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I(A =- —([a['—[m[') sin(e —ez)

+2 Re[ic(a* —m*)7 cos(e—ez)
+4 Regh* sinez,

IsI|."=([a['—[m[') sin(e —ez)
—2 Re[ic(a*—me) j cos(e—ez)

+4 Reghs sinez,
I,A'= ([a['—[m[') cos(e—ez)

+2 Refic(a* m*—)]sin(e —ez)
+4 Reghe cosez, .

As in the nonrelativistic case there is a relation

the denominator of the expression for n should be 2E(2J+1).
a~~ is independent of L,.

among the triple scattering parameters, which becomes

(A+R')/(A' R—) = tanez, .

The equality between Czl " at 0 and Czz '
(7r —e) also holds for identical particles.
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Determination of Pion-Pion Scattering Amplitudes Satisfying
Dispersion Relations and Unitarity
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A method is developed for determining the partial-wave scattering amplitude in terms of the unitarity
condition and the known branch cuts and poles of the inverse amplitude. The method is applied to the
problem of pion-pion scattering and an implicit solution to the pion-pion partial-wave amplitude is derived
for any angular momentum state and for both elastic and inelastic scattering. With the aid of this solution
the low-energy resonance behavior of the pion-pion scattering system is studied by neglecting all inelastic
processes and concentrating on 5 and P waves. It is found that a I'-wave resonance with a position and width
required by nucleon electromagnetic structure can be determined in terms of two parameters. An iteration
procedure is described that is applicable when the I' wave dominates the equations and this procedure
determines the contribution of the unphysical cut. The first iteration of the unphysical cut is numerically
integrated on the IBM 709, and the results show that the shift of the resonance position due to the unphysical
branch cut can be neglected.

1. INTRODUCTION

' 'T has been conjectured by Mandelstam' ' that two-
' particle scattering amplitudes can be expressed in

terms of a double spectral representation. The scatter-
ing amplitudes can be analytically continued into the
complex plane as a function of the energy and momen-
tum transfer variables and this leads to dispersion
relations for the partial-wave amplitudes which satisfy
the unitarity condition in a particularly simple form.
It would seem that in principle this representation
provides a complete dynamical description of scattering
systems.

It has become evident that a more reliable description
of pion-pion interaction is required if we are to under-
stand the phenomena of strong interactions and the
electromagnetic structure of the nucleon. '4 Chew and
Mandelstam have used the double representation to
formulate an approximation method for low-energy

' S. Mandelstam, Phys. Rev. 112, 1344 (1958).' S. Mandelstam, Phys. Rev. 115, 1752 (1959).
s G. F. Chew, Phys. Rev. Letters 4, 142 (1960).
4 W. R. Frazer and I.R. Fulco, Phys. Rev. Letters 2, 365 (1959).

elementary particle scattering. By using the unitarity
condition and the "effective-range" approximation,
Chew and Mandelstam obtain a system of coupled
nonlinear integral equations from the partial-wave
dispersion relations for pion-pion scattering. ' ' In the
special case of dominant 5-wave scattering and also in
the case of dominant P-wave scattering, it has been
shown that classes of solutions exist for the nonlinear
integral equations. For P-wave dominant solutions a
cutoff is required due to the singular nature of the
Chew-Mandelstam equations, and the unphysical cuts
are replaced by a corresponding series of poles. '

In the following a general method is developed which

determines the partial-wave amplitude for a scattering
problem in terms of the known branch cuts and the

unitarity condition. ' The method is applied to the

' G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960).
6 G. F. Chew, S. Mandelstam, and H. P. Noyes, Phys. Rev.

