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A variational calculation of the binding energy of the triton has been carried out using the Gartenhaus
potential. The results indicate that this potential leads to an unbound ground state of the three-nucleon
system; this result is attributable to the even-parity tensor potential vrhich is relatively large in magnitude
compared to the weakly attractive even-parity central potential. Since this property is also a characteristic
of the Signell-Marshak potential, it too should lead to an unbound triton.

I. INTRODUCTION

&~URING the past few years, a great amount of
eGort has been expended in obtaining repulsive-

core nucleon-nucleon potentials which are consistent
with a wide range of two-body data. A number of such
potentials have been found which lead to good agree-
ment with experiment. ' %hite repulsive-core po-
tentials may be treated in a straightforward manner in
the two-body problem, they complicate considerably
the three- and four-body nuclear problem; such systems
have traditionally acted as critical tests for two-body
potentials. Aside from calculations done with purely
central hard-core forces, '' only Derrick and Blatt~
have heretofore calculated the binding energy of the
trition with a realistic potential. Using Monte Carlo
methods, they have found that the Gammel-Thaler
potential apparently leads to a ground-state energy for
the triton that is in the continuum region, 8=+2 Mev.

In this paper the results of a variational calculation
using the Gartenhaus potentia12 will be presented which
indicate that this potential also predicts an unbound
ground state for the triton. The Gartenhaus potential
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is known to be inadequate for all but the lowest energies'
and it has been modi6ed in a significant manner by
Signell and Marshak"" to obtain agreement with
scattering data up to 150 Mev. These extensive modi-
fications were not included in the present calculation
for several reasons: The most important change is the
addition of a strong spin-orbit term to the potential.
However, the matrix elements of a spin-orbit potential
acting between two 5 states or an 5 and a D state
vanish; the matrix element of a spin-orbit potential
between the principal 5 and the principal I' state (these
states are defined in the next section) also is zero. Since
the totally symmetric 5 state has by far the lowest
kinetic energy, it should predominate in the ground
state of the triton and any term in the nuclear potential
which cannot couple the other important states directly
to it can have little eGect on the total energy. Signell
and Marshak suggest making the odd-parity central
potentials less attractive by setting them equal to
zero in the core regions and at the same time making
the positive cores of the even-parity central potentials
more repulsive. They have not de6ned these changes
quantitatively but, as will be discussed later, decreasing
the strength of the attractive central potential relative
to the tensor should raise the total energy of the triton.
In view of the latter point, it is felt that the results of
the calculation reported here are characteristic of the
Signell-Marshak potential as well as of that of
Gartenhaus.

All of the calculations reported in this paper have
been carried out using the more attractive singlet even-
parity potential, 'V.+, of the two given by Gartenhaus.

' J.L. Gammel and R. M. Thaler, Phys. Rev. 103, 1874 (1956).' P. S. Signell and R. E. Marshak, Phys. Rev. 106, 832 {1957}.
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The gT'ound states of the two mirror nuclei H and
He' have a total angular momentum of ~~. The ground
states can thus be completely represented as a linear
combination of 5, I', and D states, each coupled to the
spins of the three nucleons to give J=—,'. Gerjuoy and
Schwinger were the first to list appropriate states in
terms of operators constructed from the relative
position vectors and spin operators acting on arbitrary
scalar functions of the nucleon coordinates. Sachs" has
listed 8 linearly independent states of essentially the
same form but has added isotopic-spin functions, the
total isotopic spin being taken to be ~2. More recently,
Derrick' has shown that one 5 and one I' state have
been omitted in the listing by Sachs. However, neither
of these two states is expected to be present to an
appreciable extent in the triton ground state.

In the present calculation the triton functions listed
by Sachs were used. Of the eight linearly independent
functions, three can be expected to be the most irn-

portant because they contain the relative position
vectors to lower powers than do the other states of the
same orbital angular momentum. This means they are
more smooth varying functions of nucleon position
and can be expected to have lower kinetic energy. The
three "principal" 5, I', and D states are:

+1™'=I:v "n' ~"n'jf1(~1,r*1),

42 '=(I 12ie2g'+(2@1.+e12Xo2)g '$

L.X&j)~-f,( „.,), (1)
+1"' '=(2L(~1 r)(~2 e)+(~1 e)(o2 r)

