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summarize by saying that the core polarization effect
does not seem to aGect significantly the agreement be-
tween our theoretical and experimental values of Pf,
however, this conclusion cannot be extended to other
quantum defect calculations. Further investigation of
this point would appear to be very desirable.
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The theory of the interaction of electrons and acoustic phonons in nonpolar crystals has been formulated
in terms of a new set of basis states, whose wave functions are essentially Bloch functions that deform
with the lattice. The major part of the interaction may then be calculated in terms of the strain tensor rather
than the displacement of the lattice. A result of the theory is a generalization of the deformation potential
theorem.

I. INTRODUCTION

' 'N considering the mobility of electrons in nonpolar
~ - semiconductors, Bardeen and Shockley' introduced
a new approach to electron-phonon coupling. They
showed that in certain simple semiconductors the
electron-phonon interaction can be accounted for by
replacing the interaction term in the Hamiltonian by
DV' u, where u is the displacement of the lattice due to
the thermal vibrations. The constant D is the deforma-
tion potential. It is defined by setting the change in the
electron energies in a homogeneously strained crystal
equal to DV' u; hence D can be determined from experi-
ments independent of the electron-phonon interaction. ' '
This idea has already proved very fruitful and has been
extended to include arbitrary strains and more com-
plicated semiconductors. '

It was the feeling that the deformation potential
approach affords a basis for a much more comprehensive
theory of electron-phonon interactions (within the
framework of the one-electron model) that motivated
the present research. Moreover, it w'as felt that if one
could 6nd a means of expanding the Hamiltonian in a
power series in the strains, instead of the lattice dis-
p]acements (as is done in the standard theory'), the
deformation potential theorem in its most general form
would follow immediately.

%e find that we are able to carry through this
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program when we express the Hamiltonian in terms of
a new representation. ' The basis states of this new' repre-
sentation Lorthogonalized deformed Bloch (ODB)
functions' are essentially Bloch functions that deform
with the lattice. These states have the convenient
property that the matrix elements of the pertinent
operators with respect to the ODB states can be
expressed as matrix elements of closely related operators
with respect to the Bloch states (Sec. III). In Sec. IV
we show that the Hamiltonian in the ODB representa-
tion can be expanded in a power series in the strains and
the lattice velocity, and that the resulting first-order
coupling terms, Zr+L'", admit of a simple physical
interpretation. E' is the dominant term and can be
written as a deformation potential operator (whose
diagonal matrix elements are shown in Sec. V to be
just the deformation potentials) times the strain. It
leads directly to a generalized deformation potential
theorem (Sec. VII) which refers to the coupling between
the ODB rather than the Bloch states. However, in
Sec. VI we show that, to the first approximation, the
transition rates between the Bloch or between the ODB
states may be used interchangeably in the Boltzmann

equation.
E,' is shown in Sec. VII to be a small term associated

with the fact that a moving lattice tends to drag the
electrons with it.

II. THE BLOCH REPRESENTATION

The Hamiltonian for a nonpolar crystal with one
electron in the conduction band, in the one-electron

' George Whitfie]d, Phys. Rev. Letters 2, 204 (1959).Equations
(7) and (8) of this reference are incorrect; see Sec. VII A-1 of this
paper.
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approximation is

where

2m

H=E+H, z,

E=H,+Hz, ,

+Vo(x),

1t „f,(x) =exp(ik x)fff„f,(x) Lwhere off„f,(x) has the perio-
(1) dicity of the lattice( is the Bloch function of wave

vector k and band index ff, satisfying

H.Q f, (x)= e„(k)P„f,(x).

1t f, (x) satisfies periodic boundary conditions with the
same period as u„namely

~f,s~—f, s

HI. —— +-,'-MoP(f, s)qf, q f,„ (3)

H, i, = V(x. ,q)
—Uo(x).

In the above, repeated indices are to be summed on;
x is the position vector of the extra electron, and q
stands for all the normal coordinates of the lattice qf „
each with vibration frequency co(f,s). Although we will
refer in this paper to a crystal with one atom per unit
cell, we expect that the results will also apply to the
long-wavelength acoustic mode scattering in a crystal
with more than one atom per unit cell. At appropriate
places below we will point out some limitations of this
extension. The electron and ion core masses are, re-
spectively, ns and 3f; the effective potential seen by
the extra electron is V(x,q) and Uo(x)=—V(x,0). The
displacement of the vth ion core from its mean position,
R 0, is given by

u, =p qf, ,v(f, s) exp(iR, O f),

qf, ——P u„v*(f,s) exp( —iR,'f),

where f is the wave vector and s refers to the polariza-
tion of the lattice mode.

The lattice points Ro are given by

R„'= f iai+f 2a2+vaa3, (6)

where the v's are integers and for simplicity we assume
that the a; are mutually perpendicular. In this for-
mulation the u„satisfy the periodic boundary conditions

where
V(x,q) = Uo(x —u(x)),

u(x) —=P qf, ,v(f,s)e"*.
f, s

(12)

(13)

Then the first order in u we have

H, l n' —u(x) .——ff'Uo(x).

The rigid-ion (R.I.) models assumes that

V(x,q) =g„ff(x—R„'—u„),

where v is some atomic-like potential. ' Then to the first
order in u„we have

H r,
a'= —P, u, Vn(x —Ro). (16)

The matrix elements of H, L, are then given by an
integral involving the periodic parts of the Bloch
functions and either Vff(x) or VVO(x), times the matrix
elements of qf, , which are given below.

ip f, (x) =p„f,(x+L,),
where L;=M,a;.

We chose the f„f,(x) to be normalized in the rec-
tangular parallelepiped 'U defined by the three vectors
L;. We note that due to the periodic boundary con-
ditions the p„f, are also normalized in any (possibly
irregularly shaped) region whose bounding surfaces are
separated by the L;.

We will refer to the &pf(x, q) as the basis functions of
the Sloch representation.

