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The operators a(p) and b(y) satisfy

L~(y),~t(y') 3=Lb(p), b'(p')3=6(p —p')

all other commutators vanishing.
The energy-momentum and charge operators are

&"= ~L~t(p) ~(y)+bt(y) b(y) jP"d'P,

Q=c ' Lb'(p)b(p) —o'(p)~(p) jd'P

I.= —-,'st�(c)+"—snz)f. (A7)

where e is the charge of the positron. Thus a (y) and b (p)
annihilate negatively charged and positively charged
mesons, respectively.

For the neutral m-meson field, we impose the re-
striction /=ac and take for our Lagrangian density

The commutation relations are"

8"(~),A(*')3=—L~(*—~')(=*a'3.~,

and the Fourier expansion becomes

4'(&) =(2 ) ' d'PLc(p)N(p)c '" *—c'(p)e(p)c'" *j

where Lc(y),ct(p') j=b(y —p') and

Lc(p),c(p')3 = Lc'(y), c'(y') j=o.

The energy-momentum operator for neutral pions is

J'"=j' c'(p)c(p)P"d'P.

The Kemmer Eq. for spin one-half particles has been
discussed elsewhere. "

'03ecause of the form of the generator obtained from t,'A7),
care must be taken with regard to a factor of ~~ when deriving the
canonical commutation relations. See, for example, J. Schwinger,
Phil. Mag. 44, 1171 (1953).

"A. O. Barut, M. Samiullah, Nuovo cimento 17, 876 (1960).
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The imaginary part of the fourth-order Bhabha (e+—e ) scattering matrix element interferes with the
(real) second-order matrix element, to produce a sixth-order dependence of the cross section on the spin of
one of the particles (after summing over the spins of the other three particles). The process of extracting
the imaginary part of the fourth-order matrix element is presented in some detail in one of the graphs
(vacuum polarization) .

PIN-MOMENTUM correlations in the scattering
of electrons by atomic nuclei (Mott scattering) are

well known. Until recently, however, e6ects of this
kind have not been studied in the scattering of leptpns
by leptons. Calculations have been performed by p —z

and e —e scattering, and the results found to be very
small. ' Because of the qualitative dIGerence between
this case and that of Bhabha (e+—e ) scattering, due
to the existence of annihilation graphs, it was thought
that the effect might be more important in the latter
process. In the present paper, results for Bhabha
scattering are presented. These are also found to be
small.

In reference 1, the imaginary part of the fourth-order
scattering matrix element was calculated by using
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unitarity. %e have therefore chosen to give a short
exposition of an alternative method. The imaginary
part is here extracted from the complete fourth-order
matrix element. (See I'ig. 1.) After performing two
trivial contour integrations the imaginary part is easily
isolated. The remaining (angular) integrations are
performed after the trace calculations.

As was pointed out in reference 1, diagrams of the
type of Fig. 2 do not contribute to the spin-momentum
correlations. Arguments for the neglect of rescattering
by the nucleus (valid for scattering by hydrogen) were
also given there.

If the positron beam (particle 2, momentum p,) is
partly polarized, with degree of polarization g, then the
cross section may be written

o =ep(1+ (P),
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I'IG. 3. The contour of the integration over g' in the com-
plex q~ plane. Only the integral around the in6nitesimal semicircle
contributes to the imaginary part.

In order to illustrate the calculation of Im3E4,
consider the graph of Fig. 1(d). The corresponding
part of M4 is (we calculate in the center-of-mass
system):

m' p d'qg
M4&"& = e4(22r) ' —2—~" (P1—P2)'

&&it (P2)VA (P1)4(&1)~4 (&2)

)&tr((qs —im)
—'y. (q1—im) —'y„}. (3)

Writing qr = (ie,q), q2= (—2iE+ ie, q), we have d'qt
=d'qdQ. The integrand has four poles in the Q-complex
plane. Following Feynman's prescription we displace
these oG the real axis, so that they are located at

k) kg

and
Q = Q~&'& —=~ (m'+ q') &~je,

Q =Q+&sl —=2Z+ (m'+ q') &Vie.

P) Pg

The integral over Q, running along the real axis from
—ac to +~, equals 22ri times the sum of the residues
of the two poles in the upper half plane. These residues
have poles at some points in the complex q' plane.
Thus the residue of the pole at Q &" contains the factor

L(e -e+")(Q -Q+ )(e -Q "))- (4)

where cr0 is the ordinary Bhabha diGerential cross
section, and

E= tr(Mt42 sM}/tr(MtM}.

The matrix element M is defined by

S= 1+iM=1+iM—2+iM4+

In the laboratory system, as well as in the center-of-
mass system, only the transverse component of s
contributes to I'. Since I' vanishes for Hermitian or
anti-Hermitian M, and because ImM2=0, we have to
lowest nonvanishing order

P= 2i tr(Mst4r s ImM4}/tr(MstM2}.

FIG. 2. Diagrams such as this
one are important in sixth-order
cross-section calculations, since
they serve to eliminate the infrared
divergences. These diagrams have
no imaginary parts, however, and
hence do not contribute to the
spin-momentum correlations. Our
calculation, which is based on the
diagrams of Fig. 1 only, must
therefore give a Gnite result.

