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CONCLUSION

Thermal data, consisting of Hall, resistivity, and
thermoelectric power indicate that in many respects
Ag2Te behaves as a conventional semiconductor with a
very small forbidden energy gap. Calculations based
on experimental data indicate variations of such
parameters as mobility ratio, effective masses, and
transport mechanism which are presumably dependent
on composition and structure. The values calculated
for these parameters are only indicative of the order of
magnitude. Completely reliable figures' could be

obtained only with considerably more experimental
data.

The difference between the gap obtained from optical
transmission data' and that obtained from thermal
data could be due to a complex band structure, although
discrepancies of this magnitude are not usually en-
countered in semiconductors.
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A theory is developed that gives the diffusion coefficient in strained systems as an exponential function of
the strain. This theory starts with the statistical theory of the atomic jump frequency as developed by
Vineyard. The parameter determining the effect of strain on diffusion is related to the changes in the inter-
atomic forces with strain. Comparison of the theory with published experimental results for the effect of
pressure on diffusion shows that the experiments agree with the form of the theoretical equation in all cases
within experimental error.

I. INTRODUCTION

S INCE the diGusion rate in a crystal depends on the
atomic interaction energy, and since this energy

depends on the interatomic distances, it is to be ex-
pected that the diGusion coefficient of a migrating
species will be altered by a strain superimposed on the
crystal. Experimental evidence shows that the change
in the diffusion coefhcients resulting from strains can be
considerable. Uniaxial elastic strain can increase the
self-diGusion coefficient by as much as a factor of two'
and large hydrostatic pressures may decrease the self-
diffusion coefficient by as much as an order of
magnitude. ' '

The theory of the eGect of pressure on diGusion has
been examined on the basis of the dynamic theory of
diffusion. "In this theory, the pressure effect is repre-
sented by a parameter that is a function of the normal
mode vibrations of the atoms in the crystal, and the
diGusion coeKcient is an exponential function of the
pressure.

'T. I.iu and H. G. Drickamer, J. Chem. Phys. 22, 312 (1954).
2 Norman H. Nachtrieb, Wright Air Development Center

Technical Report No. 55—68 (unpublished).' J. Petit and N. H. Nachtrieb, J. Chem. Phys. 24, 1027 (1956).
4%. Jost and G. Nehlep, Z. physik. Chem. 34, 348 (1936).' Norman H. Nachtrieb, Henry A. Resing, and Stuart A. Rice,

J. Chem. Phys. 31, 135 (1959).' Stuart A. Rice, Phys. Rev. 112, 804 (1958).' Stuart A. Rice and Norman H. Nachtrieb, J. Chem. Phys. 31,
139 (1959).

The dynamic theory of diffusion was developed as an
alternative to the absolute rate theory of diGusion,
since it was believed that the absolute rate theory de-
pended on the postulate that the jumping atom spends
a long time at the top of the potential barrier. However,
it can be shown that the theory of the jump frequency
can be developed without reference to such a postulate'
by considering the motion of a representative point in
phase space. The jump frequency then depends on the
rate at which phase points move over the potential
maximum in configuration space, and not on the length
of time the phase points spend at the maximum. In
view of this situation, it is of interest to investigate the
eGect of strain on diGusion in terms of the statistical
rate theory.

The statistical rate theory of diffusion in strained
crystals as developed in this paper shows that the dif-
fusion coefFicient is an exponential function of strain,
and that the strain effect can be represented by a pa-
rameter that is a function of the interatomic forces.
The rate theory, therefore, has an advantage over the
dynamic theory in two respects: First, the eGect of
strain on diGusion in different materials can be corre-
lated with the interatomic potential energy, and second,
the interatomic forces provide a basis on which to
calculate the magnitude of the strain eGect for diGerent
diGusion mechanisms. Accordingly, the possibility pre-

George H. Vineyard, J. Phys. Chem. Solids 3, 121 (1957).
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sents itself of deciding among alternative diffusion
mechanisms from a comparison of the results of experi-
ments on the effect of diffusion in strained systems with
theoretical calculations. Such a program would be con-
siderably more dificult in the framework of the dynamic
theory.

