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Apphcation of the Method of Polarized Orbitals to the Scattering
of Electrons from Hydrogen*

A. TEMKINt AND J. C. LAMKIN
National Bureau of Standards, 8'ashington, D. C.

(Received September 14, 1960)

The s-, p-, and d-wave scattering of slow electrons from atomic hydrogen is calculated by the method of
polarized orbitals. Utilization of a transformation of Omidvar avoids the iterative procedure of solving the
associated integro-differential equations. The s-wave scattering is smaller than that given by the exchange
approximation, and the scattering lengths are within the upper bounds found by Rosenberg, Spruch, and
O' Malley. The d-wave phase shifts are too small to explain a resonance in the total cross section. However,
they are much larger than those of the exchange or Born approximation, and they give considerable structure
to the differential cross-section curves. The p-wave phase shifts are not much increased by the polarization
effects.

1. INTRODUCTION

HIS calculation is the concluding part of a study
of the elastic scattering of electrons from atomic

hydrogen via the method of polarized orbitals. This
method, which was originally applied to the scattering
of electrons from oxygen, ' divides itself into two parts:
a static and a dynamic problem. The static problem,
which deals with determining Cto'" (see below), was
solved in a previous paper. ' Thy, t paper contains the
background and introductory material relevant to the
present calculation. In particular the notation and
units of II will be continued here. For completeness the
definitions of most of the functions will be repeated.
The only change will be the normalization of the
function ui, ~(r). (See Section 2.)

2. DERIVATION OF THE SCATTERING EQUATIONS

The static wave function which was derived in II
is given by

u(r, )
0(ri, r2) = Lc'o(r2)+c (rl r2)]

asymptotic form of the first order perturbed ground-
state wave function of the hydrogen atom due to the
static iriQuence of an electron at a distance r1 from the
nucleus. This perturbation is

2 2 2r2
Pl(cos812), ri) r2.

I'1—I'2
(2.2)

@(ooi)(ri ~ 12) =
e(ri, r2) ui y(r2) +1(cos012)

(2.3)
r2

e(ri, rs) =1 for ri) rs

=0 for fl %f2, (2.4)

The approximation of the left-hand side of the above
equation by the right-hand side is called the dipole
approxima, tion; it is used in deriving (2.3). The higher
multipoles in (2.2) give rise to additional terms which
can also be calculated analytically' 3; however, they
will not be included in this treatment. We repeat the
definitions of the functions occurring in (2.1).

u(r, )
t C o(ri)+C &&'n (r2, ri)$. (2.1)

ui, (r)
C'o(r) = 1 oo(Q) =2e 'I'oo(Q), (2.5)

ui, „(r)=e "(-',r'+r'). (2 6)The dynamic problem is concerned with the determina-
tion of the function u(r), whose asymptotic form yields
the desired phase shift. The function Co+C'"'i is the (Note that ui, 2, is one half of the value defined in $f.)

The angular dependence of u(r) is given by a spherical
harmonic whose / value defines the order of the partial
wave being considered.

*Work supported in part by the Office of Naval Research.
t Present address: National Aeronautics and Space Administra-

tion, Washington, D. C.
' A. Temkin, Phys. Rev. 107, 1004 (1957). This paper will be

referred to as I. In the past year we have learned that this method
is in essence the same as the method of perturbed stationary states
I N. Mott and H. Massey, Theory of Atomic Collisions (Clarendon
Press, Oxford, 1949), 2nd ed. , p. 153]. The diiierences lie in the
application of the latter to heavy-particle scattering from atoms,
where the adiabatic hypothesis was never in doubt, and where
the problems of antisymmetrization do not arise. In addition, the
method of polarized orbitals utilizes the Sternheimer method of
finding the perturbed stationary state, which we have shown in
reference 2 is a much more accurate and more feasible way of
including the effects of first order perturbation theory.

