a representation

(17a)
These correspond to the solutions called "unphysical"
by Anderson" and are eliminated by the supplementary
condition (16d), (17d).

GREEN'S FUNGTIONS
(17b)

(17c)

(e,+e,.—1)x„.&'& =0 (17d)

which means that X„"&=0 except for n,+e, = 1,
that is, except for 0-&0, 0-'&0 or 0-&0, 0-'&0.

where 0-&0 and 0-&0 stand for the positive- and nega-
tive-energy eigenstates of 5K('). The supplementary
condition (16d) takes the form

The symmetries of the representation become even
more apparent in establishing the connection with the
corresponding approximation of the Green's function
equations. Positive and negative energy solutions
contribute with a different sign in the time variable
and the subspaces determined by X and 1—X become
related to the "negative" and "positive frequency
part" Green's functions.

»'In order to obtain a Hermitian X('), a linear combination of
solutions with frequencies u and —u is to be taken.
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In terms of the quantized field operators P(x), P*(x),
the linearized field equations can be written as

ip = )'p+)i/*, (20a)

(20b)

where the kernels of the integral operators v, p, are
given by the expressions (4a, b). Equations (5b) give
the detailed form of these equations in another repre-
sentation. The letter x will now include the time
variable, though with the simple form (4a, b) of ), li
the integral sign in connection with these integral
operators will indicate a summation over the variables
excluding the time. The notation will, however, be
suggestive to the form of the equations in further
approximations where a multiplication with the self-

energy operators involves also a time integration.
Introducing the Green's functions

G&-&(x,x') =(P*(x')P(x)),

F&-&(x,*')=Q(x')P(x)),
G&+&"(x,x') =g (x')P~(x)),

(21a)

i—G&
—

& (x,x') = dy{) (x,y)G&
—

& (y,x')
8t

+p, (x,y) F'+&*(y,x') ),
(21c)

i—F&+&*(x,x') = I dy{ —p~(x, y)G( & (y,x')
at —~*(x,y)F"'*(y,x') }.

With the notation %':(P,P), and the matrix form
(11a) of OR, the linearized field equations (20a, b) take
the form

(22a)i &)%'/r)t =OR%'.

Introducing the matrix

F&-& ~
(—)=

(F(+)' G(+)*j ' (22b)

the equations (21c) and the two similar equations
obtained by multiplying the field equations (20a, b)
from the left by P(x') can be written in the matrix form

where x and x' refer in general to two diferent time
points, they satisfy the relationships

G&—
&(x,x') =G& &*(x',x), F&—

&(x,x') =F(+&*(x',x),
F'+&(x,x') =F'-'*(x',*), G&+'(x,x') =G'+'*(x',x).

Multiplying the equations (20a, b) by P*(x') from the
left and forming expectation values with respect to the
state Co, one obtains the equations

Because of the symmetry properties of BR, the con-
jugate complex of this equation can be written in the
equivalent form

where

t9

i—g&+& Oitg(+)

( G(+) F(+) )
!g(+) —

!~F(-)* G&-& y

(22cl)

(22e)

Besides the solutions &i(+), (i( ) of the homogeneous
Green's function equation (22c, d) it may be of interest
to consider the Green's function solutions (d, (&(» related
to the expectation value of anticommutators and com-
mutators of field operators which are given by

( G F~
g —g(+)+g(—) —

!&F* G+i
(23a)

with

( G&i& F(» )
ig &

—g(+) g(—)=i!
EF(» G&» j (23b)

G(+)~G(—) = F(+)~F(—) — (23c)
zG(g) zP(g)

where G, F are defined with the + sign; iG&i&, iF(i&
with the —sign. The retarded, advanced, and time-
ordered solutions of the corresponding inhomogeneous
Green's function equations with inhomogeneous
function terms can be constructed from these homo-
geneous solutions in the known way.

Apart from the inhomogeneous term, Eqs. (21c)
give a generalized form of Gorkov's equations'" and
Eqs. (22c, d) establish the matrix form of these
equations. The same equations can be obtained from
the coupled system of Green's function equations by
approximating the two-body Green's function by the
sum of a contribution from an independent-particle
motion described by 6 and of a factorizable term with
factors Ii. This corresponds to the approximate form
of the two-body correlation function' at equal times in
which a dominant weight is attributed to a single
factorizable term given by the product of two factors y.

For t=t' the Green's functions reduce to expressions
considered in the previous sections. One has

g(+)(1=1')=X, g(-)(1=1')=1—X,

g(1=1 )= 1, g(»(1=1 ) = 1—2X.

(24a)

(24b)

Through the relationship between 5R and X, these
initial conditions impose self-consistency requirements
on the Green's function equations.

Because of & (x,x') =
& *(x',x), )«(x,x') = —p(x', x), Eqs.

g(—) =Oit'g(-)
8t

(22c)

"For use of the homogeneous Green's functions see also Yu. T.
Grin', S. I. Drozdov, and D. F. Zaretzky, J. Exptl. Theoret. Phys.
U.S.S.R. 88, 222 (1960) [translation: Soviet Phys. —JETP 11,
162 (1960)].
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(20a, b) can be written in the alternative form

iP*=P*v P—fl*,

if=—P*p P)'*—.

(25a)

(25b)

or with %'t:(P*,P) as

i8%—'t/83 =%'tDR (25c)

For the matrix Green's functions (22b, e), (23a, b),
this leads to equations of the form

(25d)

Combining this with Eq. (22c), one obtains

Jr8 Bi
i( + [g(—) = L~ g(—)]

E Bt Bt,')

With the initial condition (24a), this reduces for f=t
to the equation

iaX/e)r= (alt, X]. (25f)
A somewhat different two-component notation has

been considered by Anderson) Nambu) and SchrieGer"
in the case of electrons with a spin independent Hamil-
tonian. They consider the combination

4(~)=
~

( ft(~) &

&Ps* X

sr J. R. Schrieffer (to be published).

(pta 0 l ( 0 tutsl

00 )ss) (ps) 0)

(26)

and the matrices X, 5K appear in a reduced form with
respect to two invariant subspaces. In the case that
there is no obvious a priori separation of the single-
particle space into two independent subspaces, the more
symmetric method of the present paper will still retain
its validity.
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where ft, Ps refer to the two spin directions 1, 2, and
introduce Pauli matrices in this notation. There is
no doubling of the single-particle states as in connection
with the matrices X, 5K. The connection between the
two descriptions is established by the remark that in
the case of a spin-independent Hamiltonian the
quantities h, p, s, p can be described by matrices of
the form

(ktt 0 ) (0
E 0 hss) Egest 0 )