The general equation for the diffusion coefficient for
the Qow of a single species in an isotropic solid may be
written

D= o.) 'eI',

lattices. Thus, the potential energy in Eq. (2) is given by

v= v(V' "p)

where q; represents the set of all atomic coordinates
and e p represents the set of six independent strain
components.

The potential q can be expanded as a Taylor series
in the strains about the point of zero strain with the
result that

where D is the diffusion coeKcient, A, is the lattice
parameter, e is the concentration of carrier defects, I'
is the jump frequency, and 0. is a constant that is deter-
mined by the crystal structure. In the following sec-
tions expressions are derived for the eBect of homo-
geneous static strains on the jump frequency and va-
cancy concentration. The resulting equations are put
into a form in which comparisons can be made with
existing experimental data.

II. DEPENDENCE OF JUMP FREQUENCY
ON STRAIN

where the coe%cients C p and C p„are defined by

EBe~p) qj, o

&(
C.p,.=-l

2 (BepgBe~p) gj, o
(6)

According to the statistical theory of rate processes,
the jump frequency is determined by the ratio of two
configurational integrals, one referring to the activated.
state and the other referring to the normal state. In
analyzing the effect of strain on the jump frequency, the
formulation of the rate process theory in solids given by
Vineyard' is used, in which the jump frequency is given
in terms of these integrals by

The subscripts indicate that the derivatives are evalu-
ated when the strains are zero and the coordinates
have the value q, .

Substituting Eq. (4) into Eq. (2) gives the jump
frequency in terms of the strain:

I"(e.p)

(kT't* p ( 1
I

i' e
—

& ""'expI ——P &.pe.p Id
&2 ~) &. kT, p )

where k is Boltzmann's constant, T is the temperature,
and y is the potential energy of the system as a function
of all the coordinates of all the atoms in the crystal.
The integral in the numerator of Eq. (2) is evaluated
over a hypersurface 0. in the configuration space such
that the surface passes through the point corresponding
to the diffusing atom at its activated position with all
other atoms at their equilibrium positions. The hyper-
surface is also required to be perpendicular to contours
of constant potential energy in the con6guration space.
The hypersurface de6ned in this manner divides the
configuration space into two symmetric parts. The
integral in the denominator is evaluated over the config-
uration volume A of one of these symmetric parts.

Equation (2) was derived for the case of an unstrained
crystal. However, it is applicable to strained crystals if
the potential energy p is taken to be a function of the
six strain components e p as well as the atomic co-
ordinates q;. A simi1ar procedure has been used by Born'
in an analysis of the statistical mechanics of crystal

' Max Born, Proc. Cambridge Phil. Soc. 36, 160 {1940).

(
e t;,0)t~r expI & ~ pe p IdA, (7)

kT~p )

where terms of order higher than the first have been
ignored. It will be shown later that the 6rst-order con-
tribution of the strain to the jump frequency depends
on the difference of the average value of C p evaluated
near the normal configuration and near the acti-
vated. configuration, and on similar diGerences
in the averages of C p„, etc. It is extremely difIicult
to give an u priori estimate of the relative magnitudes
of these di6erences. At any rate, for small enough
strains the 6rst-order terms predominate and the higher
order terms can be neglected. It will be seen later that
the form of experimental results is adequately de-

scribed by considering only the 6rst-order terms in the
strains. For zero strain, Eq. (7) gives the jump fre-

quency as

(kT )& t

I =I I
.— ' "& e- ' dX (8)

&2~m)
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r( -e) = expl ——pc.e.., IkT-e , )I'p

Fp
1

expl ——P C.«., I
. (9)

kT~e j A

or, defining a parameter m p by.,=(c. ) -(c.)..

Now take the ratio of Eqs. (7) and (8). The result is Taking logarithms of Eq. (11) and utilizing the fact
that ln(1 —x) =—x for small x, gives

r(0.e) 1
=—(2 I:(C-e)A—(C-e).je-e), (14)

kT ~,v

J~e «q "'" do. (10)

expl ——& c-ee-e IkT, e )
1

t e «q/')/" expl ——p C pE p IdA
kT ~e,

~e &"~""dA. (11a)
A

For small strains and high temperatures, the conditions
under which the experimental effects of strain on dif-
fusion are usually determined, the exponents in Eq. (9)
can be expanded into a series, and only the first two
terms need be retained. Thus, Eq. (9) can be written as

r(. ,)=
I

1——2 (C-e).e-e IkT, eI'p

1—p (C-/)Ae-e I, (11b)kT, e )
where (C e), and (C e)A are given by

The angular brackets indicate that a statistical average
has been taken of the quantity within the brackets, and
the subscripts 0- and A indicate that the averages are
taken over the regions of configuration space a and A,
respectively. The explicit expressions for these averages
are