2 A. Temkin, Phys. Rev. 116, 358 (1959). This paper will b
referred to as II.

u(r) =ui(r) Pio(Q). (2.7)

It was indicated in II that the usual way of deriving
an equation for u(r) was by using the variational
principle for H —8:

e 3 A. Dalgarno and A. Stewart, Proc. Roy. Soc. (I,ondon) A238,
269, 276 (1956).
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Hege H is the total Hamiltonian, In (2.11) we have the additional definitions

H =—V12 V22
2 2 2

+
yl y2 y12

L&' the total energy (in rydbergs; 1 ry= 13.6 ev),

Fl

(2 g) yi(»„«; 1)= r2 ui (r2)ul(rp)F2
ye+I g

t "ut, (rp)ut(rp)drp
+ri (2.12)

T1 y l+1

and

(2 9) 9 2 ( 9
ni(rt) =———e '"'~ ri'+ ri'+9—rt'

2 3 E. 2

E=—1+0',

and k2 is the energy of the incident electron. The
variational principle amounts to formally substituting
(2.1) into the Schrodinger equation, multiplying on the
left by Cp(ri)+C'&'n(ri, rp), and the integrating over
all coordinates but ri (indicated here by dri '). One
can readily see that this procedure will give rise to
terms quadratic in O'I"". Such terms are not in accord
with first-order perturbation theory. ' Consequently
we will modify the variational approach and obtain our
final scattering equations by projecting the Schrodinger
equation on the known part of the asymptotic wave
function4:

27 27 27 ).+~i'+~i+—
I (2 13)4)

&ip*(Qt)C'p*(rp) (H—E)% (ri, r,)dr,—'=0. (2.10)

The integration of (2.10) is straightforward and
yields the scattering equations for arbitrary /:

d' l (l+1) t' 1 )+ 2e '"—
~

1+—
~

—k' ui(ri)
dri ri ( ri)

Hut, (rt) —(1+4 )lip I ui, (rp)ui(rp)drp

The scattering equation (2.11) has been arranged so
that the polarization terms are on the right-hand side
of the equation. The upper sign in these equations refers
to the singlet scattering, and the lower sign to the
triplet.

We shall have occasion to mention two sets of equa-
tions in addition to (2.11). The first is the "exchange
approximation, " obtained by dropping the right-hand
side of (2.11).The second includes only the first term
on the right-hand side. We shall refer to this as the
"exchange-adiabatic" approximation. We shall also
use this name to refer to calculations in which this
6rst term is replaced by other assumptions about the
form of nt(r)/r' providing they have the form n,/r4 at
infinity. Both the exchange and exchange adiabatic
approximations have been previously used by others,
and they are discussed in reference 2. The solution of
the complete equation (2.11) corresponds to the method
of polarized orbitals.

The terms multiplied by the &sign on the right-hand
side of (2.11)are the exchange pola, rization terms, which
arise because C'&"&, like the nonpolarization part of
+, occurs with its arguments interchanged in (2.1).

2
+ yi(ui„ui ', 1)

2l+1

0!1 y1
ul(rl)+ui (rl) p (I+lp )~tl

y 4

X„
t."ui, (rp)ui(rp)

y k+2

(l+1)ri'+'

(2l+1)(2l+3)

r" ui (r2)ul(rp)«p

ul (rp)ui(rp)drp " l
X +4 ri—i

~l y2 (2l+1) (2l—1)

3. TECHNIQUE OF NUMERICAL SOLUTION OF
THE SCATTERING EQUATIONS

In describing the numerical methods of integrating
(2.11),we shall confine ourselves to the s-wave equation.
The l&0 equations are handled in essentially the same
way. This equation can be written /we suppress the
subscript 0 of up(r)7.

~i(r)—2e '"~ 1+—
~

— u(r)
dr' E r) r4

1
Sre " Ct+- rpe "u(rp)dr&r. .

k+4

ui (&2)ul(&2)F2
W-', rire —"~bit ~ . (2.11)

J„1 y2'

4 The variational principle gives rise to an'„integral like (2.10)
with Cp*(rs) replaced by C p*(ru)+Cp'"&(r&, r2).

xc—t "e—"w(rp)drp-

y2'

8
e "'u(rp)drp ~e '(-', r'+&')

Jo 3

=0. (3.1)
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The constants C~ and C2 are given by

f
Cr= $1——,'(1+k')raje "u(r2)dr2,

0

C2 —— e—"r2-'u(r2) dr2.

