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Thermodynamic Green's Function Methods in Neutron Scattering by Crystals~
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Formulas are derived for the transition probabilities per unit time for both inelastic coherent scattering
of neutrons by crystals, and resonant emission of photons and neutrons by nuclei bound in crystals, without
making the assumption that the crystal is harmonic. In deriving these transition probabilities, the analytic
structure of thermodynamic correlation or Green's functions, considered as functions of complex tempera-
tures and times, is developed and used. In particular a spectral form is found for the phonon Green's func-
tion. Only one assumption is made about the crystal, namely that the displacement of the nuclei due to the
forces exerted by the neutron in scattering are linear functions of these forces. This leads to an evaluation
of the transition probabilities in terms of the exact thermodynamic displacement autocorrelation function.
This evaluation obeys the detailed balancing condition, and Placzek s sum rule. A consequence of this evalua-
tion is that the widths of the "one-phonon" peaks in the neutron scattering are exactly equal to the widths
of the corresponding phonon states of the crystal.

I. INTRODUCTION

EVERAI authors' have derived expressions for the

~

~ ~

transition probabilities for inelastic coherent scat-
tering of neutrons by crystals, and for resonant absorp-
tion and emission of neutrons and photons by nuclei in
crystals. These have been derived under the assumption
that the crystal is harmonic, i.e., that the displacements
of the nuclei from equilibrium may be described by a
set of independent harmonic oscillators. In an actual
crystal, however, the harmonic oscillators are not inde-
pendent, and the phonon states therefore have finite
lifetimes. The effects of these lifetimes on the cross sec-
tions are not seen in the harmonic approximation. Thus
it would be desirable to avoid this assumption and to
derive an expression that shows how the transition
probabilities depend on the more exact structure of the
phonon field in the crystal. It is the purpose of this
paper to show how such an expression may be obtained.

By making the approximation that the crystal re-
sponds linearly to the forces exerted by the neutron in
scattering, we shall derive an expression for the transi-
tion probabilities in terms of the exact thermodynamic
displacement auto correlation function, or phonon
Green's function. To do this we shall use the analytic
structure of thermodynamic correlation functions' con-
sidered as functions of complex temperatures and times,
together with variational derivative techniques of
quantum 6eld theory.

We consider for simplicity a monatomic crystal de-
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scribed by an infinite Bravais lattice of fixed vectors,
g, h, ~ ~ . Each of these lattice sites is taken to be the
rest position of a nucleus with mass 3f. The small dis-
placements of the nuclei from equilibrium will be de-
scribed in the Heisenberg representation by the vector
field P, (t); then the nucleus whose rest position is g
will be at the point g+ Pa instantaneously. The Hamil-
tonian of the crystal we call B, and we set @=1.

First we outline the general aspects of the problem of
inelastic coherent scattering of neutrons. The total
transition probability W(&e) for inelastic coherent scat-
tering of a neutron from initial energy E„, initial mo-
mentum k, to final energy E„oi and final mo—mentum

k, by a crystal with initial energy E;, is given in the
Born approximation by

JV(re) =2'(E; l Vtl(E, +oi II)V lE,), —

l
E,) is the initial energy eigenstate of the crystal. V is

the matrix element between the initial and final neu-
tron states of a pseudopotential with scattering length
a appropriate to coherent scattering of neutrons by
nuclei of the crystal:

27r8
V= "e—"'P — 8(r—g —y )e'"'d'r

2' 8
2-pLsK (g+~.)j, (2)

m is the neutron mass, and K= k—k' is the momentum
lost by the neutron. The matrix element V still con-
tains the displacements, P, as operators. We then have
for the transition probability per nucleus

(2ira) '
W(K,M) =

l l P (E, [expl —iK (g-+y, )j
( tie i

The displacements ps and ps are at the same time in
this expression. However, using e' " "'P(t')e '"" "'
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= P(t), (3) may be written as

W(Kp))

(2m'8 )
( Q expLiK. (h —g)] ~ Ct e'"~' ')

)&(E;(expL —iK p, (t)] expLiK. pq(t')]
)
E',). (4)