119,478 (1960).
'G. F. Chew, ANNNul Resiero of Azlclear Sciegce (Annual

Reviews, Inc. , Palo Alto, California, 1959), Vol. 9, p. 29.
8 G. F. Chew and S. Mandelstam, University of California

Radiation Laboratory Report VCRL-9126, 1960 (unpublished).
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problem of pion-pion scattering as this is the simplest
process which lends itself to a partial-wave analysis.
%e begin in Sec. 2 with a brief survey of the basic
features of the Chew-Mandelstam analysis of the
pion-pion problem. An important result in their analysis
is a simple formulation of the unitarity condition in
terms of the partial-wave amplitudes. In Sec. 3, the
procedure is developed for determining the partial-wave
amplitude. %e use the partial-wave dispersion relations
with subtractions, since these probably represent the
physical situation.

The resonance behavior of the pion-pion scattering
system is studied in Sec. 4. A derivation of the P-wave
phase shift shows that a pion-pion resonance can
develop in the P state in terms of two parameters. By
neglecting the discontinuity of the inverse amplitude
across the left-hand cut, we obtain the one-pole approxi-
mation to the P-wave amplitude used by Frazer and
Fulco to study the pion form factor and nucleon
structure. 4 "

In Sec. 5, an iteration method is developed in order
to study the eGect of the unphysical branch-cut on the
resonance behavior of the P-wave amplitude. Finally,
in Sec. 6, the results of a calculation carried out on the
IBM-709 computer are described. These results
determine to a first iteration the resonance shift
produced by the left-hand branch cut. It is shown that
for a resonance position and width required by the
electromagnetic structure of the nucleon this shift of
the resonance is small.

s+I+ t= 4tI,' (2)
A different approach to this problem has been developed by

considering dispersion relations for the inverse amplitude (G.
Feldman, P. T. Matthews, and A. Salam, Nuovo cimento 16,
549 (1960);J. Moffat, Nuclear Phys. 18, 75 (1960)g.

"W. R. I'razer and J. R. Fulco, Phys. Rev. 117, 1609 (1960).

2. PARTIAL-WAVE ANALYSIS OF PION-
PION SCATTERING

In the problem of pion-pion scattering there are no
spins and all three channels of Fig. 1 correspond to
pion scattering. A charge degree of freedom is associated
with each pion and this charge degree of freedom is
described by an appropriate index with values 1, 2, 3.
The ingoing four-momenta and isotopic spin indices
are (pr, cr) and (ps,p) and the outgoing are (—ps, y)
and (—p4, 8). The variables used in Mandelstatn's
double dispersion relations are defined by'

s= (pr+ ps)'= (ps+ p4)'= 4(q'+t"),
t= (Pr+P4)'= (Ps+Ps)s= —2q'(1+cos9),

t = (p +p )'= (p +p )'= —2q'(1 —cos8),

where q is the magnitude of the pion momentum in the
barycentric system and 0 is the barycentric scattering
angle. There is the auxiliary condition on the three
variables s, t, and t:

///
/

r -Pg

PI
/

Pg

FIG. 1. Pion-pion elastic scattering,
~+~ ~m+x.

Thus only two of the three variables are counted as
independent.

(3)
A'= 8+C.

The partial-wave expansion of the pion amplitude
AI as a function of q' and cose is given by

A'(q', cose) = P (2l+1)A &'(q') P, (cost)). (4)
l even, I =0,2
l odd, I =1

In virtue of crossing symmetry only even powers of
coso occur for I=0, 2 and only odd powers of cose for
I=1. In order to take into account the unitarity
condition and establish a connection between the
amplitudes A ~ and the phase shifts b~, Chew and
Mandelstam write

(q'+~')'
A )'(q') = exp(sag') sinb f

where the phase shifts are real for s(16'' (q'&3p, ')
and complex at higher energies above the onset of two-
pion production. A general expression for the unitarity
condition at all energies is given by

Im A P (q') = Eg'
~

A )'(q')
)
',

g

(q'+t ")''
(6)

where EE' is the ratio of the total to the elastic partial-
wa, ye gloss seqtign,

In view of charge independence there are only three
invariants in the pion-pion problem corresponding to
the three possible values of isotopic spin I=O, 1, 2.
The three invariants A, 8, and C can be expressed in
terms of the scattering amplitude A for states of
well-defined isotopic spin:

A'= 3A+8+C,
A'=8 —C,
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It follows from (4) that
+1

A ~r(q') =-,' ~ d(cos8)Ar(q', cos8)Pi(cos8). (7)

By using (7) the dispersion relations for a given
partial-wave amplitude (i.e., a particular angular-
momentum state) can be derived by a projection of
the Mandelstam double dispersion relations. The
projection of a given partial-wave corresponds to an
integration for fixed s over either dt or dt. In the case of
pion-pion scattering, there occur no poles and for equal
masses all the branch points lie on the real axis. There
are three cuts corresponding to the three channels of
diagram 1, but in this problem the left-hand or "un-
physical" cut corresponds to a superposition of two
cuts. The right-hand or "physical" cut extends in q'
from 0 to ~, while the left-hand cut extends from
—p' to —ao. The partial-wave amplitude is discon-
tinuous across the cut, and the discontinuity is twice the
imaginary part of the limit as the cut is approached.
This imaginary part is positive definite on the physical
cut and is given by the nonlinear relation (6). The
physical amplitude is of course real in the interval
—@2&A~(0.

In the case of pure elastic scattering when q'&3p, ',
we have R~ ——1 and the unitarity condition takes on
the simple form

ImA i'(q') =
~
A ir (q')

~

'
(c'+~')'

The unitarity condition cannot be used to calculate the
imaginary part of the amplitude on the left-hand cut
for negative q'. But an application of the "crossing
symmetry" permits a calculation of the imaginary part
of the amplitude on the unphysical cut in terms of its
known value on the physical cut.

where a& is the subtraction constant. By writing v

in (13) as v+io and substituting (13) into (6), we get
the set of nonlinear integral equations for P&0:

ImA i'(v) =P,r (v) LImA, r(v) j

where

v —vo p
—' dv' ImAi'(v')

+ «'+
7l 4 —oo V V P Pp

p" dv' ImAir(v')
P „I

p V —V V —
Vp

Fir(v) = Lv/(v+1)7~Xi'. (15)

Let us denote the inverse scattering amplitude by

where 7.=-',p'. As there are no poles in the pion problem,
the coupling constant is not defined through the
residue of a pole but through a subtraction at a point
vp= —0-, where 0- is a positive number. We shall keep 0.

as an arbitrary constant for the time-being and deter-
mine it Iater. If the subtraction is carried out at the
symmetry point

2Pp= 3)

we can deduce from (3) that

Ao(vo 0)= —5X A'(vp 0)=0, Ao(vp, 0) = —2X. (12)

We obtain from (9) the subtracted dispersion relations

v —vp t
' dv' ImAi'(v')

A i'(v) =ai'+
~ „(v'—v)(v' —vp)

v —vo q" dv' ImAi (v')
(13)

+p V
—P P —

PO

3. COMBINATION OF UNITARITY AND
DISPERSION RELATIONS Gir(v) = 1/A ir(v). (16)

The result of the Chew-Mandelstam analysis of the
location of singularities in the pion-pion scattering
problem can be expressed by the partial-wave dispersion
relations':

In virtue of the unitarity condition (5) the scattering
amplitude behaves like a constant at infinity. We shall
assume that this constant is nonvanishing and therefore
G&r(v) tends to a constant at infinity. The function

1 p
'dv'ImAi'(v') 1 r

"dv'ImAi'(v')
Ai'(v) =— (9)

I lJ „ 7l ~p V V

Gi'(v)
4ir(v, s) =

(v —vp) (v —s)
(17)

where we have introduced the variable v=q'/p'. The
unitarity condition (5) ensures that the partial-wave
amplitude behaves asymptotically like a constant for
large v. It is probably necessary to carry out at least one
subtraction in the Mandelstam double representation. ' "

At the point of maximum symmetry s=f=t=~@'
the invariants A, 8, and C are all equal and real

A (r, r, r) =P(r, r, r) =C(r, r, r), (10)
"In the case of partial waves, one subtraction will be made in

each angular-momentum state l.