—'2(e r)(~1 ~2)3n '—L(~1 e)(~2 e)
3(& 'r)(& 'r) (p' 3r')(& 'o')17'j}

X p f 2(&7,rii)

p"' and g' are, respectively, three-particle spin and
isotopic-spin functions with total spin and isotopic spin
—,
' which are antisymmetric in nucleons 1 and 2. g and
p' are corresponding functions which are symmetric in
1 and 2. The two relative position vectors are defined
as r=r1 —r2 and y=r1+r2 —2r2. The f2(u2, r;;) are, in
general, arbitrary scalar functions which are symmetric
under the interchange of any two nucleons. In the
present calculation they were given the form

f;= («2r22r12)" «pL —n, (r12+r22+r12) j.
This form, with sg an integer and 0, a variational
parameter, is the one which satisfies the boundary
conditions a,nd is easiest to handle. As usual, f;-+0
for any r;;—+ ~ and, because of the strongly repulsive
cores of the Gartenhaus even-parity central potential,
f;=0 for any r;, =0 For 2=7, n wa. s chosen to be 1

while for 2= 1 it was taken to be 1 (case A) and 2 (case

u E Ger&uoy and J 3chv inger, Phys. Rev. 61, 138 {1942}."R. G. Sachs, Nuclear Theory {Addison-Wesley Pubhshing
Company, Reading, Massachusetts, 1953},Chap. 8.

8). If 011L wl'1tes the ground state as

gm, t —g +sr, 1++ + n&, 1++ 1' ter. , 1

I~1I'+ l~ I'+ 1~2I'=-1, (3)

and divides the Hamiltonian into a kinetic and potential
energy part, H=T+V, the expectation value of the
energy in the ground state is given by (omitting aIl

terms identically equal to zero)

&+I~f I+&= l~ I'(+
I
T+ i' I+ &+I 4 I-'&+2I ~'+vl+'&

+I~1!-'(+2IT'+VI+ &+2 «& *»(+
I
v I+ &

+2 «A, *A&(C~,
I
V&!%,&. (4)

In the above, Vg is the tensor potential. Neither a
central nor a tensor potential can couple an 5 state to
a I' state so %3 cannot be coupled to 4'» by the
Gartenhaus potential. Therefore, 0"3 was omitted in
the present calculation. The question arises of whether
+3 could become important when a strong spin-orbit
force is present, as it is in the Signell-Marshak potential.
The answer is no because the L S operator conta, ins
the factor u1+o2, 12 which is always acting to either the
right or left on q" for which the identity e~y == —o~q"'
obtains.

The total energy was computed" for a wide range of
values of o.~ and 0.7 and no minimum in the energy was
found for the trial wave functions of cases 2 and 8.
However, for any 6xed value of O.y there is a value of
e~ for which a relative minimum exists. That is to say,
there is a trough in the surface E(n1,c7) running towards
the origin. The total energy as a function of these
values of oj is shown in I'ig. 1.

At the same time, a two-body trial wave function
with S- and D-state components, whose radial parts
are given by

f8= r12 exp( QSr12) fD=r12 exp( QDr12) (5)

was used in a variational calculation of the deuteron
total energy, again using the Gartenhaus potential. A
definite minimum energy of +0.65 Mev was found.
This value is to be compared to the experimental value
of —2.226 Mev to which the Gartenhaus potential has
been fitted. This diGerence corresponds to an error of
a,bout 10/o in the potential energy and indicates there
is likely to be an error of comparable size in our triton
potential energy elements.

It seems clear that the difhculty stems from the
relatively slow change of the S-state trial wave function
in the core region as compared to the potential itself,
The repulsive core shouM act more or less as a boundary
condition and the wave function should fall o6 so
rapidly that there is very little positive contribution
to the potential energy. To check on this, the positive
cores of the central potentials were set equal to zero,
and all the calculations repeated. As a result, the

"Because of the complete antisyrnrnetry of +~ ' only the V(12}
term need be calculated.

"See Appendix for details.
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deuteron energy was lowered to —.—4.83 I~Iev whi. le a
trialminimum of +8.18 Mev appeared for the triton tria

function of case A. Qn the other hand, no minimum was
found with the trial function of case B. The minimum
of +8.18 Mev is produced by a change of about —12
3Iev in the expectation value of H in the 5 state as
compared with its value with the repulsive core presen .
This indica es-" h" ' d' t -that the wave functions are indee
deficient in the manner mentioned above.