Instead of an initial state of fixed energy for the crystal,
we must take a thermal average of states of definite
energy. The thermal average, for temperature T, of the
expectation value of an operator X is given by

(X)t'=Tr(e—t'~X)/Tr(e ~~))

where P= 1/ET, and the trace is over a complete set of
states of the crystal for which the number of nuclei is
fixed. We shall assume that the presence of the decreas-
ing exponential function of energy, e i'~, is sufhcient
to guarantee that for any operator X, whose diagonal
matrix element (E;~X~X;), between states of fixed

energy, is not an exponentially increasing function of
energy, Tr(e &~X) converges absolutely, i.e., P; e ss*'

After we take a thermal average 8' becomes

Wt'(K, a))

f' 2mB)
~ p exp) —iK (g—h)] Ct e'"(' ')

&m)

&&(exp)—iK y, (t)] expgiK pg(t')])t'. (6)

The transition probability is thus given in terms of the
correlation function (exp) iK P~(—t)] expLiK Pq(t')])&
which depends on only the crystal dynamics and the
momentum K, transferred to the crystal by the neutron.

tive P, it follows that D&", which may be written as

1 Trfe "&' ')~P, , ;(0)e "~Pq .(0)]
D, ; (g,h, t) =- (1o)

Z Tr (~ i rH)—

converges, and hence is an analytic function of 7 for y

in the lower half plane. In addition, the traces still
converge if we give t an imaginary part such that
0~) Imt) Imr. Therefore D&"(t) is analytic in the strip
in the t plane defined by 0&Imt&Imr.

This analyticity in r and t holds for any ensemble
average of the form:

Later we shall evaluate

(expL —iK 4.(t)7 expLiK 0~(t')])"

for complex r and a limited time region, and then, by
analytic continuation, infer the desired evaluation for
both purely imaginary r (i.e. , real P) and the entire
real time axis.

From the cyclic property of the trace,

Tr(ABC) =Tr(BCA), etc.,

we deduce the boundary condition on D~.

D&, ,,"(g,h, t) =D&,;,"(h,g, 7 —t), 0)&Imt) Imr. (11)

Equation (11) becomes a simple condition on the
Fourier transform of D) in the strip 0~&Imt&Im7-.
Since D& is bounded in the strip, the Fourier transform
exists in the generalized sense along every line in this
strip parallel to the real axis and along the real axis.
Hence

00 4M
D . .)~(g h t) =, ~ g-)~)d) . )~(g h ~)—

II. THE PHONON GREEN'8 FUNCTION and from (11) we have
0)Imt) Imr, (12)

Our principal object is to calculate the correlation
function (exp/ —iK P~(t)] exp/i K Pq(t')])s in terms of
the phonon Green's function D. This is defined by

d& )"(g h, (o) =e*"'d);,"(h,g, —(o). (13)

From (9), the Fourier transform d(cu) of D for real t is
given by

D"(g,» t—t') —= —i((4., '(t)4 ~, (t'))+)', (7) c")~(g h ~) = l g)~&dt c ")~(g,h ~')~—)~'&

0 ~ 2x

0 r /co
+ ~ ~)))tdt d), ;,"(h,g, —a&')e—'"'

2x

where ()+ denotes the time-ordered product. For a
crystal that is not acted on by time-dependent external
forces, D is a function of t—t'. We may derive a spectral
form for D by considering the function

D.,.;~(g, h, t) —= —(~..;(t)e.,;(0))~,

in terms of which

D&„,s(g, h, t), t)0
D,,t'(g, h, t) =

D, ,;,t'(h, g, t), t(0. —

pc& d&, ;) (g) h)Q) )

2s &u u'+ie—
pcs'd); '(h, g, —cv')

(14)
2' M GO

Let us introduce the variable r = —iP. From the assump-
tion of absolute convergence of the traces for real posi-

Introducing the function

2, ."(g,h,ca)—=i(1—e "")d) ' (g hco)



THERMODYNAMIC GREEN'S FUNCTION METHODS 743

we have, from (13),

~du)' Ag" (g, h, (u') 1
dg" (g, h, co) =

2x co+ie —(v' 1—e '""

To invert these transforms we use the formula

p' d'k
0 ' — exp( —ik g) =bgo,

(2m)'
(25)

pd(o' A; '(g, hp)') 1
(16)

~ 2~ ~—ie—~' 1—e'-"

Since 1/(&v&ie) =P(1/cv)&7ri8(~), (16) is equivalent to

d't" (g, h,~) =

where the Green's function 6 of the complex variable s
is de6ned by

I
d(o A; '(g, h, co)

a,, ' (g, h, s) =
27K s —M

The phonon Green's function d(&v) is thus a linear
combination of boundary values of A(s).