(3.2)

where

Ogu&o (r)

d' ( 1) &rr(r)
2—e '"-) 1+-

i
— —k' u&'&(r)

dr' & ri r4

p F r"
gyc r —

I y2c t'au&o—(y )&fy I c—r2u&o (y )&fy2 2 2 2

The last square bracket of (3.1) is just the integral
f„"e "r2 'u(r2)dr2. Since u(r2) describes an s wave
fu(r2) ~ r2 as r2~ 0j, the integral is seen to diverge
as r ' (as r~0). However the factor on its left in
(3.1) goes to zero as r'; thus the product is zero in that
limit. In practice the integral was broken up as in the
last square bracket (3.1) with e=2h, k being the mesh
size. This is exact; however the portion of the last
integral for r(e was neglected, the justification for this
being the preceding argument. A meaningful phase shift
must be independent of e, and this was tested by
varying h.

We found the procedure as described above quite
satisfactory for the p- and d-wave equations using the
trapezoidal rule for integrating the cumulative integral.
In the case of the triplet s-wave equation, trouble was
encountered with the trapezoidal rule. This difhculty
was eliminated by replacing the divergent r2' denom-
inator in the last integrand of (3.1) by (r2'+5). In
spite of the crudeness of this device, the phase shifts
were found to be virtually independent of 2 when 5
was varied between 0.01 and 0.5.

The usual way of solving an equation like (3.1) is
to take a guess at the constants, evaluate u(r), evaluate
the constants on the basis of u(r), and iterate the
procedure until convergence is obtained. Our experience
in these matters indicated that the convergence can be
slow and erratic even in the equations corresponding to
the exchange approximation. The presence of the
exchange polarization terms made it practically imposs-
ible to obtain (by iteration) a fully convergent u(r).
Therefore we shall describe a slight generalization of
a method due to Omidvar' which completely avoids the
iteration problem.

Let u(r) of (3.1) be written

u(r) =u&c~(r)+C u&o(y)+C2u&2i(r) (3.3)

where Cr and C2 are those of (3.2). We assert that (3.1)
is equivalent to the three equations

Ozu&e& (r) =0, (3.1a)

O~u&ri(r)Agre "=0, (3.1b)

o+u"'()~L—(g/ ) '(-'y'+ ')3=o, ( 1 )

'K. Qmidvar, New York University Research Report No.
CS-37 (unpublished). We are indebted to Dr. Omidvar for sending
us a copy of his report and discussing his method with us. This
method was also developed independently by I. Percival and
R. Marriott. LSee R. Marriott, Proc. Roy. Soc. (London) 72,
121 (1958).j

8
+~c "(2y'+y') ' e-"u&')(r,)r dy, .

3

To prove the assertion, multiply (3.1b) by Cr and
(3.1c) by C2 and add these equations to (3.1a) to
obtain (3.1).

The important thing about (3.1a, b, c) is that they
are uncoupled linear equations, each of which can be
integrated out from the origin as any ordinary differen-
tial equation.

The method of solving such equations is straight-
forward. One expands about the origin in the form

u&o~r p aa or'.

The method of obtaining recursion relations for the
ao(' is very well known. ' Each ao"& eventually depends
only on ao'". This coeKcient is arbitrary corresponding
to the arbitrariness in the normalization of the homo-
geneous equation (of which the phase shift is independ-
ent). We evaluated the 6rst few a&") analytically from
which we could also evaluate the starting values of I("
necessary for the outward numerical integration of the
diGerential equation. A similar procedure was used on
the inhomogeneous equations. The basic mesh was
taken as k=0.05 and the equations were integrated to
r=20.

