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Perturbation Treatment of Hartree-Fock Equations*
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For atomic configurations (1$'), (1$'2$), and (1$'2$') perturbation theory has been used to obtain (1/Z)
expansions for the Hartree-Pock energies.

INTRODUCTION

'ODIFIED Schrodinger perturbation theory as
~ ~ developed by Lowdin' is used in this paper to

evaluate solutions to the Hartree-Fock problem for 2-,
3-, and 4-electron ions in their ground state. The
iterative techniques used in earlier methods for solving
the nonlinear integro-differential equations are thus
replaced by a scheme where the difference between two
approximations to the exact solution is calculated
directly. Furthermore, it is possible to separate out the
dependence of the solutions on the nuclear charge by a
procedure used first by Hylleraas' in his work on
2-electron ions. A scaling procedure deviced by Froman
and Hall4 gives another tool to improve the results
obtained.

THE HARTREE-FOCK EQUATIONS

In this paragraph the equations in the Hartree-Fock
approximation are established for the ground states
(1s')'S (1s'2s)'S, and (1s'2s')'S of 2-, 3-, and 4-electron
ions.

The following units and notations are used: Reduced
and modified Hartree atomic units, ' ' where a modified
unit charge eZ& is introduced, giving a unit of energy
1EIEAI=Z'HE. Radial part of 1s orbital=u(r); radial
part of 2s orbital=v(r);

(ab l cd) = ~ a(r)b(r) l
cd)r'dr,
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The radial Hartree-Fock equations then read:

(i) for two-electron ions,

hpu+Z —
uluu) = e(1s) u;

(ii) for three-electron ions where it is necessary to
introduce a so-called nondiagonal Lagrangian multi-
plier,

hpu+Z 'u
l

u—u) +Z 'u
l

vv—) ,'Z —'v
—l

uv—)
=e(1s) u+-,'e(1s,2s) v, (2)

hpv+2Z 'vluu) Z'u—luv)=e(2s) v+e(1s, 2s) u; (3)

(iii) for four-electron ions,

hpu+Z ul uu)+2Z ul vv) Z'v 1uv) —= «(1$) u (4)

h,v+Z —'v
l
vv)+2Z —'v luu) —Z—'uluv) = e(2s) v; (5)

and the conditions in all three cases

These equations depend on the parameter Z—' and we
are going to solve for the e's, I, and v as functions of
that parameter. Ke use power series representations
for these functions and proceed as suggested by Lowdin. '
We define

r 00

lab)=r ' I a(s)b(s)s'ds+ ~ a(s)b(s)sds,
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Q=Qp+Z QI+Z Qs+ ' ' '&

v= vp+Z vI+Z vs+

e(1$)= ep(1$)+Z el(1$)+Z ep(1$)+

e(1s,2s) = ep(1s,2s)+Z—'eI(1s,2s)
+Z-'e, (1s,2s)+, (12)

e(2s) =ep(2s)+Z 'eI(2s)+Z 'es(2s)+ . (13)

The series will be evaluated to the first order in the
wave functions, to third order in the energy for the
two-electron case, otherwise to the second order in the
energy.
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ZERO ORDER FUNCTIONS: ZERO AND
FIRST ORDER ENERGIES

To zeroth order the functions and energies are
obtained from the solution of Eqs. (1)-(5)when Z '= 0.
This immediately gives the well-known hydrogen wave
functions and energy eigenvalues:

Np= 28

vs=42(1 —sr)e I",

in all cases and with

pp(1$) = —-'„

op(2$) = —-',

sp(1s, 2s) = 0

in (ii). These wave functions also give the first order
energies:

v, v„, v'. The equations (14)—(17) are solved here by
means of expansions in first order Laguerre functions'
(Is'(2ar)c ~"). Direct integration is also possible, as
well as the Laplace transform method. ~ The following
functions are obtained:

u.=s-"g a„I.„'(2r),

al =5/16, as= 5/32,

n!as= (n 7) (—n 1)——'2-"—' n) 2

u, =e "g„b„l.„'(2r),

b, =46/2187, b, = 23/2187,

n!b„=(112n'—1840n2+9272n —14552) (n —1) '3 " '

e&2
(i)

(ll)

pr (1$)= (uouo f uouo) = s,
0] (is) = (uouo f ««) + (uouo

I
.oVo) —2 (u

= 0+145/729,

pl(2$) 2(uouo f vovo) —(Qovo f uovo) = 290/729,

p&(1$,2$) = —(uovo f vovp) = —512v2/84375,

sr(1$) = (Qouo f uouo)+2(QOQ0 f vovp) (uovo f
uovo)

=—', +290/729,

pr (2s) = (vpvp
f
vpvo)+2 (uouo f vovo) —(uovo f uovo)

=77/512+290/729.

FIRST ORDER FUNCTIONS: SECOND
ORDER ENERGIES

v„=&2V &" g„c„L '(r),
cl= —16/243, c2=206/2187, cs———896/19683,

n!c„=(n2+71n —1040)(n 2) —lX2" 2)(3 " 0 n)3
v„=v2V—&" P„d„l.„'(r),
dl ———1/512, d, = 77/4096, ds ——13/1536,

n!d~ = (n4 —30n'+283n' —910n+504) (n 2) —'2—
ts& 3.