(2)

(e)
FIG. j.. In fourth-order Bhabha scattering these diagrams have

imaginary parts, since every one of them can be cut by a horizontal
line such that each half represents a real physical process.
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FIG. 4. A plot of P(p,e) as given by (8), in the case that the

spin s is parallel to p1Xk1 Lthat is, the second factor in (8) is set
equal to unityg. The abscissa is the center-of-mass velocity P,
and 8 is the center-of-mass scattering angle. The value 8=120'
is near the maximum of Fig. 5.

~ The residue of the pole at Q ('& does not have a pole for real q.

In the limit e —+ 0, the term Q '@—Q+&" gives a pole
for real' q at q'=A' —m'—=p' and the contour of the
q integration is shown in Fig. 3. The separation of M4
into its real and imaginary parts is therefore displayed
by the formula .

(Q (2) Q (1))—1—P(Q (2) Q (ll)—1

&~0

+~&(Q-"'—Q+"') (5)
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Hence we obtain, after essentially no calculation,

m'( m' p) r dQ
ImcV4&"' =e4(2or) '—

~

———
~E & 4 E3& (p,—p)4

1.0—

XP(p )yA(p)4(& )v,4(&) .6

Xtr( (qs+irN) y„(qt+im)y„), (6)

where &I&= (iE,q), &ts
——(—iE, q), q'= p', and the integral

is over the directions of q.
We saw that the imaginary part of M4( ) arises from

the coincidence, for a real value of q, of two poles in
the energy plane, and that this coincidence occurs when
both the intermediate particles are on their mass shells.
This is an example of a very general and well-known
feature of scattering amplitudes; namely, that an
imaginary part exists only when there exists a real
intermediate state. In perturbation theory this means
the possibility of splitting a diagram in two parts by
a space-like surface, in such a way that both halves

60 90 1ZO' )50'

FIG. 5. Same as Fig. 4, except that the abscissa is now 8 and
p =p/I' has been chosen equal to 0.5 which is near the maximum
of Fig. 4.

are the diagrams of real processes in lower order. ' It
is easy to see that of all the fourth-order diagrams for
Bhabha scattering, only those of Fig. 1 have this
property.

We have calculated all the imaginary parts by the
above method, as well as by unitarity. The results are

ImW()=—
e' m'7rs P p

dQ

~(p.».(q.+' )~.~(~.)~(~.», (q.+' )v.~(p.),
(2or)o E' 4 E a (q —po)'(q —ks)'

e4 m' m'
1m~4&» = —— dQ&p(k, )y„(k& qo' i—&os)

'—p,f(4)p(ps)7, (ps qs' i—m) '—&,&p(p1),
(2or)o E' 4

e4 m' m'

Im~, & & = ——
dQIt (k,)q „(k,—q, ' —im) 'p,&p(4)lt(ps)p„(pt+qs' i~) 'y.it(p ), r'—

(2or)o E' 4 ~ (7)

e4 m'or' p
t

dQ
Ima, ~ &= ~(~.».~(~.)~(p.).,(q.+'-».(q.+'-»,~(p.),

(2or)o E' 4 E & 4E'(q —ys)s

ImM4(f'=
e4 m' 7r' p

0(»)V.(qt+i~) V.(qs+i~) V.it (&~)It (ps)74 (pr),
(2s.)s E' 4 E ~ 4E'(q —ks)'

&Iro= —&iso= —
&Iso =E, qt =qs =p,

We insert this result into Eq. (2), evaluate erst the traces and then the angular integrals. A small photon mass
X is introduced in order to evaluate the logarithmic divergences, letting X tend to zero at the end. The divergences
cancel. (See Fig. 1.) The result is

(1—Ps)& s yrXkr A
p=

137P sinai ~prXkr~ 8
' See, e.g. , R. J. Eden, Proc. Roy. Soc. (I.ondon) A210, 388 (1952).



SP IN —MOMENTUM CORRELATIONS I N e+ —e SCATTERING 919

where s is the direction of the spin of the physical positron (rather than that of the hole), and

P=P/P, x= sin(8/2),

3
A =—L1—3P' —2P4(1—x')j lnx'+ —(1—x') (2x'P' —1)+2(1—x') |1—P'(10+3x')+P4(1—x'+2x4)]

2

+- $—3+5x&—2x4+P& (—3+10x&—2x4+ 4x6) —P4x& (3—4x&+4x4) 7 ln
2' 1—

6 px
+ L2 —5x'+P'( —2+'/x' —4x4) $1.

~

p2 ~(1-P)»
1—x' 6p 1 P' -~P(1-*')~~

2—sx+P x (—1+4x)+
x' 1—P' P' - ~ (1—P')')

11 1)2 /l 1 2 fi8=——+—
(

———I+ +13+p'i =2—4x' I+p'(1 —»')'
p4 x4 p' (x4 x~) x' x~ )Ix'

1.(z) = z '(1+z') & arcsinhz.

Numerical results are given in Figs. 4, 5, 6, and 7.
In I'ig. 4 is plotted P(pp) for s parallel to piXk~,
8= 120', 0(P(1 and shows a maximum near P= 0.5.
In Fig. 5 is plotted P(pp) for s parallel to y~Xk~,
P =0.5, 0(8(180', and shows a maximum near
8= j.20'. In Figs. 6 and 7 are shown the second-order
cross sections for the same parameter values. The
numerical values of I' are of the same order of magni-
tude as for Mgller scattering. '
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FIG. 7. A plot of the total second-order Bhabha scattering cross
section with the same parameter values as in Fig. 5.
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FIG. 6. A plot of the total second'-order Bhabha scattering cross
section with the same parameter values as in Fig. 4.
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