When the u&" (r) have been determined, the C, and C2
can be determined as follows: Formal substitution of
(3.3) into the two equations (3.2) yields two equations
for Ci and C~ whose coefBcients are integrals over the
functions u&') (r). These integrals can be evaluated once
the u&@(r) have been found, and the inhomogeneous
equations for C& and C2 can be uniquely solved for C&
and C2. With these known values, the 6nal function
u(r) can be found from (3.3).

The phase shift in the case of an arbitrary angular
momentum wave can be found from the formula

, I Jt(kr)i ( st
at=tan 'I

)
Jlt'~+Qa. +tan '( —

i (3 4)( yt t(kr) ) Ef,—A,) '

which, as is well known, is independent of r for values
of r beyond which the potential is negligible. ji and e&
are the regular and irregular spherical Bessel functions

~ D. R. Hartree, The Calculation of Atomic Structw es (John
Wiley R Sons, Inc. , New York, 1957), p. 81.



AP PL I CATION OF M ETHOD OF POLARIZE D ORB I TALS

defined in Morse and Feshbach. 7 sg and A~ are functions
of x= kr defined in Blatt and Weisskopf. ' f~ is r times
the logarithmic derivative of the scattered function
N((r):

r(d/dr)N((r)

N((r)

The arctangents in (3.4) are to be taken between
—s./2 and 7r/2. 1V is the number of nodes in n~(kr); Q
is the number of times (as a function of r) that the
function ft ht ch—anges from positive to negative sign. s

The scattering lengths that we 6nally obtained using
this procedure are practically the same as those obtained
by us some time ago using the iterative method of
solution "

4. RESULTS AND DISCUSSION

TABz.z I. S-wave phase shifts in radians.

Singlet (+) Triplet ( —)
Exchange Polarized Exchange Polarized

k Exchange adiabatic orbital Exchange adiabatic orbital

0a
0.01
0.05
0.1
0.2
0.3
0.4
0.5
0,75
1.00

8.10
3.0606
2.746
2.396
1.870
1.508
1.239
1.031
0.694
0.543

6.5
3.077
2.821
2.522
2.025
1.654
1.374
1.157
0,815
0.666

5.8
3,084 +0.001

2.855
2.583
2.114
1.750
1.469
1.251
0.908
0.758

2.35
3.1181
3.024
2.907
2.679
2.461
2.257
2.070
1.679
1.391

1.9
3.123
3.048
2.949
2.737
2.528
2.329
2.146
1.764
1.480

1.9
3.123&0.001

3.046
2.945
2.732
2.519
2.320
2.133
1.745
1.460

TABLE II. p-wave phase shifts in radians.

a The k =0 entries are scattering lengths. Our numerical results for the
phase shifts are uncertain by about 5 in the last place (except where
otherwise indicated). The scattering lengths are defined as the negative
of this quantity by many English authors. The exchange results for s and
p waves check those of Omidvar (reference 5).

Calculations have been carried out for s-, p-, and
d-wave scattering and the results are given in Tables I,
II, and III.

We shall discuss first the s-wave results. The s-wave
scattering lengths (a) may be deduced from the k = 0.01
phase shifts (5) using the well-known formula"

k Exchange

0.1 —0.0012
0.3 —0.0241
0.5 —0.0703
0.75 —0.1126
1.0 —0.1059

Singlet Triplet

0.0052
0.0232
0.0133—0.00059
0,0189

0.00481
0.0322
0.0392
0.0347
0.0428

0.00214
0.0511
0.169
0.304
0.358

0.0095
0.121
0.311
0.407
0.503

0.0090
0.098
0.245
0.390
0.453

Polar- Polar-
Exchange ized Exchange ized
adiabatic orbital Exchange adiabatic orbital

k cot5= —1/a+ +-'zrsk'+ (4.1)

rs is the effective range. [It is assumed that all terms
beyond the first term in (4.1) have a negligible e6'ect
on a at this energy. The significance of the dots between
the first and second terms on the right-hand side of
(4.1) will be explained below. ) For the polarized orbital
approximation these are seen to be c+——5.8 and a = 1.9
in the singlet and triplet cases, respectively. These are
slightly below the upper bounds set by Rosenberg,
Spruch, and O' Malley (RSO)." The remaining two
approximations give singlet scattering lengths which
are greater than the singlet upper bound. That the
exchange adiabatic approximation gives an a+=6.5 is
in marked contrast to the results of Staver" who

TABLE III. d-wave phase shifts in radians.