( ( 1
expl ——p c-ee-e I

kT ~e,
1

~ e «q~0—)/~Tezpl 2 C ee e Ido.
I, kT-.e

Equation (14) can be written as

)1
r(e.p) =r0 expl —Q m.pe. e I.

)kT

Since Fp can always be w'ritten as'

p4~—b, E+/kT
)

(16)

(17)

&xx &yy Ezz —6)

(all other strains=0)
(2) Simple shear, in which

&my= &ye= &s) (19)

(all other strains=0)
(3) Simple elastic tension or compression in the x

direction, in which

Czz= 6L)

6&y= 6zz= IJGL)

where p, is Poisson's ratio. For these three cases, Eq.
(16) gives the following results: For uniform compres-
sion or expansion,

where AE* is the energy of activation for the atomic
jump and v* is an effective frequency, it is evident from
Eq. (16) that the strain affects the jump frequency by
an effective change in the energy of activation.

Equation (16) shows that the jump frequency has a
simple exponential dependence on the strains and that
this dependence is controlled by the derivatives of the
potential energy with respect to the strains evaluated
at the saddle point of the activated state.

Equation (16) gives the general relation between the
jurnp frequency and the strain that will be used in this
paper.

To illustrate the application of Eq. (16), three special
cases will be considered:

(1) Uniform compression or expansion, in which

(C e) l I

—( ', o)/

(Be~el q/, 0

where

and

0) = roe(qm

m=(c)A-(C)„

(21)

(22)

(C e)A=
~ l I

e &""/" dA
A 480&e) q&, 0

e
—

q (q/, 0)/kTdo
) (1 ) (c),= '

I

—
I

e & )/" d I e & '0)/" do., (23)J. (g )„,o
(c) — I

I I
e q(q ,0)/kTdA— '

~ 80 ) q&', 0

e «' 0)/"TdA. (13) e «q ')/"dA. (24)-
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I'or simple shear,

where
P(~ ) I egvvvlkr)vv

m, =(C,)g —(C,)., (26)

vacancy and Po is the energy of the perfect crystal.
Performing the integrations over the mornenta p, con-
verts Eq. (32) into

(C,)z and (C,), are given by statistical averages similar
to Eqs. (23) and (24), i.e.,

5') =(I,—I ), (27)
~ """""II de II (v.) i, (33)

where p„(q) and yo(q) are the potential energies in a
crystal containing a vacancy and in a perfect crystal,
respectively, each taken as a function of all the co-
ordinates; (v„)& is the frequency of the kth vibrational
mode in the crystal containing a vacancy; and (vo) z is
the frequency of the kth normal mode in a perfect
crystal. In a strained crystal, the p and the v must be
written as functions of strain, so that (33) becomes

(C,),=

P (gg) =

Pop�

(vvvl I &~) (i—2v)

mi ——(Ci)g —(C().,
where

(29)
ii„(e.p)or

For simple elastic tension or compression in the x
direction,

(30) I'-pt:-..«;, .s)/~nIIdq; II (").
7 I

III. DEPENDENCE OF VACANCY CONCENTRATION
ON STRAIN

The e appearing in Eq. (1) has a different significance
for different mechanisms of diffusion. Broadly speaking,
e is the probability that a diGusing particle has a site
available to jump into. For dilute interstitial diffusion
this probability is nearly unity whether or not the
system is strained. For diffusion by a vacancy mecha-
nism, however, e is the atomic fraction of vacancies in
the crystal, given by

m=n. /iVr,

expL ~o(q, ~-s)/&T jII dq II (v, ')'
J 7

(34)

An estimate of the effect of strain on the frequency
ratios can be made from Gruneisen's relation"

d lnv/d ln V= —y, (35)

where V is the volume and y is a positive constant.
Integrating Eq. (35) for each vibrational mode as the
crystal goes from the strained to the unstrained state

where m, is the vacancy concentration, and Xz is the
total number of lattice sites per cubic centimeter. It
is therefore necessary to investigate the variation of e,
with strain.