In the standard theories of electron-phonon inter-
action H, ~ is treated in one of two models and then
expanded in a power series in u. The deformable-ion
(D.I.) model' assumes that

+v =+v+u) (7)

where 3f refers to the triplet of large integers M;
(i=1, 2, 3).

The usual theory4 of electron-phonon interactions
treats H, L, as a perturbation on the system:

Eqf, (x,q) =E,pf(x, q),

E,=e„(k)+P (N(f,s)+,' jl'f(u(f, s), -
f, s

Wf(» q) =4' f (x)x~&(f. )~(q).

{1V(f,s)} refers to the entire set of phonon occupation
numbers E(f,s), and the lattice eigenfunction x satisfies

Hrxf vff .) f (q) =LE L&'(f &)+lj&~(f &)]xlxff .i)(q)
f, 8

where
t fif s off' s' g 8f f'ffg s'

(X(f,s) —1
i fff, , i X(f,s))= $)V(f,s)$'*,

. 7 A. Sommerfeld and H. Bethe, Hundbnch der I'hysik, edited by
S. Flugge (Verlag Julius Springer, Berlin, 1933), Vol. 24, Part 2;
I . Bloch, Z. Physik 59, 208 (1930).

I.. Nordheim, Ann. Physik 9, 607 (1931);and W. V. Houston,
Phys. Rev. 88, 1321 (1952).

'The assumption (15) corresponds to rigidly displacing ion
cores only when e is spherically symmetric or when only longi-
tudinal modes are considered. This is because (1.5) shifts only the
center of the ion cores, but does not change their orientation. A
more involved assumption could be made to include all cases, but
for simplicity we will assume that u is spherically symmetric, when
we are discussing the rigid-ion model.
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x= y+u(y), (18)

where u(y) is given" by (13). We note from (13) and

(5) that
u(R„a) =u„,

and hence if x= R„ then y= R e. In this sense then, in the
"y space" the ion cores appear to be at their lattice
points, and the g~ are essentially Bloch functions in this

y space.
J is the Jacobian of the transformation (18):

~(»(y),»(y) ps(y))
J(y) —=

~(yi,y ys)

c)N (y) 1 (cpu. ()ms c)u. r)up )=1+ +-I —
)
(1—&-s)

ay. 2 &ay. ay, hays ay. &

(&(f,s)+1I «, ." I &(f,~))= L~'(f,~)+11'

III. THE ODB REPRESENTATION

In this section we w'ill introduce the orthogonalized
deformed Bloch (ODB) functions and discuss some of
their general properties. %e have not chosen these
states because they are "better" than the Bloch states
in the sense that the transition rates between them
caused by the lattice vibrations are appreciably smaller
than the corresponding transition rates between Bloch
states. In fact, in Appendix C we show that in certain
special cases the two transition rates are equal. ' It is
rather for their formal properties that we use them;
chiefiy that the largest part of their transition rates
can be expressed directly in terms of the strains rather
than the displacement of the lattice and that they
permit the use of a much less limiting assumption for
the form of the crystal potential in a vibrating crystal.

The ODB functions are defined by

'vl(x q)= p&(y(x), q)J '(y(x)) (17)

yt (x,q) is defined in (8), (10), and (11) and y is defined

by

r)((x,q) =t)((x+L;, q). (20)

In short, all the functions involved whether written as
functions of x or y are periodic in the same set of vectors,
L;.

Now in order to show that the p& are essentially
orthonormal" we consider the integral

r
'

dqJt d'x r)(*(x,q)r)( (x,q).

Because the r)& satisfy (20), the integral with respect to
x may be taken over any one of many equivalent regions
one of which is the region 'U' which is defined as the
region which maps into 'U when mapping from x space
to y space. Hence (21) is precisely equal to

dq d'x r) )*(x,q)r) p (x,q),

which on changing the variables of integration becomes

J&0. We can see from (19) that J will be greater than
zero except when the strains are of the order of mag-
nitude of 1 or larger, and this sort of very large deforma-
tion was not intended to be included in this theory. In
fact, for such large deformations the lattice is cer-
tainly not harmonic, and even the Bloch functions
q &(x,q) are realistic only in that they are small.
It is clear then on physical grounds that this pe-
culiar behavior of the q~ is not a serious problem.
These essentially formal dif6culties can be avoided by
thinking of the r)t as being defined by (17) only in a
connected region containing J=1 and where J&e,
where e is some small fixed number, and setting g~ ——0
elsewhere. %hen we do this the q~ are not exactly
orthogonal or complete; however for the purposes of
this paper they can be thought of as a complete ortho-
normal set.

Since u(y) satisfies the same periodic boundary con-
dition as &pt(x, q), we have

~(»(y), N (y),»(y))
. (»)

~(y»ys ys) dq) d'y v ~*(y,q) vi (y, q) =~~,i. (22)

The Jacobian is included to make the r)~ orthogonal.
One can, however, develop a similar theory with non-
orthogonal functions as is shown in Appendix A, where
we discuss the use of the functions y~(y(x), q) as a basis.

As long as J)0 the q~ remain finite and single valued,
but the.g~ are in6nite when J=O and multivalued when

"This similarity between the Bloch and ODB states has been
shown only to the lowest order in u, and may in fact not extend
to higher orders."If there is more than one atom per unit cell we would choose
the polarization vector so that u„refers to the displacement of the
center of mass of the unit cell Pi.e., v(f,s) =Z; v&'(f, s)3f;/Z; cV;,
where j runs over the atoms in the unit cellj.

That the g~ are essentially complete follows in a similar
fashion from the completeness of the y~.