We note that the spectral weight function A (g,h, a&)

is just the Fourier transform of the displacement-
displacement commutator:

where 0 is the volume of a unit cell of the crystal, and
the prime means that the integration is carried out only
over the first Brillouin zone. Thus, for example,

1 dk
D; '(g, h, t) =Q pL'k (g—h)]D,,'''(k, t) —. (26)

(2n)'

From the Green's function h(s), one may deduce the
polarization and frequency versus wave number de-
pendence of the low-frequency lattice oscillations, or
phonons, and in addition the lifetime of these oscilla-
tions. The frequencies of the undamped phonons are
found from the poles of A(k, s). We may see this in the
following:

From (10) and (15) we may write A(k, cv) as

since the displacements commute at the same time.
Also, using the equal-time commutation relations of
momentum w'ith displacement, we find

f dM d iT

M(uA—; '(g, h, (o) =i M @,, ;(t),y—(ht)
~ 2x dI

=&ghee (21)

since M(d/dt)pe, ,(t) is just the momentum conjugate
to y, „(t).

The symmetry A;, (g, h,ao)= —A;;(h, g, —co) follows
obviously from the antisymmetry of the commutator
in (19). From the inversion symmetry of the lattice,
and the fact that A depends only on the difference g—h,
we then have the symmetry

A,;(g,h, a)) = —A;;(g, h, —a&). (22)

In addition to Fourier transforms in time, we intro-
duce spatial Fourier transforms:

D "(k,t)=P, exp) ik (g—h—)jD; '(g, h, t), (23)

and

A "(k or) =Q, exp L
—ik (g—h) jA "(g h ar). (24)

From this form of A we may deduce two sum rules,
and a symmetry relation. If we integrate both sides of
(19) over all frequencies we find

f' dc'—A, '(g, h, (u) =(Ly,„(t),yh, ,(t)1)"=0, (20)
~ 2x

where l represents the eigenvalues of the rest of a com-
plete set of observables compatible with the energy.
Then the absolute convergence of the trace, together
w'ith the positive definite structure of the operator
PN;, j5 (H E (0)g h,j implies that the integral of A (kpi)
over all frequencies is absolutely convergent. Hence
A(k, s) is analytic off the real s axis; consequently its
possible poles are on the real axis and arise from the
delta functions of A (k,ar).

It is clear from (27) that A will have a delta func-
tion whenever, for some 2, and for all

~ Ef),
(X Ph exp(ik h)gh) ~Ef) is a discrete energy eigen-
state of the crystal. The energy difference between this
state and

~

Ef') may then be regarded as due to the addi-
tion or removal of a single quantum of lattice oscilla-
tion. 2 is the polarization vector of the phonon. For an
actual system, one will not have sharp delta functions,
but rather will have resonances, the widths of which
correspond to the lifetimes of the phonon states. '

III. METHOD OF EVALUATION

I.et us add to the Hamiltonian, H, the term

Z. J.(t) 0.(t),
which represents the interaction of each nucleus in the
crystal with an external time-dependent force J,(t).
We then define, for Res.&0, an expectation value be-
tween states at time )=0, and t= Re7".

(r)X(0)~—=P (Ef, t=Rer~X~Ef, t=0)eE™.(28)

' A more complete account of the properties of the phonon
Green's function, as well as an approximate evaluation of it for a
model of a metal, will be published elsewhere.



