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Effect of Electron Exchange on the Dispersion Relation of Plasmons
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A calculation of the inhuence of electron exchange on the dispersion relation of a high-density electron gas
at O'K is described. The result is compared with those obtained by various authors using different methods.

HE inQuence of electron exchange on the disper-
sion relation of collective oscillations of a high-

density electron gas has been considered by a variety of
authors. ' They all concluded that exchange contributes
a term E' (E is the wave vector of a plasmon). The
magnitude of this term, however, varies considerably
with author. Recently, Kanazawa, Misawa, and Fujita2
calculated the exchange correction again using a Green's
function approach and found the correction to be in
agreement with the one obtained by Silin as well as by
Nozieres and Pines. ' We wish to report here a calcula-
tion of the same effect using the transport theory re-
cently developed by one of us. ' The exchange contribu-
tion we obtained is again the same as the one given by
Kanazawa et al. and by Xozieres and Pines. In what
follows we will sketch the derivation.

Starting with the Fourier transform cr(K,k, cp) of the
perturbed electron distribution function, the pertinent
equation of motion is given by'
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Here k is the wave vector of the electron and Fp is the
Fermi-Dirac distribution. The last term on the right-
hand side of Eq. (1) is due to exchange. The factor sr in
front of it arises from the following consideration. In the
derivation leading to Eq. (1), it was shown' that par-
ticles with a symmetric (antisymmetric) wave function
in configuration space are described by an equation in
which the exchange term appears with a plus (minus)
sign. For electrons, the two-particle wave function in-
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eluding spin must be antisymmetric. But this means
that the configuration part of the wave function is
antisymmetric in 4s of all cases (triplet) and symmetric
in rs of all cases (singlet), so that the average in spin
sPace leads to a factor ss( —1)+s= —-,'for the exchange
term in Eq. (1). Since the exchange contribution we
wish to calculate is known to be small, ' we are applying
a simple perturbation scheme to Eq. (1).

Let
cr=cro+crr,

cp =cpo+cdr,

where el«o, p and cv]«(op. We then have, with the
abbrev'iations

h
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&Fo=Fo(k+ K)—Fo(k),

the following set of equations:
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Equation (6) leads immediately to the well-known
dispersion relation:
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Observing Eqs. (6), (7), and (8) the exchange correction
co& is then determined by
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The integral in Eq. (11) is easily evaluated at O'K
temperature and the result is:

which may be written, with the help of Eq. (6):
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In the long-wavelength limit, an expansion of the
terms in Eq. (10) in powers of E is allowed. Keeping
only the lowest order terms, Eq. (10) goes over into

where kp is the Fermi momentum. But since coo is given

by the unperturbed plasma frequency co„plus small
correction terms of order E', etc., we see finally that
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XK VsFp(k)K Vs Fp(k'). (11) identical with the result of Kanazawa ef al
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Certain general properties of single-particle propagators for a system of interacting fermions are derived.
In addition, the properties of the proper self-energy part Gs(f') which were used in previous work on the
ground-state energy and on the Fermi surface are established. In particular, the fact that to all orders of
perturbation theory in the interaction, Im G&(x s0+) b—ehaves like Cz(x—)i)s (Cs)0) for s very near )i, is

proved.

1. GENERAL DISCUSSION OF THE PROPAGATOR

' 'N some recent work' on the theory of a system of
~ ~ interacting fermions, certain analytical properties
of the so-called "single-particle propagator" were made

use of. No proof of those properties was given at that
time. It is the purpose of this brief note to establish
these properties. For simplicity we shall restrict our-

selves to the case of spinless fermions interacting among
themselves, but not moving in an external potential.
The resulting simplification is mainly notational, and
there is no difhculty in extending our results to the more

complicated cases.
The single-particle propagator as used in LW was

defined as the sum (with appropriate coe%cients) of all

connected diagrams having a single line entering and

leaving. For the purposes of general discussion it is
often convenient to have an explicit closed expression
for it. As is well known in field theory, such an ex-

pression is given as follows. ' Consider the quantity

Ss'(u, u') =—(T(ast(u)as(u'))). (1)
*This work was supported in part by the OfEce of Naval

Research.' J. M. Luttinger and J. G. Ward, Phys. Rev. 118, 1417 (1960).
(We shall refer to this paper as LW.) J.M. Luttinger, Phys. Rev.
119, 1153 (1960). We shall follow the notation of these papers as
far as is practiced.

'The representation we shall use here is essentially the same
as that of A. A. Abrikosov, L. P. Gorkov, and I.E.Dsyaloshinskii,
Soviet Phys. -JETP 36 (9), 636 (1959),except for minor di(ferences
of notation and de6nition.

(A)
—=Tr (ee(n—~—&")A), P = 1/kT. (3)

The operation T is the usual Wick chronological
operator meaning

Tt apt(u)as(u'))=ast(u)as(u') u)u'
= —as(u')apt(u), u(u'.

Equation (1) provides an expression for the propa-
gators in the "temperature" variables m, N', which are
constrained to vary between zero and p. From (1)
we see that Ss'(u, u') is a function of u —u'—=v only:
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Using (5), we see at once that the quantity

S &(v)e
—(in /etc)e

is a periodic function of v of period p in the interval

In (1) the quantity a& is the destruction operator for
a particle of momentum k,

as(u') = e"'~ay, e "'~, an't(u) = e'~a), te "~; (2)

II is the total Hamiltonian of the system and the
angular bracket represents the average of the enclosed
quantity with respect to the grand canonical distri-
bution