The equations (18) and (19) have the solutions:

u'= —(4/3)(uovo
f
vovo)vo, v = (8/3)(uovo f vovo)uo.

Second order contributions to the energy are derived
from (1)—(5):

For solution of the first order functions, we find that
we can form the functions Ni and vi as linear combi-
nations of the solutions I, N„v„, v, of the following
equations:

(ho+2)u~= ('QOQO
f Qouo)uo uo

f Soup)~ (14)

(ho+ 2)u„= L2 (uouo f vovo) —(uovo
f
uovo)]uo

—2up
f
'vpvp)+'vp

f Qpvp)& (15)

(hp+s)v =
f 2(uouo f vovo) —(uovo

f
uovo) jvo

—2vo
f uouo)+Qo

f Qovo), (16)

(ho+ s)'4= (vovo f vovo)vo —vo
f vovo), (17)

(1) s2(1$) =3 (Qpup f Qpul),

(ll) 02(1$) 3(QOQ0 f Sour)+ (Q0ul f vovo) 2 (uovo f ulvo)

+2 (uouo
f
vovl) —(uovo f uovl)

+2 (uovo f vovo)(uo f vl),

02(2$) = 2 (uouo
f
vovl) —(uovo f uovr)+4(Sour f vovo)

—2 (upvp
f
ulvp)+ (upvp

f
vpvp) (ul f vo)y

(ill) 02(1$)=3(uouo f Soul)+2(Soul
f
vovo) (uovo f ulvo)

+4(uouo l vovl) —2 (uovo I uovl)

02(2$) = 3(vovo f vovr)+2(uouo f
vovl) —(uovo f uovr)

+4(upul f vpvp) —2 (upvp f Qlvp).

adding in case (ii)

(ho+ —)u = ——(uovo f vovo) vo,

(ho+a)v = —(Qovo f vovo)».

We have then

(18)

(19)

There are six basic quantities entering in these expres-
sions, They are given in exact and decimal form in
Table I. YVith the proper functions inserted in the
above formulas we get the values of the second order
energy parameters tabulated in Table II.

(i) ur= u„,
'(ll) Ql= ~u+ 2Q+ S&

V] = V~+V,I

(111) Ql =Q~+ u„,

Vr=V~+V„,

if orthogonality is required between Np and each of the
functions I„, I„, I' as well as between vp and each of

THIRD ORDER ENERGIES

The knowledge of first order functions enables us to
calculate the energy contributions of the third order.
There is, however, a considerable amount of work

6 For the definition used here, see L. I. Schi8, Quantum M'e-

chamcs (McGraw-Hill Book Company, Inc. , New York, 1955),
2nd ed. , p. 85.

2 C. Schwarrz, Ann. Phys. 6, 156 (1959); A. Dalgarno, Proc.
Phys. Soc. (London) 75, 439 (1960).



JAN LINDERBERG

TAaLE I. Contributions to second order energy terms. '

Parameter.

(uouo
~
uozz„}

(uouoi uouv)
2(upu„/ vpvp) —(uovo f u~vo)

2(zzozz ('povo) —(uovo(uovo)

(vovol vov~)

(vovo
~
vovu)

2( uu o[ ovo)v—(uovoiuov )

2 (zzozzp ( vpv„) —(uovo ) uovo)

Exact value

——+—ln—

23 110282 146 5
218 700 000 243 6

986 249 849 1 364224 8
3 265 173 504 531441 9

114947 2601 3
8 957 952 32 768 4

988 649 2533 2
71663616 31104 3

928 911 128 44 402 5
4 982 259 375 531 441 9

Decimal

—0.05550159

—0.00387184

—0.00030108

—0.01000328

—0.04681534

. —0.23555344

& All energies in Hzu's.

is used.

I(x) =
) (dt/t) 1n(1+t) = Q( —g)"n—

THE TOTAL ENERGY

A formula first used by Froman' is applied in order
to get the total energy in the Hartree-Fock approxi-
mation. If

EHF=Eo+Z 'Ei+Z 'Es+Z 'Eo+

then the following relation is valid for the configuration
(is'2sv)

2.(1s)+pe(2s) =~ 1—Z ~EH.,
aZ)

which is dificult to check and which must be judged
according to the amount of resulting information.
Nevertheless, for the two-electron case the calculations
are carried through here, and we get the following result:

eo(1$) =8(upu Iuou )+4(uouo( u u )
-4(upuotuouo)(u tu„)

= (9216) 't 775+39 912 in2 —25 332 in3

+11664I (—1/3) —13 608I (—1/4) ).
Here the notation

which gives

2e (1s)+ps„(2s)= (zz+1)E..

The values of the parameters E„are tabulated in
Table II.