The atomic fraction of vacancies in a crystal at equi-
librium is given by (see Appendix)

(vo')g ( 8V)
=I 1+—I,

(vo)i ( V )
(v. ') i, ( 8 U)

=I 1+—
I

(v)g & V)

(36)

(3&)

e 4( i, aiv)lvi' &IIvdp.—dq.

v to(vi ei)Q& II dp dq. —(32).

where bV is the volume change arising from the strain.
Griineisen's relation, therefore, leads to an equality of
frequency ratios in. the strained and unstrained systems:

II (»')~/II (v. ')i =II (vo)i/II (v )i (3g)

where f„ is the energy of the crystal containing a Therefore, the ratio of Eqs. (34) and (33) is

exp[—y„(q;,e )/kT]II dq;
7

"John Clarke Slater, Introdlctionto Chemical Physics (McGraw-Hill Book Company, Inc. , New York, 1939), p. 238.

(»)
7
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where

e„(p.p) ( 1
=expl —2 u.vp. u I,u„(kT -,s

(Bp p 'l (Bp. )
I I

~

LBE pi ~', 0 L8 pi ',0)

(40)

For the special case of uniform compression or ex-
pansion, Eqs. (40) and (41) become

r4(p)
e, (8w/kT) e

) (42)

Thepotential-energyfunctions y. (q;, p s) and q p(q, p ~)
can be expanded as Taylor series in the strain just as
in the development beginning with Eq. (4) and leading
to Eq. (16).The result is

where y is the total potential energy of the crystal as
a function of all the coordinates q, , and the subscript
zero means that the derivative is evaluated at zero
strain. If the q; are taken to be the normal coordinates,
p can be written to the second order as

Bq Bq (0) dip;
+Z pii

86 86 ~ 46
(46)

and, since at zero strain the first term on the right is
zero,

v = ~(0)+ p Z~ ~Pqi')

where y(0) is the potential energy when all the atoms
are at their mean positions, and the ~, are the normal
mode frequencies. Differentiating Eq. (45) with respect
to strain gives

(43) (By) dpi;

&Bp&p .
dp

(47)

where e is the volume strain.

IV. PROOF THAT THE STATISTICAL AVERAGES
((Bqr/Be)pi, o) DO NOT VANISH

The preceding theory depends on the statistical aver-
ages of the derivatives of the potential energy of the
crystal with respect to strain. It has been assumed that
these averages are not zero, and that a first-order ex-
pansion in the strains is therefore adequate for small
strains. This assumption can be justified by expanding
the crystal energy in normal coordinates. The sta-
tistical averages of interest all have the form

(B ) t' p fB 't

E. Bp) p ~ ~ (Bp) p z

For the purposes of this discussion, e will be taken to
be the strain corresponding to uniform compression or
expansion, so that for small strains the volume is given
by

V= Vp(1+3 p),

Vo being the volume at zero strain. Introducing the
Gruneisen parameter y; by the relation

d lncp;/d ln V= —y, , (49)

KBC) p

(50)

where the y; are a set of positive constants, and using
Eq. (48), Eq. (47) becomes

g dq, , (44)
Substituting Eqs. (45) and (50) into Eq. (44) gives

( (B~& ~ p(
(Bp)p ~ & &i E 2kT i' Pj

( Z ~PViP
I II ~Vi. (51)

2kTi '')
Novp perform a coordinate transformation according to and performing the integrations gives
the following de6nition:

N, =—Cv, g;. (52)

Then, after a few simple algebraic manipulations, Eq.
= —3k'

(By)

(Bp) p i
(54)

(51) becomes

(
(By) t" ( ui' y= —3 P y; u,.'exp( — )du;
(Bp) p i ~ ~ E 2kT)

exp( u'/2kT)d—u, (53)

Equation (54) shows that the averages of the first
derivatives are never zero and that these averages are
proportional to the temperature.