Because the q~ are complicated functions of x and q
we will not calculate matrix elements in this repre-
sentation directly but relate them to matrix elements
in the Bloch representation. Since (rp~) and (r)i) can be

'2 The integral on g in (21) should be taken only over a region
around J=1 where J&e, and hence over a similar region in (22).
Therefore the right-hand side of (22) is not actually 8&, &, but
differs appreciably only for states with such large values of
(Z(f,s) } that we need not consider them.
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regarded as two complete orthonormal sets defined in
the same region of space, they form two bases which
are related by a unitary transformation T,

Electron Momentum

Again we start by considering the right-hand side
of (24).

where

l~i&=2'I v ~&,

T=Eilni&(oil. (23)

f' 5 8
( IP-I )= "~q d'*~*(,q)-. ~ ( q)

i 8x.

Then for every operator 0 there is another

O'= T~OT,

such that

«, lo'I «&=«, lol&, &. (24)

5( 8
g(*(x,q) Iqi (x,q) . (27)

i &ax.

The usual procedure for handling such a change of
basis is to investigate the properties of the unitary
operator T. However, as will be shown in Appendix C,
this operator can be handled only as a power series in
the lattice displacement and this is just the type of
expansion we are trying to avoid. We shall instead
calculate the primed operators directly from (24), using
only power series in the strains. We shall do this now
for the dynamical variables, x, q& „y, I' f, , to arbitrary
order in the strain.

If we write q&(x,q)= q~(y(x), q)J—l(y(x)) and differen-
tiate the product we see that in (27) the terms involving
derivatives of J—' cancel and we find

8
(nilP-lni&= — dq ' d'* &i*(y(x),q) ~~(y(x), q)

2i »g '
ax.

~~'(y(x), q) !~~ (y(x),q) J-'(y(x)). (28)
Ear.

Electron Position In order to change the variables in this integral we

If we set O=x, the right-hand side of (24) becomes

('g& I xl7/l'&
J dqJ' I & 'gt (x,q)xrll (x,q).

~N~(y)»'(y)»s(y)

Then introducing the change of variables (18) into the
integral, remembering that because of the periodic
boundary conditions we need not change the region of
integration, we get

(~llxlnl)=, dq d'~ «(yq)L3+u(y)3~~ (yq)

»,(y)», (y)»p(y)

( 1 ) 8

&1+S(y)& -~ ~y~

where"

(29)

=(q ( I
x+u(x)

I yi ).

Comparing (25) and (24), we have

x'= x+u(x).

(25) S'(y) —=»~(y)/~X-

Using (29) and integrating one of the terms by parts,
(28) becomes

1
~

1 q p 1

2 El+S(x)J qL1+S(x)J..~ )

Hence the form of the operator relation (26) suggests (e&IPaI'gl')
that the change from the Bloch to the ODB represen-
tation can be thought of as mapping the electron wave
function so that it moves with the lattice. Equations
(26) and (18) are complementary in the sense that while

(26) refers to a mapping of the wave function, (18) is
the corresponding mapping of the space.

Normal Coordinate of the Lattice

Following the same procedure as for x', we get

gf, s = IIf, s

1 ( 1 i ( 1
I +I I P~ (30)

2 &1+S(x)) p i1+S(x)J p

"Nowhere in this paper do we distinguish between covariant
and contravariant tensors. Superscripts are used for notational
convenience.
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(a) Electron Kinetic Energy
(~~II'r, 'I~~)=)I dq I" d'~~*—

Ii tgqr, From (30) we get, to the first order in strain, that

Lattice Momentum We now evaluate each of the terms of (33), using the
As above, we start by considering the ODB matrix

elements

2i &u I aq, , , j,
p-'= p- sLpp-S'(x)+S'(x) ppl.

Then using the relation

(34)

Lp. ,S»(x)j= LAX.,S»(x)$, (35)

where" & is a diagonal operator in the Bloch repre-Egqi, )
sentation defined by

Again we write g~
——q~J: and note that the terms

involving the derivatives of the Jacobian cancel, and
(31) becomes

—i' dq i~ d'~ «*(y(x),q)I «(y(x), q) I

2i ~ &~ (Bqr, , j

as well as (34) and the relation"

P.S"P+S PP.= (2m'/5) $H„up),

one can show that, to the lowest order in 5 ~ and
(H„up j,

«*(y(x),q) I v~(y(x), q) ~(y(x)) p- p- p-p- ' (
( 8

I I

Eaq, , j„=+- s
I

——+
2m 2m 2 ( m m j

Then by changing the variables in the integral and
using the fact that

8 p 8 ) ( 1
~(y(x),q) I =I — ~(y, q) I

—I—
(aqr, , j E aqt, , j „&1yS(y)j .p

(Bup(y) ) ( ri

xI
& aq&, j,&ay.

v(y, q) I,
we show that

(+p. I
—

I L~r, „upj . (32)
&1+5 p

+-,'&co'(f, S)qr, ,'q r,.'. (33)

IV. H IN THE ODB REPRESENTATION

In Sec. VI it is shown that, in order to find the
transition rates between the ODB states, we must find
the matrix elements of H in the ODB representation.
We shall do this by using the same procedure as we
used in the preceding section, namely find the operator
H' whose Bloch matrix elements are equal to the ODB
matrix elements of H. As we proceed w'e will see that
it is possible to express H' in powers of S & and the
lattice velocity

I Hz„nj, and we will keep only terms
of the lowest order in these two quantities.