S' . ur trial wave functions are believed to be veryince ou
d ith thed quate in the core region when useu wit.. 1e

Gartenhaus potential, our conclusions concerning i s
consistency with the experimenta energy o
can best be obta, ined by considering the value of the
energy calculated upon setting the repulsive cores equal
to zero and usmg 1e sd

'
tl same form trial function. The

minimum of +8.18 Mev represents an estimate of the
lowest eigenvalue to the three-nucleon pro em wi
the boundary conditions, +(r;;)=0 for any r;, ~ Qe,

0'(r,,) = 0 for any r;;=0, and a potential the same as the
Gartenhaus except for the remova p1 of the re ulsive

altered problem must be considerably lower t an t e
energy pre ic e yd' t d b the actual Gartenhaus potential.
jFor examp e,1 the estimate of the deuteron energy is

e withalready 2.6 Mev lower than the known eigenvalue wi
h lete Gartenhaus potential. ) Furthermore, one

might then expect tha, t the simple tnal wave un
mould be a better estimate of the solution to the altered
problem because of the zero rate of change o t e
potential in the core region. Because our minimum of
+8.15 Mev is already about 17 Mev above the experi-
mental value, it is extremely likely that the exac
solution to the altered problem is a,iso higher than the
experimental value. If this is true, the comp ete
6 t h s potential must lead to a triton ground-statear en ausp
energy which is even higher. If E, E, an are,
respectively, the measured triton energy, the exact

redicted b the Gartenhaus potential, and the
exact energy predicted by the coreless ar en a .
potential, the inequality

(6)E. &I.'&8,

E,.&&E&'&E&.

In the latter the subscript V refers to the estimate
e

obtained from the variational ca,lcula. tion.

IQ. DISCUSSION

A comparison of the matrix elemen ts of H for the
deuteron and triton indicates that the tensor potential

latter. The interference term between the 5 an
states, brought about by the even-parity tensor po-
tential is critical for the binding of both nuclei an

would seem to hold by virtue of the calculated in-

equality
(7)

+20 IAL
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FIG. 1. Total energy as a function of e1 along
the curve itF (ni, nr)/sar =0.

"s R. Avery aud E. N. Adams, Phys.s Ph s. Rev. 7S, f106 (1949}.'" R. i. Pease and H. Feshbach, Phys. Rev. 8, 9

r ~

only in the deuteron is it su%ciently large. I' is can be
clearly seen in Table I.

r otentialThe relative ineffectiveness of the tensor potentia
in lowering the energy of the three-body system has

central potentials without repulsive cores yield bin ing

large; the addition of a tensor potential is necessary to
make the total energy less negative. Pea,se and Fesh-
bach'6 used elaborate trial wave functions with a ami y
of potentials, each member of which gave a good 6t to

1 data. Thethe low-energy two-nucleon experimenta . y
showed that the higher the deuteron D-state admixture

t t' 1 produces the smaller is the binding
ad-energy of the triton. The 6.9/o deuteron D-state a-

mixture of the Gartenhaus potential should be com-
pared to the 3.6/o of the potential with which Pease
and Feshbach obtained estimates of the triton binding
energy which were too small.

Our results suggest, then, that the Oar tenhaus
potential is unsuitable for the three-body nuclear
system because its even-parity central potentials are

tensor potential. A large tensor component appears in
derivations of nucleon forces from meson theory an
t. 'lis plopei y1

.t is already present in the one-meson
exchange con ri u 1t b tion to the nucleon-nucleon force.
A large num er o wb f workers' take the nucleon-nuc eon

t eo forpoten ia otial to be reliably given by meson t eory or
r~1/p but, unlike Gartenhaus, construct the pootential
in the inner regions phenomenologica, lly so as to give a
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Tmr, z I. A comparison of the matrix elements of the deuteron
and triton at minimum energy. For this comparison the strengths
of the cores in the Gartenhaus potential have been set equal to
zero. Only the principal triton D state has been used.

iMatrix element

(5 FF~5)
(SH D)
(DIFF, F7)

I' total

Deutel on {A'Icv)

+21..74
—78.12

+224.4
—4.83

Triton {M(:v)

+I5.957
—36.479

+179.38
+8.1843

Noting that it. is quartic in the position coordinates,
it is clear that its various terms have more nodal
surfaces in the space of the relative coordinates. than
do the terms in 0'y '. Therefore, one would expect the
fo11owing inequalities to hold:

I
&~'t

I
Vr+ I+s& I/I(+r I

Vr+ I'»& I
=g«1,

I&+sl&I+s&I/I(+r I&I+r&I (9)
=I&+sIK.E I+s&I/I&+rIV. E I+»I =»s».