The eigenvalues L, { are those of the unperturbed
Hamiltonian and the rest of a complete set of observ-
ables compatible with the unperturbed energy. We shall
assume that these observables do not depend explicitly
on J.Thestate IEf', t=Rer) is that into which IEl, t=o)
develops in the Heisenberg representation, under the
dynamics of the full Hamiltonian, H+Pg J,(t) JZJ, (t)
In the absence of the external force, i.e., J=—0, we have

&Eg, t=Rer
I

= (Ef, t =0
I
e '~ "" (29)

so that (rIXIO)J reduces to Tr((; "JJX) when J=O.
We will now show how to express thermal averages

of time ordered functions of the nuclear displacement,

P, as variational derivatives of &rlo) with respect to J.
The variation () J&EJ{iti

I E~{2t2& in a transformation
function &Eif'itilE2{ &t&) induced by the change in the
dynamics due to a variation of J in the Hamiltonian
is given by'

() J&E){iti
I
E2f2t2)

-EI 1~1
~

' ~ g ~ g ~ +2 2~2
g

The variational derivative, [()/() J (t)7&Eif'itilE~{~t~& is
then the coefFicient of t') J,(t) in the right side of (30).
Thus

We have used () J(E3{3tlp(t) IE4$4t)=0, since all the
times in this matrix element are equal, so that it does
not depend on the dynamics, and neither P nor the
operators whose eigenvalues define the states depend
explicitly on J. Hence

[~/~ J.(t') 7['~/~ J,(t)7&. l
o&

= —( l(y. (t)tt (t'))+Io), Rer)t, t')o (33)

When the external force is set equal to zero, the right
side of (33) clearly becomes the Green's function
D"(g,h, t—t') times Tre "~.

By successive applications of the procedure used to
derive (33), we may prove that.

n n

(II &/&~, '(t'))& Io&=& I(II tt. , '(t')) Io&,
i=1 i=1

Rer) t,)0. (34)

This may be further generalized from polynomials to
arbitrary time-ordered functions of P. Thus, to evaluate
the thermal expectation value for complex P, of a time-
ordered function of the displacement coordinate, P, we
need only evaluate &r I 0) in terms of J, then apply the
appropriate variational derivatives, and finally set J
equal to zero. In particular, if JJ'(t) is a c-number
function,

P/s J,(t) 7&E,{-,t, I E,{-,t,)
—t(EJ{itil Pg(t) I

L2$2t2)J ti)t) t2

0, otherwise.
(31)

Rer

exp
l

J', p-
z ~,

naer

't r

) ~

In particular

()&r lo) J/()J, (t) = —i&r
I 4, (t)10)J, Rer) t) 0. (32)

The second variational derivative [()/i) Jh(t')7[()/I) J,(t) 7
X(EJ{iti IEQ{2t2) may be calculated from (30) and (31)
by adding two complete sets of intermediate states at
time t, i.e.,

P/»g(t) 7(EJ{'itiIE2f2t2)

(E { t
I
E { t)(E { t

I 0.(t) IE {.t)
IJ'3l'3&404

X(E4f4tl Rf2t2),

and using the product rule for differentiation. Thus,
varying J in the Hamiltonian, we find

s J{P/sJ,(t)7(EJ{.,t, IE,{-,t&}

= —~ 2 (&.(E { t. lE {.t&)(E {-

tlat.

(t) IE.{.t.)

—z P (Ei{iti
I dg (t) I

E4{4t) (t)J(E4«t I E2{~t2&)

exp P
~o

dt JJ'(t) [()/()JJ(t)7 &rlo)J

x((.lo),)-. (33)

=( Io& /& Io) (36)

Read backwards, (36) is readily recognized as the usual
formula for the transformation function &rlo) J in the
interaction representation.

For the case of neutron scattering, we want to evalu-
ate (36) with the external force J taken to be

We can easily carry out the variational differentia-
tions in (32). This is because the eGect of the exponenti-
ated ()/()JJ is to induce a translation of JJ(t) by the
amount JJ'(t) in the functional, (r 0)J, to its right.
Once we have carried out the translation, J may be set
equal to zero. Thus we find