Since H and H' are related by a similarity trans-
formation, H' has the same form as H, i.e.,

pa pa Pg, 'I' g, 'H'= +V'(x, q)+
2m 2M

p.pp AEpp )+ I

——+ Is-pj
z

(&Ep(H. ,up)—+—)II.,u p7AEC p). (36)
2A

(b) Lattice Hamiltonian

In order to simplify the last two terms in (33) we
note that

Mt Hg, u.7= P' .,..u.&sr, , (37)

(i/A)PHr, ,u j is essentially the velocity of the lattice.
Using (37) and (32) we are able to show, to the lowest
order" in I H u rj and S p, that

~f, S ~—f, e

+ ', 3fre'(f, s)qr, , '-q r, ,'
2M

pRpcE
=Hr, (pp[Dr. ,up7+[H—r, ,

—
up jpp)+ . (3g)——

25 2M

(c) Electron Potential Energy

Using the ODB representation is equivalent to intro-
ducing a mapping of the lattice so that the ion cores
now appear (i.e., in y space) to be at their lattice points
and the remaining departure of the mapped potential

"This same operator was used by E. N. Adams, J. Chem. Phys.
21, 2013 (1953). In the case where one wished to consider an
Umklapp collision one would have to add S t'X(a reciprocal
lattice vector) to the right side of (35).' Note that the order of a and P is diferent here from that- in
the similar expression in (36).' Whenever I appears in the higher order terms neglected in
(38l, it appears either in 5 p or in pIr„w g.
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function, V(x(y), g), from the equilibrium potential
function, Vs(y), is small and can be reasonably approxi-
mated by a series in the strains and their derivatives.
In this paper we keep only terms of the lowest order in
strain and neglect terms in the derivatives of the strain.
We assume that

where

jV r= r(S ttg)tt +~p S tt)

Z8"= —(A—KttttH„up]+ t'H„tttt]SKtt)
2A

(42)

V(x(y), V) = Vo(y)+ U'(y)S'(y) (39)

where U ~(y) is an unspecified function with the perio-
dicity of the lattice. This is essentially the sam. e assump-
tion as that made by Bardeen and Shockley, ' and by
Pikus and Bir"" in the special case of homogeneous
strains. We feel that it is a quite realistic assumption
when we are dealing with long-wavelength phonons,
and that it remains a possibly useful model even for
the shortest w'avelength phonons.

The model obtained by setting U ~(y) —=0 corresponds
to the physical notion of deformable ions Lbut is
identical to the standard D.I. model (12) only to the
first order in u]. Setting

8
U'(y) =Z(R '—y)»(y —R')

~Pn

gives a model which is equivalent to the R.I. model (16)
for long-wavelength phonons.

In this paper we will not assume any particular form
for U t' but will, so far as we can, eliminate it from the
theory by expressing the required results in terms of the
properties of the crystal under homogeneous strain.

Using (39) we see that

(r) [V(x,tt) ]rt )=(it [Vo(x)+U ~(x)Ss (x) f q ),

and therefore

V'(x, q) = Ve(x)+U"&(x)S~ (x). (40)

We could extend (39) to include higher orders by
adding terms like W»"(y)S ~(y)S&"(y) and Z"»(y)
X (8/cty~)S t'(y), etc. The additional parameters Z and
8' are also related to the properties of statically
strained crystals, but it is not clear to what extent they
could be eliminated from the theory.

In a crystal with more than one atom per unit cell,
the locations of the ion cores in the unit cell will in
general shift even for a homogeneous strain. The eRect
of these shifts on the eRective potential, for the case of
homogeneous strain, is included in U t'(x); but the
dependence of these shifts on wave vector has been
neglected in (39). Hence, for this reason also, (39)
should be regarded as a long-wavelength approximation.

(d) Transformed Hamiltonian

On substituting (35), (38), and (40) in (33), we have

g++I++II++IIi (41)
"G. E. Pikus, J. Tech. Phys. (U.S.S.R.) 28, 2390 (1958)

Ltranslation: Soviet Phys. -Tech. Phys. 5, 2194 (1958)j.
'8 G. K. Pikus and G. L. Bir, Fiz. Tverdogo Tela 1, 1624 (1959)

Ltranslation: Soviet Phys. -Solid State 1, 1502 (1960)7.

L'"'=p.p /2M;

Z —(p—sEH~, ls]+%~,gs]ps), (43)
2A

and where

x)s —= p.ptt/—ttt+AKpp. /m+Us (x). (45)

We call Sj'" the "deformation potential operator"
and will show in Sec. V that its diagonal matrix elements
in the Bloch representation are just the deformation
potentials.

We will show in Sec. VII that the major part of the
electron-phonon coupling comes from E' and that E"
represents a relatively small coupling. Whereas 8 is
related to the local change of the electron energy in the
crystal, E ' expresses the fact that a moving lattice
tends to drag the electron with it. E" is a small term
which does not contribute to the scattering because it
is diagonal in the phonon occupation number'9 and it
will be neglected for the rest of this paper (except in
Appendix C).

When Vs(x) and ttt„t, (x) approach constants (which
are independent of the strain) the electron-phonon
coupling should disappear. Although all of the matrix
elements of E approach zero in this limit, some of the
matrix elements of E" do not. In particular the matrix
elements of E"between states of different total energy
do not approach zero when Vs(x) and w„t, do. This is
most easily seen if we write E' using the form of p ' in
Appendix C. With the help of (C-3) we can show that

which is zero only when Ez——Az . This results from the
fact that the ODB states are not stationary in a lattice
with no coupling (which is of course to be expected,
since if there is no coupling the electron wave functions
should not deform with the lattice as the ODB states
do). The time dependence of the ODB states resulting
from these matrix elements is very small and represents
the type of time dependence w'hich is neglected in first

"ALII can be regarded as a mass renormalization in that it is
accounted for by replacing 1/m by (1/ra+I/M) in E. In fact
mass renormalization in its earliest form PH. A. Kramers, Irtstitttts
Solw,y, Huitieme Conseil de Physique, 1948' RuPPorts et Discussions
(R. Stoops, Brussels, 1950); N. G. Van Kampen, Kgl. Danske
Videnskab. Selskab, Mat. -fys. Medd 26, No. 15 (1951)g came
about by applying a "displacement operator" to the Hamiltonian
which is somewhat analogous to T (see Appendix C).

lim (q, ~Z"
~
i,.)

Vo ~const

= (Et—A't )(&ve" "~u. y+p u~ Xv e" "),
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order perturbation theory when one replaces

k sin'p(El —El )f/25]
by -', ~5(E,—L:, )f.