Singlet Triplet
Polar- Polar-

Exchange ized Exchange ized
Exchange adiabatic orbital Exchange adiabatic orbital

O. ia
0.3 —0.000570 0.0108 0.0113 0.000763
0.5 —0.00397 0.0249 0.0266 0.00698
0.75 —0.0123 0.0387 0.0456 0.0274
1.00 —0.0176 0.0493 0.0627 0.0555

0.0123 0.0118
0.0371 0.0350
0.0824 0.0746
0.128 0.112

a The d-wave phase shifts at k =0.1 were still changing significantly at
r =20. In all cases they were much smaller in absolute value than at k =0.3.
Recent calculations of the exchange-approximation d-wave phase shifts
by T. L. John (to be published) are in agreement with our results.

7 P. M. Morse and H. Feshbach, Methods of Thoretical Physics
(McGraw-Hill Book Company, Inc. , New York, 1953),p. 622.

J. B. Blatt and V. F. Weisskopf, Theoretical SNclear Physics
(John Wiley fk Sons, Inc. , New York, 1952), p. 332.

'Most references give formulas only for the tangent of the
phase shift. A phase shift obtained by inverting such a formula is
undefined modulo m. The absolute phase, which includes the correct
number of multiples of ~, is gotten by comparing u&(r) to the
unperturbed krj &(kr) from the origin to where u&(r) achieves its
asymptotic form. Multiples of ~ in the phase shift correspond to
extra nodes in N~(r) relative to krjg(kr). Formula (3.4) can be
considered an operational means of making this comparison to
get the absolute phase shift.

'P This solution was as close as we could come, using the iterative
procedure, to a self-consistent solution. The programming of this
approach was done by Mr. J.L. Hammersmith of the U. S. Naval
Research Laboratory, September, 1958.

"See reference 8, p. 62."L.Rosenberg, L. Spruch, and T. O' Malley, Phys. Rev. 119,
164 (1960).Their upper bounds for the singlet and triplet scatter-
ing lengths are a+=6.23ap, a =1.91ap, respectively. We should
like to thank Dr. Spruch for valuable discussions. These results
assume only that the H ion has one bound state, and this of
singlet spin."T.B. Staver, Arch. Math. Naturvidenskab 851, 29 (1951).

obtained a value of a+=3.47. His calculation corre-
sponds to the exchange adiabatic approximation with
the usual kind of polarization potential for r large; this
potential, however, approaches infinity (as —r ') as
r —+ 0. The small scattering length is therefore due to
the exaggerated strength of his polarization potential
near the origin. An apparently similar result was
obtained by Martin, Seaton, and Wallace'4 with a

"V. M. Martin, M. J. Seaton, and J. B. G. Wallace, Proc.
Phys. Soc. (London) 72, 701 (1958).The eGect of the polarization
potential V2, (r) on the exchange approximation scattering lengths
is proportional to Jp Vy(r)up (r)dr, where Np(r) is the s-wave
radial function. For Np(r) these authors used the "exchange-
approximation" function, whereas correctly one should use the
exchange-adiabatic Np(r) calculated with the polarization potential
V„(r). The s-wave function (in any of these approximations) has
a, node around r= 5. The effect of the added attraction V„(r) is
to pull this node closer to the origin and effectively decrease No(r)
in the region r = 1 to 5 where the main contribution to the integral
arises. The effect of the decrease is emphasized because Ns(r)
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polarization potential which in fact vanished at the
origin. This similarity of results led them to the conclu-
sion that the exchange adiabatic approximation itself
is no't good and overestimates the eBects of polarization
near the origin. We have indicated in footnote 14 that
MSW's result is due to an unjustified approximation in
evaluating the effects of the exchange adiabatic
potential rather than to the potential itself. The
similarity with Staver's singlet result is an unfortunate
coincidence. We therefore conclude, by virtue of the
closeness of our exchange adiabatic results with the
polarized orbital results, that the former approximation
can give quite satisfactory results with a judiciously
chosen potential. It is worth noting that MSW, using
a variational calculation with wave functions similar to
(2.1), have also obtained scattering lengths very close
to those in Table I. This corroborates the assertion
made in reference 2 that correctly symmetrized wave
functions containing the same kind of adiabatic distor-
tion at large distances will give rise to phase shifts
which are relatively insensitive to how these distortions
die o6 at small distances. This assertion, however,
must be restricted to s waves. The higher partial waves
become increasingly more sensitive to the form of the
adiabatic potential in the nonasymptotic region.