(
~ReJ iT

expl i p dt tt)(t) JJ—(t)l

&404 J,(t")= KP„&(t—t")—s„s(t'—t")7,
0(t, t'(Rer, (37)

since with this force, the left side of (36) becomes
=(—J)'(R J t, x(P,(t)P,(t'))~ JJ,(f)ch E(i). '

h

4 See J. Schwinger, Phys. Rev. 91, 713 (1953),for further details. (( p[—I 4.(t)7 p[~K 0 (t')7)+)".
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We see then that what we must calculate is the trans-
formation function that describes the response of the
crystal to a force that imparts momentum K to the
nucleus at g at time t and momentum —K to the
nucleus at h at time t'. This force, of course, is just that
exerted by the neutron when forward scattering in the
second Born approximation. We turn then to the prob-
lem of finding an explicit evaluation of the transforma-
tion function (r

~
0) «

We shall evaluate (r ~0)z by making the approxima-
tion that the nuclear displacement [that is defined by
(T ~ P («)

~ 0)/(r ~ 0)] induced by an external force Jh(«'),
is a linear functional of that force. The statement of
linear response is just the statement that if one force
produces a certain vibrational excitation, and a second
force produces a second excitation, then the excitation
produced by the sum of the two forces is just the sum
of the two individual excitations. What we are assuming
then is that the crystal possesses a spectrum of vibra-
tional excitations, or phonons, that may be additively
excited or de-excited by the external force. In other
words, the individual phonons created or absorbed by
the external force are taken to develop in time in the
same way as would a single phonon interacting with the
crystal at temperature ir. We make no assumptions
about this time development —it is described by the
phonon Green's function D, or alternatively, by the
spectral weight function 2 (cu). It should also be pointed
out that the assumption that the crystal responds
linearly to external forces does not imply that the in-

ternal interparticle forces in the crystal are themselves
linear, or harmonic, forces. On the other hand, for a
harmonic crystal our approximation is exact.

As we have seen, the validity of the approximation of
linear response in the case of neutron scattering depends
on there not being significant interaction between the
particular phonons created or absorbed by the neutron
in passing through the crystal. Furthermore, the ap-
proximation may be expected to break down when the
energy transferred to the crystal by the neutron is
comparable to the characteristic binding energies of the
crystal.

The linearity assumption is equivalent to the assump-
tion that P/8Jh(t')][(r

~
Pg(t) ~0)/(v ~0)] is independent

of J, or alternatively, that it is satisfactorily approxi-
mated by its value for J—=0. Now, on the one hand,

[a/a J,(~')][&.
I y. («) lo)/& lo)]

«(r
~ (0 (~) '0h(«))y

~
0&/(«'

~
0)

—«L&. I I,(«) I o)/&. I o)]L&.I y, («')
I o)/(. I o)],

0(t, t'(Rer,

and the right side for J—:0 is just D"(I«,h, t—t'). On the
other hand, from (32)

&rI y. («) Io)/&BIO)=«[~/»g(«)]»&BIO), (39)

so that we find the approximate equation for («
~
0&:

«[&/&Jh(«')][~/&J, (t)] ln(r~0)=D (g, h, t t'). (4—0)

This has the immediate solution

RGT

(r ~0&z=(r~o)&exp —Q J,(t) D"(g h « t') Jh(«')d—«dt' .
2z gh 40

(41)

The linear coefficient of J in in(r ~0), which from (39)
equals (Q) J =0", vanishes because the P's are the dis-
placements from the nuclear equilibrium positions.

IV. NEUTRON SCATTERING

From (41) and (36), using the force given in (37),
we find

((exp[—iK P, (t)] exp[«K Ph(t')])~)"
=exp[—((K P)'&'+iK D"(g,h) t t') K]. (42)—

Let us consider t' —+ 0. Then for Rex) t) 0, we have the
relation

(exp[—iK P, («)] exp[«K Ph(0)])"
p[—&(K 0)')"+K.(0.(«)0 (o))"K] (43)

Both sides of (43) are boundary values of functions of

3 analytic in the strip 0)Im/) Imr. Hence (43) must

hold everywhere in the strip, since an analytic function

is determined uniquely by its boundary values in an

open set of a line segment of its boundary. This latter

theorem is a consequence of the Schwarz reAection

principle.