(+l ~l')

Even this small time dependence does not appear in the
results of the present work because we limit ourselves
to first-order perturbation theory which involves only
matrix elements of H' between states of the same total
energy.

In Appendix C we introduce the deformable- and
rigid-ion models into (41) and show that for these
models the Bloch matrix elements of H and H', betw'een
states of the same total energy, dier only by the con-
tribution of E' . Since this is true for both the R.I.
and D.I. models it is probably independent of these
models, which suggests that E"' represents the differ-
ence between a theory which is first-order in 5"t' and
LPr„u j and a theory which is 6rst-order in u .

V. DEFORMATION POTENTIAL

We will now show' how the operator X)t' is related to
the properties of a homogeneously strained crystal. '0

Let ip„k(x) = elk '*w„k(x) be one of the eigenfunctions
of an electron in a stationary crystal, " where the
position of the lattice points are given by RP which are
delined in (6). The ip„k(x) satisfy the periodic boundary
conditions, (11), and are normalized in the volume
'U=(LixL3) L3—LiLrsL3, The ta„k(x) have the perio-
dicity of the lattice (i.e., w„k(x+Rp)=ttl„k(x)j and
satisfy the equation

k' t' B
+3k.

~
w„k(x)+Vs(x)w„k(x)

2m &Bx.
= e (k)W„k(X). (46)

If we now slightly deform and rotate this crystal, we
have another regular crystal with lattice points given
by R„"=R„~(I+a) =RP+n„where a is a small,
constant (but not symmetric) tensor. In this new
crystal there is an electron eigenfunction"

t dpi' ll('„kd*tt „k'= (1+Trace(a)) '5„,„5k k, (48)
Q

d

where "U" is the parallelepiped defined by the vectors L,".
The ttl„k have the periodicity of the new lattice Pi.e.,

ttl~k" (x,a) =ill k"(x+Rp, a)j and satisfy the equation

53 ( B
+ik.

~
+Vp"(x,a) ttl„kd(x, a)

2m BS~

=e„"(k)te.kd(x, a). (49)

We define the deformation potentiaP3 D~ (is,k) by
saying that

e„"(k)= e„(k)+a.sD& (n,k) .(50)

We evaluate Ds (33,k), by solving (49) by first-order
perturbation theory. To do this we again make the
change of variables

x= y+n(y),
but here we define

u. (y) —=as ys.

Then using (39) Lwith S~s(x)—=a sj for U and keeping
only terms to the first order in a, (49) in terms of the
new variables becomes

k' ( B
+3k. ) +Vp(y) w„k"'(y, a)

2m (By

8 k 8
+a.s — +—ik +Us (y) w„kd'(y, a)

m By„gyp m Byp

where
= e-'(k)~-k"'(y, a), (51)

~.kd'(y, a)=w„kd(y (I+ a), a).

To these new Bloch functions we apply the boundary
conditions

p„,d(x, a) =p„kd(x+L,", a),

where L;"—=L,"(1+a), and we normalize these functions
so that

1f „kd(x, a) = e'k *ra„kd(x, a).
We note that

47

"The effect of homogeneous strain on the electron states in a
crystal has been discussed by several authors: E. N. Adams,
Phys. Rev. 96, 803 (1954); R. H. Parmenter, Phys. Rev. 99, 1759
(1955);and 99, 1767 (1955);and references 17 and 18. In reference
18 the case of degenerate bands (which is omitted in this paper) is
discussed.

"We should of course consider a vibrating crystal in which
there would be temperature-dependent corrections to the energy
and hence to the deformation potentials, due to both the second
order term in strain in the Hamiltonian, and the second order of
the perturbation theory. We will not include them here because
we are doing an entirely 6rst-order theory.

"Even though the allowed values of k in this crystal are differ-
ent from those in the 6rst, since they are practically a continuum
we assume that for each value of k there are eigenfunctions in
both. In the case where k lies near the zone boundary of one
crystal, it may be outside the 6rst zone of the other crystal, and
the appropriate wave functiori is then that which corresponds to
the reduced k vector in the second crystal.

ttlnk (y+Ry ~
a)=itlnk~ (y)a)~

and because of (48)

)t ta„kd'*(y, a)w„kd'(y, a)dpy=1,

where 'U is the volume defined by the vectors L;. We
can now solve (51) by perturbation theory'4 by as-
suming

~-k"'(y, a) =~-k"'(y)+a-s~-k""(y)+ ", (52)
"The deformation potential is usually de6ned in terms of the

shift of a band edge point, which is not the same as (50). This
point is discussed in Appendix B.

'4 We are not considering the situation in degenerate bands.



THEORY OF ELECTRON —PHONON I NTERACTIONS 727

where both ur&e& and wul are periodic in R„o, and using We will consider the electric current caused by the
(50) for e„(k). Substituting (50) and (52) in (51) we application of a constant electric field 8. This field leads
get, to the lowest order in a, that to an extra term, Hq, ~d= —e&~, in the Hamiltonian,

and from (26) we see that~""'(y)=~-k(y).

By equating the terms that are first order in a and
setting

w k~"e =pc. e w„k,
nf

we can show that

lt' B'
De (n,k) = d'y ze„k*(y)—

18 8$~8pp

Hfi M ——eBI xi+ui(x) $. (55)

The second term in (55) can be thought of as appearing
because the electric field which is constant in x space
is not constant in y space.

1. The usual procedure" for evaluating the electric
current is to solve the Boltzmann equation for the prob-
ability f(n, k) that an electron is in the Bloch state lt „k,
namely,

8
+iI't'Je +Us .(y) w„k(y) (53)

Bpp

(Bf(n,k) q &Bf(n,k) y
+I

Bt ) field ( Bt ) coll

(56)

8
der p

nt ByeBy.