The fact that singlet exchange adiabatic result gives
a phase shift above the RSO upper bound, whereas the
polarized orbital result is be/om this bound is the best
indication we have yet had that the exchange polariza-
tion terms are meaningful. On the assumption that the
significance of these terms continues to energies greater
than zero, and on the basis of the result of Ohmura and
Ohmura (see below), we feel that we can justifiably

lim k cot8 = —7+-,' p7'+Of 74j. (4.2)

The quantities p and p may be deduced with great
accuracy from the Perkeris wave function of the H
ion."p is the square root of the H electron amenity;
from Perkeris' calculation y=0.2355883, and Ohmura
and Ohmura find p=2.646. The point of the Ohmura
calculation is to equate the above with the ordinary
effective-range expansion (4.1) in the limit k —+ 0. They

say that our s-wave phase shifts are correct to within
10%, and that the correct singlet scattering lengths
are probably between our result and the RSO bound.
The relative accuracy of higher partial waves is almost
certainly not so great. However, since the polarizability
causes a more drastic change in these results relative
to results in which no long-range polarization is in-
cluded, we feel that these results are also valuable. In
particular we are confident that the change in sign of
the singlet p- and d-wave phase shifts predicted by our
polarization calculations relative to the exchange
calculation is real. A quantitative justification for these
assertions obviously depends on a more rigorous
theory of scattering. A preliminary report of such a
theory has recently appeared. "

A singlet scattering length, a+= 6.17, has been
obtained by Ohmura and Ohmura. "Their calculation
utilizes a series expansion for k cot5 about the bound-
state wave function of the H ion. This is to be con-
trasted with the ordinary effective-range expansion
which is about the zero-energy scattered wave function.
The former may be written

SINGLET

I.5—
~INGLET

mTAL

k ~ .5 ( E ~3.4 ev)

cu
O

U

80—
O0

40

5—
'lQ

'

I

0
(.542 ) (2.166) (4.8 74 ) (8.666) ( I3.54 ) E

Fro. 1. Polarized orbital integrated cross sections vs k. (k' is
the energy of the incident electrons in rydbergs; 1 ry=13.6 ev.)
Results include s-, p-, and d-wave phase shifts.

appears squared in the integrand. We have utilized our own
exchange-adiabatic functions in this integral and found that the
integral is decreased enough so that the exchange scattering
lengths are in approximate accord with our exchange-adiabatic
results.

7r 7r 7r
6 4 2

8, RADIANS

27r 37r 57r
3 4 6

Fro. 2. Poj orbital differential cross sections, do/dQ,
for k=0.5 (k~=3.4 ev),

"A. Temkin, Phys. Rev. Letters 4, 566 (1960). Dr. Bederson
has informed us that his group intends to measure the spin fHp
cross section. This will allow for the determination of the relative
sign of the singlet and triplet phase shifts."T. Ohmura and H. Ohmura, Phys. Rev. 118, 154 (1960).
This work is based on T. Ohmura, Y. Hara, and T. Yamanouchi,
Progr. Theoret. Phys. (Kyoto) 20, 82 (1958).