is single-valued within the contour F described by
Fig. 2. and it has poles at the two points s and vp. Partial-
wave amplitude of order / vanishes at the origin like

l+ Qv( l+1)v

and this behavior has to be accounted for in (17). In
addition to these singularities in C i (v, s), there may also
occur poles within the contour I at the complex zeros
of Air(v). Since Gir(v) shares the same branch points
and the same branch cuts as A ~r(v), the function C ir(v)
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has cuts in the intervals

—~ (Rev &~
—1, Imv=0,

0&&Rev( ~, Imv=0.

The contour of integration F consists of two small
circles p and c encircling, respectively, the origin and
the point —1, of tw'o semicircles of radius R, and two
contours connecting the semicircles along the edges of
the cuts and separated from these cuts by a distance b.
We shall assume that A i'(v) has no zero at v= —1, and
that by letting R tend to infinity we make the integrals
along the semicircles vanish. Then by an application of
the residue theorem in the limit as 6 ~0, p —&0, and
t," —+0, we obtain:

Irn p

Rev

C i'(v, s)dv
2' Z

(v —vp) (v —s)

1
I

—' dv[Gir(v+ib) Gi'(v i—b)]—
+ lim' 0 2~i~ P —

PO P —S

G'(s) G'(v )
g -(o)= +

n=o g f P() Pp —S

1 p" [Gi'(v+ib) —Gir (v —ib)]= lim dv

FIG. 2. The contour F used in the determination of the
pion-pion partial-wave amplitude.

where the third term arises from an evaluation of the
integral around the small circle p as p —& 0:

Eir (v) = lim [Gi' (v—ih) G—i'(v+—ib)],''2i
(v(—1). (24)

dv gi(v) i—i s"—'
gi'"'(o),

v S pt n=o g I

(8"gi(v) )
g i'"'(o) =!

av" )„o

(21) The quantity Eir(v) for v( —1 can be calculated in
terms of the absorptive amplitude on the physical
cut by an application of the crossing symmetry. ' %e
shall return to this problem in Sec. 5.

By substituting the relations (23) and (24) into (20),
we get

1 ) (n)

(22)
t (v —vo) (Gi+&i+iv+ ) ~ .=o

1 r" dvFi'(v) 1
I

' dvEt'(v)

or ~o (v—s)(v —vp) ~ J „(v—s)(v —vo)

The content of the unitarity condition (6) in the
physical region v) 0, can be expressed by

Fir�(v)

= lim ImGi'(v —i8)
8—+0

gi'"'(o) =
n=o ~I

Gi'(s) «'(vo)
+ (25)

S—Pp vp —8

1 We now write s=v+ie, where e is a small positive
= »m —[«'(v —i~) —«(v+i~)j, (v&0) (23) quantity. By using the identity

8—+0

where Fir(v) is defined by (15). The relation (23) is
an alternative way of writing the nonlinear integral
equations (14). The unitarity condition (6) is only
valid for v)0. In the unphysical region v( —l,

(26)=P +is.5(v' —v),
P PP P ZE

we we obtain the form of the scattering amplitude Air(v):

A i'(v) =-
'l4—+J.i'(v, vo)+X('(v, vo) —(v —vp) Q g('"'(0) —iTi'(v)

Q~ ~=0 gg t

(27)
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where phase shift 8~ in the physical region

Ti'(v)=Eg'Lv/(v+1)]& for y)0
=E(v) for v& —1,

v —v,
t

" dv' 1"('(v')
p

p P —P P —Pp

(ypl+1) 4 yl

cotb P = +v'Lh(v) h—(yp)]+ v'N i'(v, vo)
&v+1) ar

—1 P

Lt (y, yo)=— (29) —(y —yo) Z —ai" (o), (35)
n=p ~~

and where h(v) is given by (31).
The S-wave phase shift 8p is determined byv —vp I" dy'Ei'( v')—