It is extremely difFicult to make any e priori decisions
concerning the signs of m p and M p dehned by Eqs.
(15) and (41). Such a decision requires a detailed in-
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vestigation of the variation of localized normal mode
vibrations with strain in the vicinity of a defect. How-
ever, on the basis of general physical considerations, it
is to be expected that both m p and m p are positive.

pM
D(s) =D„(1+e)'exp~ —3e ~,

&kT )' (55)

where D„ is the diffusion coefficient in the unstrained
system, and M is given by

M= m+w (vacancy mechanism), (56)

M=m (interstitial, ring or
exchange mechanism). (57)

In terms of the volume strain, e= ts(DV/Vp) for small
strains, where hV is the initial volume, so that Eq. (55)
takes the form

~d, Vq p AVE ' -M (hV~—
I =D-I 1+ I exp —

] I (58)
E Vp) 4 Vp) kT E Vp)

Therefore, it is evident that a plot of ln[D(AV/Vp)
X (1+3V/Vp) 'j against A V/Vp should be linear with
a slope a given by

a= M/kT, (59)

and an intercept given by lnD„.
Several investigators have obtained data on the

variation of the diffusion coefficients with pressure that
is suitable for testing Eq. (58). Reference 2 presents
data for the self-di6usion coefficient as a function of
pressure for sodium, phosphorous, and mercury up to
pressures of 12000, 4000, and 8000 atmospheres, re-
spectively. The self-diGusion coefficient of liquid gallium
up to pressures of 10000 atmospheres is given in
reference 3. The self-diffusion coefficient for single-
crystal zinc up to pressures of 10 000 atmospheres for
diffusion in the directions parallel to and perpendicular
to the c axis is given in reference 1. The self-diGusion
coefficient of lead up to pressures of 8000 atmospheres
at two temperatures is given in reference 5.

The electrical conductivities of silver chloride and
silver bromide have been measured as a function of
pressure up to 300 atmospheres. 4 Since in these silver
halides it has been shown that the conductivity de-
pends almost entirely on the mobility of the silver ion,
the conductivity is proportional to the diffusion co-
efficient of the silver ion by the Nernst-Einstein rela-

V. EFFECT OF PRESSURE ON DIFFUSION
CONSTANT

Using Eqs. (1), (21), and (42), and the fact that the
lattice parameter in the strained system is (1+e) times
the lattice parameter in the unstrained system, the
relation between the diGusion coeKcients in the strained
and unstrained systems for uniform compression or
expansion is

tion, and the data of reference 4 are suitable for testing
Eq. (58).

Plots of the variation of the quantity of log LD (6,V/ Vp)

X(1+6V/Vp) 'j against hV/Vp for the self-diffusion
of sodium, phosphorous, Inercury, gallium, and lead
are shown in Fig. 1. The quantities logLD(AV/Vp)
X(1+AV/Vp) &j for single-crystal zinc were plotted
against the fractional change in lattice parameter hX/X,
since this is a more natural unit for discussing di6usion
in anisotropic crystals and the linear compressions
perpendicular and parallel to the c-axis are available.
The zinc data are plotted in Fig. 2.

Figure 3 gives log(1/R) plotted against hV/Vp for
silver chloride and silver bromide, where R is the re-
sistivity. The volume change d, V/Vp is small enough
for the pressure range considered so that (1+AV/Vp) *

does not appreciably aGect the results and can be
ignored.

Compressibility data" " were used to obtain the
appropriate value of AV/Vp for zinc, sodium, mercury,
lead, silver chloride, and silver bromide. For gallium,
hV/Vp was computed from the data of Richards and
Boyer" assuming that the form of A V/Vp as a function
of pressure is the same as that for mercury. The values
of hV/Vp for white phosphorus were computed from
data in reference 16 assuming that the variation of the
fractional volume change with pressure has the same
form as that observed" for black and red phosphorus.

In all cases, the available compressibility data were
extrapolated to the diffusion temperature.

The linearity of the plots presented in Figs. 1 to 3
shows that the form of Eq. (58) is valid for those sys-
tems investigated within the probable inaccuracies of
the experiments and the calculations.

The slopes of the plots are given in Table I, where
a= M/kT and aT are shown for the various materials.

The fact that aT is so much smaller for the liquid
metals than for any of the solids including sodium is
indicative of the difference in the mechanism of dif-
fusion in liquids and solids. In a liquid, the atoms are
not constrained to remain at lattice positions, so that
diffusion occurs by a cooperative process involving the
migrating atom and its nearest neighbors. Thus, the
change in the interatomic forces can be kept to a mini-
mum throughout the diGusion process, and consequently
aT would be very low.