'7 C. L. Perkeris, Phys. Rev. 112, 1649 (1958).
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& ~ .75 I E * 7.65 ev I

IPL ET

IL = I.O (K* 15.6ev)

1.6—

TRIPLET
2.P«~

TPTAL
O Of

O
O

1.2

bt. IP

2

8, RADIANS

2v 3a 5~
3 4 6

FIG. 3. Pol. orbital differential cross sections for
&=0.75 (u&=7.6S ev).

get the above value for a+, and from (4.2) one would
expect the error in a+ to be of the order of p', which
would be of the order of one percent. Spruch, O' Malley,
and Rosenberg" have shown that if one considers the
scattering of a particle from an n,lr' potential, then, in
the effective-range expansion, ro becomes infinite. This
is indicative of the fact that the eRective-range expan-
sion is altered and a term proportional to k appears
between the constant and quadratic terms in (4.1). It
has not been shown that the same thing holds in the
electron-hydrogen case, however if an n/r' term
appears in the potential for the scattered wave (and
this is a basic consequence of the method of polarized
orbitals), then it is extremely likely that a similar
alteration will take place in that case also. The appear-
ance of the k term is of course indicative of the series
(4.1) being slowly convergent. In the limit that T ~ 0,
however, the two series, (4.1) and (4.2), become
identical. Since y is in fact small, the series cannot be
too different, which would indicate that (4.2) is also
slowly convergent. We therefore expect that the error
in Ohmura's scattering length is of order y, i.e., of
about 5&.

The polarized orbital phase shifts are larger for all
partial waves than those corresponding to the exchange
approximation. In the case of the s waves this means
that the phase shifts are closer to z, thus the predicted
cross-section curve (I'ig. 1) is lower for small energies
than the exchange approximation results and those of
some of the more elaborate calculations in which no
long-range polarization was included. "Figure 1 contains
the p- and d-wave contributions also, but their effect
is small at these energies. The total cross section, o-t,t,~,

is related to the singlet (a,) and triplet (ot) cross

"L.Spruch (private communication). (See footnote 12.)"B.H. Bransden, A. Dalgarno, T. L. John, and M. J. Seaton,
Proc. Roy. Soc. (London) A70, 223 (1957) contains a fairly
complete list of references.

2

e, RAD(ANS

FIG. 4. Pol. orbital deferential cross sections for
k=1.00 (k'=13.6 ev).

sections by
rrtotal= s (3rrt+rra) ~ (4.3)

"S. J. Smith and D. S. Burch, Phys. Rev. Letters 2, 165
(1959); Phys. Rev. 116, 1125 (1959).

2'R. T. Brackmann, W. L. Fite, and R. H. Neynaber, Phys.
Rev. 112, 1157 (1958), hereafter referred to as BFN.

~ B.Bederson, H. Malamud, and J. Hammer, Technical Report
No. 2, Electron Scattering Project, College of Engineering, New
York University (unpublished). This will be referred to as BMH.

All of these cross sections are in principle measurable.
The p-wave phase shifts are small, as they are in

most of the other calculations so that distinguishing
the p-wave predictions of various calculations on the
basis of scattering experiments will probably be a long
time in forthcoming. Some information about the singlet
p-wave shifts from the photodetachment of electrons
from H may be attainable. However, since that cross
section is much more sensitive to the ground-state
wave function of the H ion, conclusions about the
phase shifts determined from presently available
continuum functions on the basis of the agreement of
calculated results with experiment" would seem to be
unwarranted.