Akp 8
+U'"(y) l4- (y), (54).

m By.

which is just one of the diagonal elements (et tI S&
I yt)

of the deformation potential operator defined in (45).
Although S~ is diagonal in k, it is not diagonal in

the band index m and, as will be seen in Sec. VII, these
interband elements are important in determining inter-
band scattering probabilities as well as some correction
terms for the intraband scattering probabilities. It
would therefore be desirable to relate these parameters
to the properties of homogeneously strained crystals
also. Such a relaxation does exist in that the terms pro-
portional to a' which are neglected in (50) can be seen
to involve sums over these interband deformation
potentials. But these relations are so complicated I they
include terms which come from extending (39) to second
order), and the nonlinear energy shifts so small, that
there seems to be little hope of determining the inter-
band deformation potentials from homogeneous strain
experiments. However, near a point where two bands
are degenerate (as in the valence bands of Ge and Si)
the energy shifts on homogeneous strain" involve the
interband elements of Se (we have not considered the
case of degenerate bands here), and scattering near
such degenerate points is one instance where interband
phonon scattering might be important. Certain of the
properties of the matrix elements of X)~ can, of course,
be deduced from the crystal symmetry.

VL TRANSPORT THEORY IN THE ODB
REPRESENTATION

We have stated previously that the Bloch and ODB
representations are very similar. In this section we will
establish that this similarity permits us to use the oR-
diagonal elements of H in either representation to give
the transition rates needed for transport theory.

where

(Bf(n,k) ) e8 Ben(k) df'

Bt ) t;oie 5 Bki den

(Bf(n,k) ) '0 t.
d'kL f'(n', k')R„k

(2~)' n ~

(5&)

—f'(n, k)E„k„„kj, (58)
where

f(n, k)= fo+f'+Q(gs, g i, g$ ')— —

(f' being the equilibrium distribution function) and

2'
+nk~n'k' =

I (&Ink; lNl I +eL
I 0 n'k'; iN'l) I'

&&6(e (k) —e„(k')aIsto(k —k', s)). (59)

For the sake of simplifying the argument we assume
that after calculating the matrix elements in (59) one
sets X(f,s) equal to its equilibrium value

)yo(f S) (ekn/xT l)—i

Then having f'(n, k), one obtains the current from

e r 'O Be.(k)
d'k f'(n, k)

n 4 (2s.)s
(60)

The standard derivation" of this procedure relies on
first-order perturbation theory to give (59) for the
transition rates between the Koch states.

By relying on perturbation theory we could easily
derive a similar procedure for the ODB states in which
the transition rates would be given by (59) with
Bi+8" replacing H,z„and the extra terms which
comes from putting IIq,~d and J in the ODB repre-
sentation may be neglected (see part 3 of this section).

"A. H. Wilson, The Theory of Metals (Csmbritlge University
Press, London and New York, 1.953), 2nd ed. , Chap. IX. For
simplicity we will use Bolt@mann statistics.



728 G. D. WH ITF I EL D

sf'= LH+Hfield) Pl (61)

and the fact that

Hence one would calculate the transport phenomenon
with a procedure identical to (56)—(60) except that H, r,

is replaced by E'+E'i.
Although the conclusion of this argument is correct,

the derivation of the Boltzmann equation upon which
it is based is not very convincing. " Since there have
recently appeared much more satisfactory derivations
of the Boltzmann equation, ' "we will go on to show
that even in these more sophisticated derivations it
makes little difference whether one used the Bloch or
ODB representation.

2. Kohn and Luttinger" have derived the Boltzmann
equation from the density matrix in the Bloch repre-
sentation. In their derivation they consider only im-

purity scattering and assume that the electric field is
being turned on adiabatically. We have followed their
procedure but use the ODB representation and consider
phonon scattering. In doing this we neglect E~ and
find that the additional term in (55) does not contribute
to the lowest order because it is completely off-diagonal.
The additional term in (62) which comes from putting
the current operator in the ODB representation does
not contribute to the lowest order because of the small-
ness of the o6-diagonal elements of the density matrix.
Again we conclude that one need merely replace JI,I. by
E'+E" in (59) and then use the usual procedure. We
will not present the details of this argument here
because they follow very closely those of the original
work. '0

3. Since we have not presented the details of the
argument of the previous paragraph we will now present
a plausibility argument which will show the sort of
questions that are invo1ved. We assume that for the
procedure (56)—(60) to be valid it must be derivable
from the equation of motion of the density matrix

we first compare (61) in the two representations. In the
Bloch representation, using (1), (61) becomes

s&(oil pl ~i&
=Pg" (&«E+H, r, ehx—tl pi &&pi ~

I pl (i.)
(«—

I pl ~i-&&~i-IE+H'~ ~~»l «&&, (63)

and in the ODB representation, using (41) and (55) and
remembering that (rliI 0

I
r)i )= (pi IO'I ~pi ), (61)becomes

s&&nil p lni &

=Z~-((v il E+E'+E"+E'" e&(~i+—ui) I v i-&

&&&~i
I pie &

—
&~il pl«-)

&&&«"IE+E'+E '+E"'—.h(*,+u,) I «)). (64)

The term —e8ur in (64) is like a scattering term in that
it connects states that differ by one phonon and
conserves pseudomomentum, and hence can be grouped
with E'+E" in comparison to which it is negligible for
any reasonable electric 6eld. The term E"~ does not
give scattering (because it is diagonal in the phonon
occupation numbers), and ma, y be neglected in com-
parison to E. When we neglect E"' and —ehut in (64),
we see that the equation of motion of p is the same in
the two representations except that where II,I, appears
in (63), E'+E" appear in (64). Now, although we will
not attempt to derive the Boltzmann equation here, it
is clear that as far as the form of (pilH, r. l pi ) is con-
cerned, such a derivation would require only some very
general properties" that &yilEr+E"

I yi & would also
have. Hence we conclude that a Boltzmann equation for
the probabilities of occupation of the ODB states would
be the same as (56) except that H, r, would be replaced
by Er+E" in the transition rates (59).