From Eqs. (54) and (59) it is seen that a should be
temperature independent. For the self-diGusion of lead
for which pressure data are available at two tempera-
tures, the value of a is reasonably constant.

"P.W. Bridgman, Proc. Am. Acad. Arts Sci. 60, 305 (1925).
'2 P. W. Bridgman, Proc. Am. Acad. Arts Sci. 76, 71 (1948)."P.W. Bridgman, Proc. Am. Acad. Arts Sci. 47, 347 (1911)."P.%.Bridgman, Proc. Am. Acad. Arts. Sci. 58—59, 166 (1924)."P.W. Bridgman, Proc. Am. Acad. Arts. , Sci. 74, 21 (1940)."P.W. Bridgman, Proc. Am. Acad. Arts. Sci. 62, 207 (1927).
"Theodore W. Richards and Sylvester Hoyer, J. Am. Chem.

Soc. 43, 274 (1921).
'P T. W. Richards, J. Am. Chem. Soc. 37, 1643 (1915).
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Activation Volume

The activation volume is ordinarily calculated from
the relation

-~(AG)- ~Dn(D/~~"*) jav~= = —kT
BP T BP

(60)

FIG. 3. Variation of log(1/R) plotted against volume change
AV/Vo for mobility of silver at 573 K. (a} Silver chloride. {b) Sil-
ver bromide,
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TAar.z I. Comparison of values of eT for various solids.

Solid

Sodium
Zinc (J }
Zinc (f[}
Mercury (liquid}
Gallium (liquid}
Silver in silver chloride
Silver in silver bromide
Lead
Lead

Temperature,
T

( K)

363
580
580
303
303
573
573
526
574

27.9
86.6
34.7
6.5
6.5

91.9
128.0
139.9
121.5

10 130
50 230
20 130

1970
1970

52 660
73 340
73 590
69 740

where I' is the pressure and DG refers to the Gibbs
free-energy changes for vacancy formation and for the
formation of the activated state configuration. This
free-energy change is calculated from the measured
diffusion coefFicient as a function of pressure. It follows
from Eq. (58) that (60) may be written

(M/k T)r)(D V//V s)
~V~= —Ir

ap

atomic properties of the system. The theory makes the
following statements:

1. For diffusion as a function of hydrostatic pressure,
the diffusion coefFicient is an exponential function of the
volume strain.

2. The rate of change of the diffusion coefficient with
strain is related to the interatomic forces. The relation
is explicit enough that the variation of the diffusion
coefficient with pressure can be interpreted in terms of
the interatomic potential-energy functions of the
material.

3. For diffusion under hydrostatic pressure, the
activation volume can be calculated from the com-
pressibility and the rate of change of the diGusion
coefFicient with volume strain.

In every case for which data are available, these
conclusions are in agreement with experiment.

The general framework of the theory provides a
basis for understanding the effect of strain on di6usion
in terms of the atomic properties of the system and
should provide a valuable tool for comparing diffusion
rates for diferent states of strain, as well as for in-
vestigating the mechanism of diGusion.

Since
c}(dV/Vs)

(61)

Table II presents values of the activation volume
calculated from Eq. (62) at atmospheric pressure for
those systems for which data are available.

CONCLUSIONS

where P is the compressibility, the activation volume
defined by (61) can be calculated from the simple
formula

(62)

APPENDIX

The Vacancy Concentration Formula

Consider a canonical ensemble containing X member
systems, each system being a crystal containing E
atoms and l vacancies. Let E,' be the y'th energy level
of a system containing l vacancies and let 0,' be the
corresponding degeneracy. Then the number of systems
containing / vacancies is

P 0 exp( —E'/kT)

(A1)

where Z is the total partition function for the ensemble.
The number of vacancies in the ensemble is

A statistical mechanical theory was developed that
relates the diGusion coefFicient to strain in terms of the

TAsr.z II. Activation volumes for self-diffusion of various solids
at 1 atmosphere calculated from Eq. (62).