The d-wave calculation was made to test whether
these phase shifts were large enough to explain the
apparent discrepancy between the experimental results
of Brackmaon, Fite, and Neynaber" and Sederson,
Malamud, and Hammer. " As was explained in II, a
large d-wave phase shift could interfere destructively
with the s wave in the cone of observation of BFX to
explain their small observed cross section but interfere
constructively in the remaining parts of the scattering
sphere to explain the resonance in the observations of
BMH. Our calculated phase shifts are at least an order
of magnitude smaller than those required to explain
this discrepancy. ' Nevertheless they are many times
larger than those of the exchange approximation. (In
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the triplet spin state they are of opposite sign. ) This
demonstrates very vividly that the long-range polariza-
tion potential has a proportionately larger effect on
the higher partial waves. The results are in accord with
the argument of Bransden et al. ,

" that the dipole
polarizability make the 1&0 phase shifts approach
zero as k' (as k —& 0) rather than k"+' as predicted by
the Born approximation with no r-' potential present.
The (relatively) large d-wave shifts, although they do
not indicate any resonance in the total cross-section
curve, do give considerable structure to the differential
cross section even for as low an energy as 3 ev (see
Figs. 2, 3, and 4).

(After this work was done, measurements of the
angular distribution were completed at General Atomic
Division of General Dynamics by Gilbody, Stebbings,
and Fite." We are indebted to them for advance
communication of their results. Both the shape and
absolute values of their angular distributions seem to be
in satisfactory agreement with our differential cross-
section curves. A more detailed analysis of this experi-
ment and the ability to estimate the error in the
absolute value may allow one to distinguish between
the polarized orbital results and other calculations. )

+H. B. Gilbody, R. F. Stebbin s, and W. L. Fite, following
paper LPhys. Rev. 121, 794 (1961) .
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Col]isions of Electrons with Hydrogen Atoms. VI. Angular Distribution
in Elastic Scattering*
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The angular distribution of electrons scattered elastically by hydrogen atoms has been determined for
electron energies below l0 ev. The elastically scattered electrons arising from the interaction of crossed
electron and modulated hydrogen-atom beams were examined over an angular range extending from 30'
to 120'. The results are discussed with reference to other recent experimental and theoretical developments.

I. INTRODUCTION

HE elastic scattering of electrons by atoms and
molecules has been of widespread interest for

many years, particularly in the fields of astrophysics
and gaseous electronics. Following the development of
quantum mechanics in the mid-1920's, it was natural
that the elastic scattering of electrons by atomic hydro-
gen should become the subject of many theoretical in-
vestigations. The wave functions of the target atom are
completely and exactly known, so that calculated cross
sections should be somewhat more accurate than in
more complex scattering problems. A review of the
theoretical work on this problem, however, reveals a
considerable variation in results, depending on the
scattering approximations used in the calculations.
Clearly, it was desirable to carry out experiments on
elastic scattering by atomic hydrogen to determine
which of the calculations were superior.

The chemical instability of the hydrogen atom made
experimentation in this area difBcult, but by 1955 the de-
velopment of modulated-beam techniques and crossed-
beam experiments permitted the first experimental
studies to be made. In these experiments a beam of
atomic hydrogen, produced either by thermal dissocia-

*This research was supported by a joint General Atomic-
Texas Atomic Energy Research Foundation program an controlled
thermonuclear reactions.

tion in a tungsten furnace or in a high-frequency gas
discharge tube, was crossed with a beam of electrons,
and the electrons scattered by the beam were detected.
These electrons gave rise to a signal which occurred at
the beam modulation frequency and in a specified phase,
while electrons scattered by the background gas gave
rise to a dc signal plus noise at the modulation frequency.

The first experiment, to measure the cross section
for scattering of electrons at angles greater than about
7', was carried out by Bederson, Malamud, and
Hammer' (BMH). The results of their experiments were
surprising, in that they exceeded all of the theoretical
predictions.

This immediately refocused attention on the elastic-
scatters'ing problem, and a fundamental question arose
in regard to the scattering theory. This question con-
cerned the role of the partial cross sections higher than
the s-wave cross section. At low energies the quantiza-
tion of angular momentum dictates that partial cross
sections for l&0 be rather small, and most of the theo-
retical work prior to 1958 had been carried out for
s-wave contributions only. It was conceivable that
higher partial cross sections were significant —that for-
ward scattering could be more prominent than had been

' B. Bederson, H. Malamud, and J. Hammer, Bull. Am. Phys.
Soc. 2, 122 (1957). See also New York University Technical Re-
port No. 2, 1958 (unpublished).


