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A formula due to Stapp for the spin correlation coefficient C~p in nucleon-nucleon scattering is corrected.
Formulas for the other triple-scattering and unpolarized-incident-beam correlation parameters are included.
The formulas are applicable when the nonrelativistic scattering matrix formalism of Wolfenstein is used
to analyze triple-scattering experiments at higher energies where relativistic effects are not negligible.

The definition of the correlation coefFicients in the relativistic case is discussed.

A RELATIVISTIC theory of polarization phe-
nomena applicable to nucleon-nucleon scattering

has been given by Stapp. ' He has shown that the
nonrelativistic formalism due to Wolfenstein and
Ashkin' may be used providing that, in addition to
relativistic kinematics, certain "rotational corrections"
are taken into account in deducing the formulas for
observables. The corrections apply only to components
of polarization in the scattering plane; as examples
Stapp gave the formulas for R(8) and the spin correla-
tion parameter C~~. However, the latter formula does
not follow from his theory, and is not symmetrical
under exchange of identical particles. The correct
result is

IoCIc p"'"=4 Re(ich*) cos(n' —n)
—2 ReL(a —m) g*) sin(n'+n)

+2 ReL'(a+m) h*] sin(n' —n). (1)

The scattering matrix has been expressed in Stapp's
representation as

3II=a+c(o'+o') .n+m(o' no' n)

+ (g+ h) (o' Po' P)+ (g—h) (o' Ktr' K) .

Io is the differential cross section in scattering an
unpolarized incident beam. Denoting the scattering and
recoil angles, respectively, by 8, P in the center-of-mass

system and 8r„gz, in the laboratory, we delne

tions' ' which motivate this experiment will be slightly
changed. Using the values of the scattering matrices' in
Table V of reference 5, it is found that at 30' and 310
Mev, the relativistic corrections to Crrp are 0.1% for
solution 1 and 6.6% for solution 2. The situation at 60'
is similar. A rough calculation indicates that at 635 Mev
the corrections will be typically of order 10%. Since
the present formula differs from that of Stapp by terms
of order (n —cr), the additional relativistic corrections
are in general an order of magnitude smaller than his.

It should be noted that there is some ambiguity in
defining C~~ in the relativistic region. What is in fact
measured' would more logically be denoted Csls2 where

s~, S'2 are unit normals in the scattering plane to the
lab momenta kt, ks, of the outgoing particles. In the
nonrelativistic limit st, ss coincide with K, P. This is
the definition adopted here. There are two other
possible definitions, but the parameters so defined have
more complicated formulas and are not directly
measurable.

Finally, the formulas for the other unpolarized spin
correlation coefficients and triple scattering parameters
are listed below. In each case the "experimental"
definition has been adopted: Cl.~"'"= CIA.2, C~~'""
=C8l -t2.

IpC pp'"'& = 2 ReL(a+m) h'j cos(n' —n)

+2 ReL(a —m)g j c s( o+crn)
—4 Re(iche) sin(n' —n).

cr =8/2 —81„n'=P/2 —tt r,. I,Crcrct''0 =2 Re[(a m) g*j c s—(no'+n)
—2 ReL(a+m) h*] cos(n' —u)

+4 Re(ich*) sin(n' —cr).

Qf course, measuring Q in the sense opposite to 8,
&=sr —8.

Given the masses, energy, etc., for the collision,

et=a(8) is a function of 8 only, so ct'=sr(sr 8) At 90—'.
c.m. , formula (1) reduces to that given by Stapp' (his

I —4 Regh* cos0~,is equivalent to replacing cr by n everywhere), so

previous applications' of this result are not affected. 'P. C»«a, M. II. MacGrego~, M. J. Moravcsik, and H. P.
Stapp, Phys. Rev. 114, 880 (1959).

However, since measurements of C~~ at smaller angles s M. H. MacGregor, M. J. Moravcsip, and H. p. Stapp, phys
are planned for the near future, it seems worthwhile to Rev 1161& 1248 (1959).