Ng'(v, vp) = — I'
P P P Pp

(30)
v i* 1

I
cotbp'= +h(v) —h(vp)+Np'(v, vo), (36)

& v+1) ao'

2( v

h(v) =-I —
I »I (I yi)'+(I y+1I)']

ov (v+1) v )& 1 2
cot8pi = +h(v) ——v2 tan '(1/v2). (37)

(v+1) ap'
and, for —1(P(0,

If the D-wave and higher waves are small, then Ap'
= —5)I, and App= —2)j.. The result (37) for the S-wave
coincides with the corresponding one derived by Chew
and Mandelstam. '

The P-wave phase shift in the physical region will be
determined by

2( yi~ . (1+vi'
h(? =-I

pr &v+1) & —v ) (32)

It is easily checked that for P&0 the partial-wave
amplitude A P(v) in (27) satis6es the unitarity condition
(6). We also find that 8 ) g

I I
cote, =—+vL@(y)—h(y, )]

ImLA/(v)] '= —
I v/(v+1)]'*, (0&v&3) (33) i v+1) ai

+vNg(v, vp) —P, (v —vo). (38)

In the low-energy region 0(P(3, we have R&~——1 and
the integral (29) becomes L(v, vp) =h(v) —h(vp), where where in the case of g waves we choose vp ———p, and
for v) 0 or v& —1 the h(v) is determined by h(vp) = (2/or)&2 tan '(1/v2). In the approximation

where Epr(v) is neglected, we obtain

which in view of (5) agrees with our expectations.
If E(v) is known explicitly, then (27) provides us

with a solution of the partial-wave amplitude for all
angular-momentum states and for both elastic and
inelastic scattering. In order to obtain the general
solution to Ail(v), we must supplement (27) with the
residues associated with any complex poles of the in-
verse partial-wave amplitude. These residues would
generate additional parameters in the problem. "

Lv/(y+1)]l cot8 =Rei A ( )] '. (34)

4. RESONANCE BEHAVIOR OF PION-PION
SCATTERING AMP' ITUDE

It is now possible to study the resonance behavior
of the pion-pion scattering system by considering the
phase shifts obtained from the implicit solution (27).
In order to provide a theoretical description of the
low-energy behavior of the pion-pion phase shifts, we

shall restrict ourselves to the elastic scattering region
0(P(3 in which the phase shifts are real. In this
low-energy approximation there will not occur any
complex zeros in A P(v). In virtue of (5), we obtain

The I' state can develop a resonance of appropriate
width and position if we adopt suitable values for the
two parameters ai and ti.

In the physical region P&0, the E-wave amplitude
obtained from (27) can be written

-A, (v)

(39)

va —vL1 —h(v)r —Ni(v, vo)r] —ie(v)i vo/(v+1)]**7

where

r= y~/r=o/n.
QLh (vp) 1/ay] 1

(40)

'3The exact location of the resonance will be determined by

We have put b ———1/a and vp ———o, and v~ denotes
the approximate position of the resonance, " while F
is the width associated with this resonance. If we let
a~ approach infinity, and neglect the contribution of
Ni(v, vp), then a pole is generated in (1/v)Ai(v) at
Pp= —0., and we obtain the phenomenological one-pole

' L. Castillejo, R. H. Dalitz, and F. J. Dyson, Phys. Rev. 101)
453 (1956).

VE
&B

1—Lh (vg) +1V& (vg, vp) gI'
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approximation to the P-wave amplitude used by Frazer
and Fulco to study the isotopic-vector form factors
associated with the nucleon. ' "Frazer and Fulco obtain
the one-pole approximation to the P-wave amplitude
from the Chew-Mandelstam integral equations by
replacing the left-hand branch cut by a pole at the
point vp.

S. THE ITERATION METHOD

Ke shall now develop an iteration procedure in
order to estimate the influence of the unphysical region
on the behavior of the P-wave pion-pion resonance.