6t to low- and high-energy data. In most cases D-state
admixtures to the deuteron of the order of 7'%%u~ are
predicted from these potentials. This is consistent with
the work of Siedenharn, Blatt, and Kalos'" who have
shown. that for triplet even-parity potentials with weak
central parts, the admixture of D state increases
rapidly with increasing hard-core radius. (In general,
one is forced to choose fairly large hard-core radius in
order to obtain a fit to high-energy scattering data. )
If it is true that the Gartenhaus potential fails to bind
the triton because of its very strong tensor force and
large radius repulsive core, one can perhaps conclude
that the nucleon-nucleon force must be taken to be
strongly energy dependent in its inner region if in the
outer region the force derived from. meson theory is to
be used.

It should be pointed out that we have included only
one of the three linearly independent D states in our
trial wave function. Hu and Hsu" have shown that the
presence of all three is necessary, if one is to obtain an
accurate estimate of the ground-state energy since the
two-body tensor operator acting on any one of the D
states produces a linear combination of all three. Ke
have made an estimate of the eGect of adding the other
two D states and found that their presence can lower
the energy by about 4 Mev. - One of the additional D
states, 0 6 ', has the following form:

+s"'=(L(e r)n' (p' 3r')tl'j—L(~r—e)(~s p)

+3( r)( r) —l(p'+3 ')( )j)
~ ~"'fs(«,r') (g)

computed special case of

f;= expl —tr, (r+J')],
Vr+(12) = Vs exp( —yrts),

1/y=1.4&(10 "cm.
(10)

The o. s were chosen such that each n; led to a value of
(O', Ie'/rrsle, & which was equal to the H' —He' energy
difference. The values obtained for g6 and hg are g6= 0.63
and he=1.28. Assuming that these ratios are approxi-
mately true independently of the potential and also
hold roughly for the third D state, 0'8 ', one can
evaluate a new triton energy as a function of

p IA,sl =D'
i~6

TALK II. Change in total energy of the triton as a function of
total D-state probability with all three linearly independent D
states present. In this estimate (Nt

~
Vr (q t, tt has been taken to be

equal to 0.63 (Nt(Vr~@'r) and (N„t~FF %tt, s) equal to 1.28
(4'r

~
FF (+r). The values of the necessary matrix elements have been

taken from Table I.

362=28' L~' {Mev}

In the latter expression D' is the total D-state proba-
bility and A; is the amplitude of the jth D state. Table
II below shows a sizable decrease in the energy but one
which is not nearly large enough to remove the
discrepancy.

The only other state coupled directly to the principal
5 state which has been omitted is the partially space
antisymmetric 5 state

@ m, t {(r.~)-(12+m~t pot~t)

(p' 3r')—(v'"n—'+ v "~'))f (s~ ,s'r)

It is coupled to 4» by the combination of potentials
'Vc+(12)—'Vc+(12). In the core region this quantity
can be of the order of —100 Mev but goes to zero more

rapidly with increasing rI2 than either potential sepa-
rately. This is due to the fact that ta second order in
the meson coupling constant the two potentials must
be equal in a charge symmetric theory and, for suf6.-

ciently large r~2 the second-order terms dominate. For
example at f'I = 2 Og 10 cm, V(,+= —5 Mev,
'V(;+= —3 Mev, and Vz+= —10 Mev. From the above
numbers one can see that at distances comparable to
the average internucleon separation, ' "

((r; s&. )l= (3(rs&, ,) l—2.5)t,'10-"cm,

the coupling of 02 to 4'» is weak compared to the
coupling of the D states to%~.

We have evaluated the above ratios for the easily

'~1,. C. Biedenharn, J. M. Blatt, and M. H. Kalos, Nuclear
Phys. 6i, 359 {1958).

T. Hu and K. Ilsu, Proc. Rov. Soc. (LondoYl) A204, 476
{&9SO).

4 6%%uo

6%

0
0.77%
0.86%
0.97%

46%
3.47%
4.28%
5 07%%uo

'9 C. Werntz, Nuclear Phys. I6, 59 {1960).