It may be useful to point out the following misprints: In
point out this erro r at "he present time The cal la reference 5, the scattering matrices appropriate to phase shift

solutions 1 and 2 have been tabulated incorrectly in Table V.
' H. P. Stapp, Phys. Rev. 103, 425 (1956). M* has been tabulated in place of M; this will be corrected if the
'L. Wolfenstein and J. Ashkin, Phys. Rev. 85, 947 (1952). columns headed B, O', G, H, and N are relabelled —B, —C',
E.g., A. Ashmore, A. N. Diddens, and G. B. Huxtable, Proc. —G, —II, and —E, respectively. Calculated values of Cz& will

Phys. Soc. (London) 73, 957 (1959). then agree with I'ig. 6 of this reference. In reference 4, Eq. (2.19),
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I(A =- —([a['—[m[') sin(e —ez)

+2 Re[ic(a* —m*)7 cos(e—ez)
+4 Regh* sinez,

IsI|."=([a['—[m[') sin(e —ez)
—2 Re[ic(a*—me) j cos(e—ez)

+4 Reghs sinez,
I,A'= ([a['—[m[') cos(e—ez)

+2 Refic(a* m*—)]sin(e —ez)
+4 Reghe cosez, .

As in the nonrelativistic case there is a relation

the denominator of the expression for n should be 2E(2J+1).
a~~ is independent of L,.

among the triple scattering parameters, which becomes

(A+R')/(A' R—) = tanez, .

The equality between Czl " at 0 and Czz '
(7r —e) also holds for identical particles.
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A method is developed for determining the partial-wave scattering amplitude in terms of the unitarity
condition and the known branch cuts and poles of the inverse amplitude. The method is applied to the
problem of pion-pion scattering and an implicit solution to the pion-pion partial-wave amplitude is derived
for any angular momentum state and for both elastic and inelastic scattering. With the aid of this solution
the low-energy resonance behavior of the pion-pion scattering system is studied by neglecting all inelastic
processes and concentrating on 5 and P waves. It is found that a I'-wave resonance with a position and width
required by nucleon electromagnetic structure can be determined in terms of two parameters. An iteration
procedure is described that is applicable when the I' wave dominates the equations and this procedure
determines the contribution of the unphysical cut. The first iteration of the unphysical cut is numerically
integrated on the IBM 709, and the results show that the shift of the resonance position due to the unphysical
branch cut can be neglected.

1. INTRODUCTION

' 'T has been conjectured by Mandelstam' ' that two-
' particle scattering amplitudes can be expressed in

terms of a double spectral representation. The scatter-
ing amplitudes can be analytically continued into the
complex plane as a function of the energy and momen-
tum transfer variables and this leads to dispersion
relations for the partial-wave amplitudes which satisfy
the unitarity condition in a particularly simple form.
It would seem that in principle this representation
provides a complete dynamical description of scattering
systems.

It has become evident that a more reliable description
of pion-pion interaction is required if we are to under-
stand the phenomena of strong interactions and the
electromagnetic structure of the nucleon. '4 Chew and
Mandelstam have used the double representation to
formulate an approximation method for low-energy

' S. Mandelstam, Phys. Rev. 112, 1344 (1958).' S. Mandelstam, Phys. Rev. 115, 1752 (1959).
s G. F. Chew, Phys. Rev. Letters 4, 142 (1960).
4 W. R. Frazer and I.R. Fulco, Phys. Rev. Letters 2, 365 (1959).

elementary particle scattering. By using the unitarity
condition and the "effective-range" approximation,
Chew and Mandelstam obtain a system of coupled
nonlinear integral equations from the partial-wave
dispersion relations for pion-pion scattering. ' ' In the
special case of dominant 5-wave scattering and also in
the case of dominant P-wave scattering, it has been
shown that classes of solutions exist for the nonlinear
integral equations. For P-wave dominant solutions a
cutoff is required due to the singular nature of the
Chew-Mandelstam equations, and the unphysical cuts
are replaced by a corresponding series of poles. '

In the following a general method is developed which

determines the partial-wave amplitude for a scattering
problem in terms of the known branch cuts and the

unitarity condition. ' The method is applied to the

' G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960).
6 G. F. Chew, S. Mandelstam, and H. P. Noyes, Phys. Rev.

119,478 (1960).
'G. F. Chew, ANNNul Resiero of Azlclear Sciegce (Annual

Reviews, Inc. , Palo Alto, California, 1959), Vol. 9, p. 29.
8 G. F. Chew and S. Mandelstam, University of California

Radiation Laboratory Report VCRL-9126, 1960 (unpublished).