We now take the boundary values of both sides of

(43) everywhere along the real t axis; hence (43) holds

everywhere along the real t axis. Analytically continuing

in r to «.= —iP, we find

(exp[—iK p, («)] exp[iK ph(«')])«'=exp[ —((K p)')«'+K (P,(t)gh(t')&«' K]

K A(g, h, co') Kd(o'
=exp —((K y)')«'+ e-'"'" "

1—e I'"' 2m

(44)
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This evaluation is basic to both coherent inelastic neutron scattering and resonant. emission and absorp-
tion of neutrons and photons.

Substituting (44) in (6), we find for the transition probability per nucleus:

( de0' K A(g, h, ce') K
W~(K)ce)=~ —

~ Q expLiK (h —g)j ~ dt exp iei(t —t') —((K y)')~+
~

eim) 2x j.—e—i'"'
. (45)

may be interpreted as the transition probability,
WJ'(K, ce), for the process in which the neutron suGers
an energy loss by exciting phonons, and gains energy
by absorbing other phonons, such that the total number
of phonons involved is e. The transition probability per
nucleus for a one-phonon process is then

'(K,~)=1 I P expLiK (h —g)j
&m

K A(g, h, ce) K

1—e
—t'"

expL —((K P)') s1

(2irgg s K A(K Q)) K
expL-((K ~)')'3.

E m) 1—e
—t'"

(46)

In an actual experiment, for K fixed, one observes
peaks in the energy spectrum of the outgoing neutron,
above a diffuse background. These peaks come from the
ce resonances in A(K, ce), for K fixed, in (46). The
center of a peak is at the energy of a phonon with
wave number K, and we see clearly from (46) that the
width of the peak is exactly the inverse of the phonon
lifetime. In principle, then, one may infer A(K,ai)

and hence the structure of the phonon field in the
crystal from such an experiment. The diffuse back-
ground is caused by the multjphonon processes. The

' R. J. Glauber, reference 1.' Van Hove has noted this result, without derivation. L. Van
Hove, Solid-State and Molecular Theory Group, Technical Re-
port No. 11, Massachusetts Institute of Technology, Cambridge,
Massachusetts, March, 1959 (unpublished).

This is the same formula as that derived by Glauber for
a harmonic crystal, ' only here the spectral weight func-
tion A (&e) may be perfectly general, and not just that
for a harmonic crystal. The actual calculation of A (a&)

is a separate problem, and one need not make the same
assumption in calculating A (cu) as was made in deriving
(45). The important point is that (45) expresses the
neutron scattering probabilities in terms of the struc-
ture of the phonon field, without it being necessary to
specif'y that structure. If one expands the term
expLJ'e '"'&' 'iK A K/(1 —e s"')) on the right of
(45) in a power series, then the term in Ws(K, co)

containing

1 r dc''K A(g, h, ce') K-"
e
—i~'(s—t')

rs! " 2z- 1—e—s"'

quantity expL —((K P)')s) is the Debye-Wailer factor
which multiplies each W„~(K,ce). Since the average
squared displacement increases with temperature, the
Debye-%aller factor is a decreasing function of
temperature.

It is of interest to note that the expression for
W~(K,ei) that we have calculated obeys Placzek's
exact sum rule':

2s.a)' E'
Wt'(K, (e)e)—=

i

27r E m) 235
(47)

Multiplying both sides of (45) by e~ and integrating
over all frequencies, holding K fixed, we find:

dc'
t Ws(K, ce)ei—

2'
t'2~'s l

~ P expI iK. (h —g)j&m)

Xe p( —-.'(LK (S.-S.)7'))

Idei' K A(g, h, a') K
X ce' . (48)

2w

f' de E'
ce'K A(g, h, ce') K= b,h, (49)

2~ 2m 2M

using (21).Equation (47) then follows from substituting
(49) in (48). It is also seen from (49) and (46) that the
one-phonon peak obeys the sum rule,

t'2a.a~ ' Its

Em) 2M

i.e., the total intensity under the one-phonon peak for
fixed K is just the Debye-Wailer factor times the total
scattered intensity for 6xed K.

Finally, expression (42) obeys the detailed balancing
condition,

Ws( —K, —a~) =e ~"Wt'(K,cv).

' G. Placzek, Phys. Rev. 86, 377 (1952).