Now assuming we have the ODB density matrix we
can calculate the current from (52). Remembering to
put J also in the ODB representation, we get from
(34) that

J =Trace (pJ' ). (62) eJ.=—E („I,I„.&(„,
I p.—(ss-p, +p,s~-)

I ~,&. (65)
In such a derivation f(u, k) will appear as the diagonal
elements of the density matrix in the Bloch represent-
tation,

(« I p I v i&= f(u k)&'(4).

By assuming that (61), (62) in the Bloch representa-
tion lead to (56)—(60) we will show that (61), (62) in
the ODB representation will, to a sufficient approxi-
mation, lead to a procedure identical to (56)—(60)
except that L&'+E" replaces H, r, . In order to do this

' N. G. van Kampen, Physica 20, 603 (1954).
'7 W. Kohn and J. M. Luttinger, Phys. Rev. . 108, 590 (1957);

and D. A. Greenwood, Proc. Phys. Soc. (London) 71, 585 (1958).
~'Leon Van Hove, Physica 21, 517 (1955).
~' K. N. Adams, Westinghouse Research Laboratory Scientific

Paper 6-43001-1-Pl (unpublished).
"K. N. Adams, reference 29, has criticized some aspects of

Kohn and Luttinger's derivation, but these comments do not
affect the v@licjity of the conclusions of the present paper.

Since &+ill Ps+PpSr I q i ) is completely off-diagonal
and provided that the o8-diagonal elements of p are
one order (with respect to Sp ) smaller than the diagonal
elements (this is the case in both Kohn and Luttinger's
derivation" and Adams"' extension of van Hove's"
work), neither the second term in (65) nor the off-
diagonal elements of pp contribute to the lowest order

3' (a) According to van Hove, it is necessary only that the
matrix elements (q ~ I H, r, I y~ ) be continuous functions of their
index (and in this respect the Bloch and ODB states are the
same) and that the diagonal elements of the matrix,

&i (~il &.nI v ~ )(e ~ I
&.sl ~~ ),

be larger than the off-diagonal elements by a factor of the square
root of the number of ion cores in the sample. (b) The fact that
the Boltzmann equation has the same form for many different
kinds of scattering strongly suggests that its vaHdity is not sen-
sitive to the form of the scattering matrices.
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of the current. Also we have that VII PROPERTIES OF Er AND E

A. Deformation Potential Theorem
I-=—& &«I ply~&(«I p-I «& We have now only to investigate the Bloch matrix

elements of E' and 8".In part (8) of this section we
will show that L&" is usually small; hence the form of E
leads directly to a generalized deformation potential
theorem":

e U (- Be (k)
d'k j"(n,k)

fi (2m)' Bk

X X)p (n"k', n'k')+Sp (nk; n"k)I(n"k; n'k')), (66)

where f"(n,k) is the solution of (56) with II,I, replaced
by PI+err

)= l 2 '(, ') { (; " ')
The conclusion of these arguments is that, in order

to use the ODB representation to calculate transport
properties, one replaces II,I, by E'+Z" and then
proceeds exactly as if the Bloch representation were
being used. where

1 t Blp(x)
S~P(k k') —=— d'xdg X~*e-~" " X~.e'~' *

'U J Bx~

( 5 [1P(k—k', s)+1]l
a(k —k') Vp(+(k —k'), s)

& 21II'Mo(k —k', s) ) I iV'(k —k', s)il
(67)

I(nk; n'k') —= d'x w„~*(x)w„q (x),
and that

(68)

tg n" &n'

2A p„„&I"(n "k; n'k)
I&"(nk; n'k) =—Q

(72)
&'(nk; n'k') —= (g.~ I

&'Ip. ~ )=&~, k &'(nk; n'k).

There are two special cases where (66) reduces to a
particularly simple form.

1. Scatteri rig by I.orig-8'avelerigth I'honors

In order to consider scattering by long-wavelength
phonons, we expand I and S in powers of k' —k.

8
mP-(nk', n'k') = mP-(nk; n'k)+(1 ' —k),

Bkp

Xn" (nk; n'k)+, (69)

=Q I (nk; n"k)I"( "k; nk), n=n',

where p."'(k)=(p..I p, I ~..).
Hence I(nk; n'k') is expressed entirely in terms of

the familiar matrix elements of y (which determine the
optical absorption, dielectric constant, and part of the
deformation potential) and the energy bands, e„(k).

If we keep only the lowest order in k—k', Eq. (66)
reduces to

((piIE'I(pi) P nP (nk n'k)S P(k k') (73)

where (q(Ig'I «,) g nP (nk'n'k')S P(k, k'). (74)
8

I&(nk; n'k) —= d'x w„~* w„w,
8k~ Equation (73) or (74) (together with the facts that E"

and E'" are negligible and that these matrix elements
give transition rates in the usual way) constitutes a
generalized deformation potential theorem. These
equations are a generalization of the original theorem"
in that they do not require that the two k values be
close to a band edge point, and in that they include

I~'(nk n.'k)—=
t d'xw„„*

J

By using the Schrodinger equation satisfied by m„~
and making a convenient choice of the arbitrary phase
factor we can show that

or if k and k' are both close to some special point k',

—,
' (k' —k), (k' —k) vI &"(nk; n'k) . , (70)

p„„&(k)
I&(nk; n'k) =—,nWn'

m e„(k)—c„(k)

=0,
(71)

"In this section all summations will be indicated explicitly.
"The original theorem stated by Bardeen and Shockley was

restricted to compressional waves and crystals with a band edge
point at the center of the zone. However, the theorem has been
used for all modes and an arbitrary band edge point. See reference
5.
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interband transitions and all acoustic lattice modes. The
interband transitions and the corrections to (73) or (74)
for higher powers of (k—k'), involve the parameters
Sp~(nk; n'k) where nWn' which probably cannot be
determined from homogeneous strain experiments
except possibly near a point of degeneracy. "Neverthe-
less, calculations which treat them as adjustable
parameters should still be an improvement on the
existing4 calculations.