The absorptive amplitude in the unphysical region
is not known explicitly, but must be calculated by
means of the "crossing relations" and the absorptive
amplitude on the physical cut. Using the crossing
symmetry, Chew and Mandelstam have derived the
following absorptive amplitude in the unphysical region:

1 r" ' —
( v'+1)

ImAir(co)= —— dv' Pi] 1—2

The right-hand side of (43) is determined in terms of
the absorptive amplitude on the physical cut given by

ImA ir(v) = L(v+1)/v]l sin'bi'.

We are interested in P-wave dominant solutions
corresponding to a low-energy resonance in the P state.
In this case the third term in (43) will give the main
contribution to ImAi(io). Let us denote by I(o~) the
absorptive P-wave amplitude on the unphysical cut,
and by E(oi) the real part of the amplitude on the same
cut. Then E'i(oi) is given by

()
Ki(cv) =

E (co) '+I (oi) '

When E(v)=0 the P-wave absorptive amplitude on
the physical cut is

LV/(v+ 1)]'
ImAi(v) = (46)

Lh(v) —h(vp)+ (v —vp)/nv]'+ v/(v+1)

( oi —1i
X P nrr Anr'I v'& 1 2 I, ('41

I' M , l, o 0 v )
where we have chosen al equal to in6nity. In the
unphysical region it is convenient to introduce the
variable

where we have put —v=co&1, and A ' denotes the
complete absorptive amplitude on the right-hand cut.
The crossing matrix is given by

S= V s= GO

which will run from 0 to 1. When E(v) is equal to zero,
the real part of the P-wave amplitude in the unphysical

(42) region is given by
2/3 2 10/3'

nrr = 2/3 1 —5/3 .
.2/3 —1 1/3.

(4g)E(x)=
h(x) —h (—o )+ (1—o-x')/nBy resolving 2 ' into partial waves, and truncating

the expansion after the P wave, we get

1 ~" ' ( v'+1)
lmAir(a)= —— dv'Pi~ 1—2

GO ~p )

where, for v( —1,

1+(1—xo):
ln

2
h(x) =-

or (1—x')l
(49)

X ' nro ImAo (v')+nro ImAo (v )

( oi —1) and we have introduced the notation E(x)=E(—1/x').
+3

~
1 2

~
ImA i ( ) (43) When E(v) is zero, we obtain from (43) and (46) in the

v' case of a P-wave dominant solution

I(x)=3x'
Jp

(1/x' —1 ~ ( v'

dv'P1 —»'(v'+ 1)]I
2

~ l/x2 —1 v' i Ev'+1)

fh(v') h(vo)+ —(v' vp)/nv']—'+ v'/(v'+1)
(50)

6. CALCULATIONS AND RESULTSThis leads to the following expression, for Ki(x) to a
6rst iteration:

( ~
cot81= VLh(v) k(vo)] fi(v vp) ~ (52)

(v+1)If the procedure converges, then we can continue the
iteration by substituting Eio&(x) into I(x) and E(x)
and thus obtain XP&(x) to a second iteration.

By choosing vp= —652 and vg=1.5, we obtain the
approximate resonance value vg= 1.2 and the resonance

Let us put the parameter a& ——A i(vp) equal to infinity
and neglect the contribution of ¹(v,vp) in (38). This

Lli(x) —h (—o.)+(1—x'o)/n]oI(x) yields the P-wave phase shift
Ei&'& (x) = (51)

1+['h(x)—h( —o)+ (1—x'o)/n]'I'(x)
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width F=0.4."Kith these values of the constants vg
and vo the phase shift 8~ passes through 90' when
pi= —0.00457 or n= 218.