E„=P t'ai,

and the number of atoms in the ensemble is

(A2)

(A3)

Solid

Sodium
Phosphorous (white)
Zinc (Z}
Zinc ([[)
Mercury (liquid}
Gallium (liquid)
Silver in silver chloride
Silver in silver bromide
Lead
Lead

Temperature,
T

('K}

363
314
580
580
303
303
573
573
526
574

Activation
volume,

ave
(cc/g-atom)

12.3
71.7
3.0
8.3
0.62
0.62

10.3
13,7
13.9
12.0

where Qi is defined by

Qi=g 0' exp( —E /kT). (A5)

Qi is the partition function of a system containing l
vacancies.

The atomic fraction of vacancies is given by n„=E„/
(X,+1V.). Since X„«1V., e. is given by the ratio of
Eqs. (A2) to (A3) to an excellent approximation, and
therefore

(A4)
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Carrying out the division in (A4) and retairiing only
the leading term give

ss = (1/&)Qt/Qo (A6)

1—= (X+1) e &'"rg dp;dq,
Qs J J j

which is an excellent approximation, since the energy
of formation of a vacancy is of the order of 1 ev, and
therefore the higher terms in the series are very small.

Qs is the partition function of a perfect crystal and Qt
is the partition function of a crystal containing a
vacancy.

In the semiclassical approximation,

a vacancy and tps f——s(p, q) is the energy of a perfect
crystal. The integrations are carried out over all values
of the momenta and coordinates p; and q;. The factor
(1V+1) arises from the fact that N indistinguishable
atoms can be placed in (&V+1) numbered lattice sites
in (X+1) ways so that gr is proportional to (%+1).

Combining Eqs. (A6) and (Ai) gives

f
e &'&r "&&~s p 'dp, dq;, (AS)

where unity has been neglected relative to LV.

~ ~ e &o~'r g dp, dq, , (Ai)

where p„=lp„(p,q) is the energy of a crystal containing
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Surface Mobility of Copper Ions on Cuprous Oxide*
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This paper reports on the motion of Cu+ ion vacancies on the surface of cuprous oxide at room temperature
under the application of an electric field. The measurement of the mobility of the Cu+ vacancies was made
by means of a "time of fiight" procedure. The formation of luminescent centers is the unique property of Cu+
vacancies that makes them directly observable. The mobility of the Cu+ vacancies at room temperature
is about 10 " cms/volt-sec. The variation of the mobility with temperatures between 28'C to 55'C is
observed. From these data the constants of the diiiusion equation D=Do exp(&H/RT) are computed.
DO=SX10 ' cm' sec, DII=8&00 calories. The low values obtained for these constants shows that the ionic
current follows low-resistance paths formed by the crystal grain boundaries or along the surface of the
crystal.

INTRODUCTION

HIS paper is a continuation of previously reported
work' in which the current creep of cuprous oxide

rectifiers at room temperature is explained by slow
changes in the distribution of Cu+ ions. It was reasoned
that these ions could move because Cu20 has ionic
vacancies. As it is to be expected, the ionic vacancies
give rise to acceptor centers. The acceptor centers allow
radiative electron transitions from the conduction band
into them, causing emission in the near infrared
region. ' ' The vacancies can therefore be thought of as
"luminescent centers" carrying a negative charge.

*This paper represents a part of the thesis for the Master of
Science degree in the field of Electrical Engineering by I.
I.iber man.

' R. Frerichs and R. Handy, Phys. Rev. 113, 1191 (1959).' J. Bloem, Philips Research Repts. 13, 167 (1958).
3 G. F. Garlick, Handbuch der Physik {Springer-Verlag, Berlin,

1956), Vol. 19, p. 377.

A second reason for assuming ionic motion in Cu20
at room temperature is based on certain transient

properties of the electroluminescence. Frerichs and
Handy' used a sandwich consisting of a Cu20 covered

plate clamped against a transparent NESA electrode.

They observed that placing a dc voltage to this sandwich

before an ac voltage is applied causes a transient

behavior in the radiation produced by the ac voltage.

Transient times on the order of seconds led to the

conclusion that the enhancement must be an ionic

eGect. Thus Cu&O has the unique property of having

some ionic motion at room temperature which can be

studied by observing its electroluminescence. This

property is utilized in this paper to determine the

mobility of Cu+ ions on Cu20 surfaces.