The numerator of the last integral is even in M', from
(22), so the last integral may be written as

fde
ce'K A(g, h, ce') KL(1—e s") '+(1—et'"') ']
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This is an immediate consequence of the boundary
condition (11) on D&.

l«ilvlEo+ o, io&l'
W, (zo) =Q

sr (E+zo—Eo—ooo)'+1's/4
(51)

l
Eo+zzzo f o) is the initial state of the crystal; zoo is the

excitation energy of the excited nucleus (not including
the rest mass of the neutron, in the case of nonrela-

V. EMISSION OF NEUTRONS AND PHOTONS

We will treat at the same time both the cases of
emission of neutrons and of photons, since they differ
only in the structure of the internal nuclear matrix
element. The total transition probability W. (zo) for
emission of a neutron or photon with energy by a single
excited nucleus, is, to within a constant factor,

tivistic neutron emission), and Eo is the initial crystal
energy. We assume that the internal degrees of freedom
of the nucleus are dynamically separable from those of
the crystal. le) is the anal state of the crystal, and
1/1' is the total lifetime of the excited nucleus bound in
the crystal. V is the matrix element between internal
nuclear states of the emission interaction. It still con-
tains the center-of-mass coordinate of the nucleus as an
operator. As in the case of neutron scattering, this de-
pendence enters in a factor exp[—iK. (g+ P,)], where
now K is the momentum of the emitted neutron or
photon.

Using

(E2+12/4) —I (1/P) ~- 'tL—r[ z[/sdt

W.(K,zd) becomes, again to within a constant factor:

W, (K,oo) = dt exp[—z(zo —zoo)t —1'ltl/2](Eoiole" ' exp[ —iK (g+its)]e " exp[iK (g+it, )]lEoi'o)

dt exp[ —z(zo —zoo)t —1 ltl/2](I ol ol exp[ —iK fi, (t)] exp[zK ft, (0)]lEof'o). (52)

Averaging over a canonical ensemble of initial crystal
states, at temperature T=1/EP, and neglecting the
variation of I' with crystal energy, we find

W.s(K,zo)

dt exp[—Z(zo —zoo)t —I'l t l/2]

&((exp[—iK fi,(t)] exp[iK ft.(0)])s. (53)

The thermally averaged matrix element in (53) is
exactly the same one that we evaluated for neutron
scattering. Thus from (44)

W,t'(K,zo) = ~ dt exp[ —z(zo —zoo)t —F
l
t l/2]

&«xp[—((K fi)')'+K (it.(t) fi.(0))' K] (54)

Once more we may expand exp[K (iwi(t) zji(0)) K] in
a power series and identify multiphonon terms. Of
particular interest is the zero-phonon term, i.e.,

W, , o~(K,oz)

J
dt exp[ —z(&o —zoo)t —I'

l
t

l /2] exp[ —((K it)')~]

=[~/((---.) +~/4)] --p[-((K ~) ) ].

This term gives rise to a peak in the energy distribution
of the emitted neutron or photon, with a width that is
just the inverse of the lifetime of the excited nucleus
bound in the crystal. Since the distribution is centered
about the actual excitation energy of the nucleus, ' there
is no energy of recoil associated with the emission. It is
this peak that is responsible for the Mossbauer effect. '
The temperature dependence of the height of the peak.
enters through the Debye-Wailer factor, which, as we
have mentioned, is a decreasing function of temperature.

ACKNOWLEDGMENT

I would like to express my appreciation to Professor
Julian Schwinger and to Dr. Kurt Gottfried for several
valuable discussions about this work.

' There is actually a slight second order "Doppler" shift of the
center of this peak; the excitation energy of the nucleus leads to a
decrease in the kinetic energy of the excited nucleus due to its
increased mass. This energy shift is approximately Bnz/zzz times
the average nuclear kinetic energy, where m is the mass of the
unexcited nucleus, and m+8m the mass of the excited nucleus.
See R. V. Pound and G. A. Rebka, Jr., Phys. Rev. Let ters 4, 274
(1960).

'R. L. Mossbauer, Z. Physik 151, 124 (1958); Naturwissen-
schaften 45, 538 (1958); Z. Naturforsch. 14a, 211 (1959).