We are faced with the problem of estimating the
amount by which the resonance position is shifted when
the contribution of the left-hand cut is included in
(52). In order to estimate this shift, we must compute
the integral I(x) in (50), the function Ei'"(x) and,
finally, the integral

2Vi&" (1.5, —652)
2 r

' dx xEi&'&(x)
=—(1.5+652)—P (53)

(1+x'1.5) (1—x'652)

We have cut o6 the integrals at small values of x in
virtue of the limited range of the physical region in
which our equations remain valid. Both integrals are
convergent as x~0 (i.e. , as ~ ~ n ), and the cutoff
only represents our present lack of knowledge of high-

energy processes. Chew and Mandelstam' have es-
timated that on the right-hand cut the elastic approxi-
mation should be adequate for v~& 10, and the crossing
relation (41) indicates that an average v on the right
gives P=-,'(p~ —1). Therefore, we expect a failure of
our equations on the unphysical cut at ~ 20 corre-
sponding to x

The numerical integrations were carried out on the
Martin Company IBM 709. I(x) is zero at x=1 and
passes through one zero as x decreases in value. There-
after, I(x) tends as a smoothly varying function to a
positive constant. Our equations are valid within
the range (7/32) (x&1 a,nd integration yields for this
interval

Zi"'(1.5, —652) = —8.528X10 '. (54)

In the larger interval (1/16) &x&1, we obtain the value

Ei"&(1.5, —652) =5.167X10 '. (55)

From the result (54), we find that the resonance
position v~= 1.5 is shifted by an amount

hvar= —6.4X10 ' (56)

while the second result (55) yields the shift

»@=3.9X10 ' (57)

Inspection shows that the value of the integral in (53)
decreases steadily as x —& 0.

We have assumed that the inverse partial-wave
amplitude does not possess any complex zeros. One may
enquire about the possibility of such complex zeros
developing within the region in which our iteration
scheme is valid, Expressed as a function of complex v

in the cut-plane, the approximate I'-wave amplitude
can be written

. ' These are the values of v~, F, and vp used by Frazer and
Fulco in their study of nucleon structure. "These values of the
constants may be changed in order to obtain a better Gt to the
nucleon structure data, but a reasonable change of these constants
will not alter our conclusions regarding the inQuence of the
left-hand cut on the P-wave resonance. Since the position of the
pole depends almost exponentially on F, we find that increasing
I' to 0.5 gives vp~ —150.

]. CL

—Ai(p)= —— nv "dv'Lv'/(v'+ 1)$&

ap V P P Pp

nv t" dv' E( v')—
(58)

~ J i (v'+v)(v'+vp)
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where the parameter ai has been chosen equal to
infinity. For v= Res+i Imv, the imaginary part of
the denominator is given by

n Imv t
" dv'$v"/(v'+1))l

L(v' —Rem)'+Imv')(v' —vp)

d p' v'E( —v')+, , (59)
$(v'+Rev)'+Imv'$(v'+ vp)

and therefore vanishes only when Imv=0 (n/0) if
the expression within the brackets has a single sign.
It follows immediately that in the zeroth approxima-
tion when E(v)=0, iAi '(v) does not possess any
complex zeros. Inspection shows that in the 6rst
iteration the expression in brackets is positive definite
(vp= —652) for values of the cutoff well beyond the
limits of validity of the low-energy approximation.
Therefore, no complex zeros occur in the iteration of
PAi '(v) within the energy range determined by our
approximations.

7'. CONCLUSIONS

These results confirm that the unphysical cut has
little influence on the low-energy resonance behavior of
the pion-pion system. Since (53) is small to a first
iteration, it is reasonable to expect that the iteration
procedure converges, and that the higher iterated
contributions can be neglected. In view of these
results and the fact that we have chosen a~ equal to
infinity in our calculations, we can deduce that replacing
the unphysical branch cut by a pole leads to a good
approximation to the E-wave amplitude. This in turn
confirms that the pion form factor adopted by Frazer
and Fulco in their analysis of the nucleon electro-
magnetic structure' " is a physically acceptable
solution. However, we are not forced to set @i=—A i(vp)
equal to infinity in our calculations. We can instead
adjust the parameter a~ to the experimental resonance
data with the knowledge that the left-hand cut can be
neglected.

In a subsequent paper the problem of coupled S and
I' waves and dominant S waves in pion-pion scattering
will be treated by our iteration techniques.