SCALED EXPANSIONS

It has been shown here that it is possible to determine
coefficients in an expansion of the Hartree-Fock energy
for an atomic system in descending powers of the
nuclear charge. Froman and Ha114 have also shown that
a change of variable in such an expansion can give a
more rapidly convergent expansion. This procedure
corresponds to a partition of the Hamiltonian such
that part of the nuclear attraction term is included in
the perturbing potential. We consider here directly a
change of variables and assume that the following
expansion exists (IIrz units):

EHF= EoZ'+ErZ+E, +Q„a„(Z—x)—,

(zz —1q

i

A four-term formula is chosen to represent the Hartree-

TAnr, E II. Coefficients in (1/Z) expansions of orbital and total energies. '

Con6guration

1s2 ~S

1s'2s 'S

is'2s' 'S

Energies

a{is)
EHF
e {1s)
c(2s)
+HF
{»)

~{2s)
+HF

Zo

—0.50000000—1.00000000—0.50000000—0.12500000—1.12500000—0.50000000—0.12500000—1.25000000

0.62500000
0.62500000
0.82390261
0.39780521
1.02280521
1.02280521
0.54819584
1.57100105

—0.16650476—0.11100317—0.40982806—0.24399097—0.35454903—0.74703075—0.46117048—0.80546750

—0.00211049—0.00105525
not calc.
not calc.
not calc.
not calc.
not calc.
not calc.

' All energies in units of Ham.

o A. Fronian, Phys. Rev. 112, 870 (1958).



PERTURBATION TREATMENT OF HARTREE —FOCK EQUATIONS

TABLE III. Third order correction term as determined
by least square deviation condition. ~

TABLE IV. Second and third order perturbation calculations
compared to results from the variation method. '

State

1$
1$2$
].s22$'

(—0.00105525)—0.04109—0.1336

0.440
1,079
1.400

& All energies in units of HRJIr.

RESULTS

The perturbation calculations presented above give
reasonably rapidly convergent expansions for the
Hartree-Fock energies of 2-, 3-, and 4-electron ions in
their ground state. Especially the scaled expansions are
well adapted for a functional representation of the
energies. Table IV displays the comparison between the
variationally determined values at reference 9 and the
truncated series given in Table II and III. The four-
term formulas fail to reproduce the Hartree-Pock
energies of the systems Li, Li—, and Be. A further

9 C. C. J. Roothaan, I. M. Sachs, and A. W. Weiss, Revs.
Modern Phys. 52, 186 (1960).

Pock energy. Kith

R(1/Z) =EH z EsZ' —EtZ —E,, —

the fourth term is determined by

Pz~R(1/Z) Es(Z s)—'( =m—in.

For the state 1s' the value of E3 is known and the
equation determines the "best" s. The states 1s'2s and
1s'2s' give equation systems from which the "best"
combination E3 and s are derived. The equations are
solved with use of values for EHF determined by
Roothaan et al. ' by means of the variation procedure. '
The ranges of Z considered in the equations were
2&Z&10 for the 1s', 4&Z&10 for the state 1s'2s, and
5&Z&10 for the state 1s'2s'. The parameters thus de-
rived are given in Table III.

State Z EHF EpZ2+RIZ+E2 R(1/Z) o

EpZ2+EIZ
+E2+Ep/

(Z —$)

1$22$

1$22$2

2
3

5
6
7
8
9

10
3
4
5
6
7
8
9

10
3

5
6
7
8
9

10

2.861680
7.236415

13.61130—21.98623—32.36119—44.73616—59.11115—75.48613—93.86112
7.432727

14.27740—23.37599—34.72606—48.32685—64.17804—82.27949—102.6311
7.428232

14.57302—24.23758—36.40850—51.08231—68.25771—87.93404—110.1110

2.861003
7.236003—13.61100—21.98600—32.36100—44.73600—59.11100—75.48600—93.86100
7.411133

14,26333—23.36552—34.71772—48.31991—64.17211—82.27430
102.6265

7.342464
14.52146
24.20046—36.37946—51.05846—68.23746—87.91646—110.0955

—0.000677—0.000412—0.00030—0.00023—0.00019—0.00016—0.00015—0.00013—0.00012—0.021594—0.01407—0,01047—0.00834—0.00694—0.00593—0.00519—0.0046—0.085768—0.05156—0.03712—0.02904—0.02385—0.02025—0.01758—0.0155

2.861680
7.236415

13.61130—21.98623—32.36119—44.73616—59.11114—75.48613—93.86111
7.432523

14.27740—23.37600—34.72607—48.32685—64.17804
82.27949—102.6311

7.425964
14.57285—24.23757—36.40850—51.08232
68.25770—87.93404—110.1110

~ All energies in units of Hg.
b See reference 9.
o R(1/Z) =EHp —EpZ2 —EIZ —E2.

extended approach to the rest-terms of the series is
necessary to fit these systems into the scheme of the
perturbation treatment used here.

Perturbation calculations for atomic systems have
been suggested as an alternative to the Hartree-Fock
approximation. " The two approaches can be brought
together through a variation principle for the second
order energy correction in perturbation theory. ' Work
is in progress on this scheme.
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