+8.2
+3.8
+3.6
+3 9
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APPENDIX

The requirement that the energy be a minimum with
respect to the coeScients A v and A v j Eq. (1-a)j yields
the secular equation for E(n),uv) in terms of the matrix
elements of the Hamiltonian II:

Re(~, jIIj 1,)
F.(nv, nv) —(@vj IZj+v)

(A-1)

Because of the complete antisymmetry of the trial
functions the Hamiltonian for the inner motion of the
triton is equivalent to

H= —(h'/M)L3Vvv Vvv —3Vvv Vva]

+3j 7V)v+(rv, )+'Vc—(rvv)+vVc+(rv2)+'Va-(rvs) j
+3LVT+(»12)+ Vr -(»12)j&12. (A-2)

In t.he above, V,, refers to the gradient with respect to
r.;;, 512 is the usual tensor operator, and the four V~'s

and two V&'s constitute the spin- and parity-dependent
Gartenhaus potential. The projection operators which

usually precede each component of the potential have
been omitted because the structure of 0'1 and 4'7 with

respect to the pair 1,2 makes their explicit use un-

necessary. It should be pointed out that the above form
of the kinetic energy operator requires one to consider

r13 to be independent of r12 and r». That is to say,
V 12&13=V'gy'1S= 0.

Using the deinitions of 4'7 and 4'v given in Eq. (1),
the kinetic energy and potential energy matrix elements
have the following form after being summed over spin
and isotopic spin:

(a) (kv
j
KE.

j
4 7) = +24(Iz'/3f)»v-'L3(V72fv (uvr;, ) j Vvsfv(vvv r,))—3(V12f7(ovr', )', Vvv fv(~v r';))j,

(h) (+vj V j+v)=36&'v '(fv(~v, r') j'Vc+(r)+'Vc+(r) jf (~v, 'v)r)7,

(c) Re(%'7
j Vr j+v) = 24(»v»v) —

&f, (nvr;, ) j
Q' —3(tv. r)/r'+6»'g'Vr+(r) j fv(avr;;)),

(d) (+v j
I E j+v& =. +. 8(&'/~)»v 'f (fv (vs-v)»7')

j
3op'+9o»'

j fv (~vr;7))+(V vmfv (tv)r '7')
j
—t) (2p'+12tv r+ 12»')

+r(24p'+6tv r+36r')
j fv(av, r;7))+(V23fv(nv, »;;) j p(6p r) —r(12p'+18r')

j fv(nv, r;7))

+(V72fv(~v «,")
j
p'+12p'r'+9»4 6(y r)'j V—12fv(~v, r;;))

+(»2fv(~v, »,7) j
p' 12p'r'—9—»'+6(g —r)'j V 23fv(~vs'7))},

(e) (+v j
V j ev) =8».—'(fv(n»r, ,) j'V;(r) L9p'r'+3(t r)'j+'V,+(r)Lp'+3pvrv+9»4 —9(p r)2j+3V« (r)

XL
—9p'r' —15(t r)'j+'Vv+(r) Lp' —6p'r' —18»'+ 18(e r) 3(V r)'p'/r' j—j fv(~v, r 7)).

(A-3)

The normalization constants are de6ned by

(a)» =24(f (~vs'7) j fv(~v, r")),
(h) IVv=(fv(nv)r, ;) j

(8/3)p4+32p'r'+24r' (A-4)
—16(e r)'j fv(~v, ')).

After inserting the appropriate forms for fv and fv,
the integrations were performed by making the change
of variables

s= («23+«»)/2, t= (r» —«73)/2

~12 ~12~

As a result, the integral

~00 )
))» p r12+rhg

dr, vJ d«23 I

0 & ry~r~g
dr vv(r vvr v,)r 7;,)F(r, ,r.;„r„)

oo
p r12+ "23

~~ 0 r12 ~ r23—r12

is changed to

Q r v,, (r 7 . 7»;~r 7 7)

XF(r v, r;;,r, ;;) (A-6)

+r12

dr„ I ds, dh rv. (s-' —P)F(rv, s,t).
4 0 r)v ~ r)„—

This transformation permitted the reduction of the
potential energy elements to single-fold integrals over
r» which were performed numerically. The integrals
are too unwieldy to be listed here.