The first two corrections to (73) and (74) are obtained

directly by substituting (69), (70), (71), and (72) into
(66). Since the resulting expression is very long, we will
consider just the special case of intraband transition
and also neglect all of the interband matrix elements of
K)P in comparison to the diagonal matrix elements. (The
neglect of these interband matrix elements is probably
not justified and we do so merely to present a tractable
formula which will indicate the nature of the corrections
to (73) and (74). Under these assumptions, (66) up to
the order (k' —k)' is

(pi ~
8'~ q i ) g DP (n,k)S P(k,k')+ P

8DP (n,k) 1 82DP (n k)
(k' —k),S P(k,k')+ Q-

Bk7 ~ps~ 2 Ok~8k„

252 nm mn
DP (n, k) P (k' —k), (k' —k),S P(k,k').

ni2 men (e„—e )'

By differentiating (50) with respect to k, we see that
the first two derivatives of D~P(n, k) are given by the
shift of electron velocity and effective mass with respect
to strain. Hence, these corrections are given entirely by
the measurable properties of the energy bands under
strain and the matrix elements of jp.

We note that the term (k' —k) ~$ p(k, k') is essentially
the derivative of the strain with respect to x~, and
hence the corrections that we are discussing here are in
this sense of the same order as terms neglected in the
assumed form of the potential (39).

Z. Iritrabaed Sea@'erieg by Short-8"aveleegth I'hoeoes

The assumed form of the crystal potential in a
vibrating lattice, (39), is much more limiting for short-
than for long-wavelength phonons. t It is, however,
always better than the D.I. model which is a special
case of (39).j For short-wavelength phonons, terms
involving the derivatives of the strains may w'ell be
important and shifts of the atoms within the unit cell
may be diferent from those extrapolated from the
shifts under homogeneous strain. Nevertheless, since
with one more assumption we obtain a simple result for
this case, and since we feel that the scattering by short-
w'avelength phonons is an inherently dificult problem
for which it would be hard to make a much better
theory, we will brieQy consider this case.

In order to reduce (66) to a simple result we assume
that the interband matrix elements of X)~ may be
neglected in comparison to the intraband matrix ele-
ments. With this assumption, (66) reduces to

(v)~&'~ pi) Q S P(k,k')E(nk; nk')

DP (n,k)+DP (n,k') i

(75)
I

Hence the scattering is determined by the mean value
of the measurable deformation potentials and I(nk; nk'),
which would have to be estimated theoretically or

treated as an adjustable parameter. In the case of inter-
valley scattering in a semiconductor, one would simply
replace k and k' by the respective band edge wave
vectors everywhere in (75).

B. E" and the Effective Mass Equation

1. We wish first to compare the size of (q i~8"
~ pi )

and (qiiE'i y( ).
The first term of (pi ~

E"
~

&p~.) in (43) is composed of
two terms like

&4Ee-(k) —e- (k') j(~-~;~ Inp I ~- ~:~ ) (76)

In the case of transitions between two states which are
of the same total energy and which involve an acoustic
phonon (which is the only type of transition that we
will consider in this paper),

e„(k)—e„(k')= A(u (k—k') (ski
~

k —k'
~,

where s is the maximum sound velocity in the crystal.
Then (76) is always less than

Akps(k —k'[(q„~,~~up~ p„~,.~).
Since (k—k'((p„~,~(Np( y w ..~ ) is of the order of mag-
nitude of I(nk; n'k')S~p(k, k'), we need only compare

Ass to the deformation potentials in order to estimate
the importance of this part of E".Even where k is a
reciprocal lattice vector this term is only of the order
of 0.1 ev, and hence may be neglected in comparison to
the typical deformation potentials which are of the
order of several ev (17 ev for Ge).' '

The second term of Z' is more difficult to estimate
in general. It is composed of two terms like

(~P)&--(4-~IPptk--~V~(k —k')(v- '.Nlnplv-';~)
(77)

Again setting ~(k—k')=s~k —k'~, we have for (77)

{~k—k'~(x~e'" *~gp~x~ e'"'*))
XP„~ s(4''~I ppI4' "~)I',"„„.„.. (78)
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The term in braces is of the same order of magnitude
as S s(k,k'). Then by comparing ('S) with (66) we see
that we must compare s&P„), I Pslf «) to &' (Nk; I"k)
to estimate the importance of this part of E",

In the special case of intraband scattering by long-
wavelength phonons, we need consider only the case
n=n", where for thermal electrons in a semiconductor

&Q„„lp,14„,& =10 'ev,

and even for a metal is only about 10 ' ev. Hence, for
this special case the term is certainly negligible in com-
parison to the known values of the diagonal elements
of &' (several electron volts).

To obtain the order of magnitude of this part of 8
in general we could compare s&f„),lp lit ~ ),) to just
one of the terms in the deformation potential, say
(hk&)/m)&f ), lp lf ),). The 8" term is smaller than
the deformation potential term by a factor s/(hkt)/m),
or the ratio of the speed of sound to the electron
velocity which is usually about 1/20 for thermal elec-
trons in a semiconductor at room temperature, and
much smaller for a metal. Hence, we can conclude that
the 8' term is negligible, at all but very low tem-
peratures, unless the part of the deformation potential
to which we are comparing it almost cancels some
other part of the deformation potential. Even at very
low temperature there are other parts of the deforma-
tion potential which would probably be much larger
tha»&lt -~

I ps I p--~) (i.e, &0:I

U'"
I
y--.)).

2. Secondly, we wish to show how the E" term may
be included in an effective-mass equation and thus
acquire a physical interpretation. We do this only in
the simple model where we are considering only one
band which has the shape

neglecting the (V~)' term. Hence we see that, but for
factor (1—m/m*), Z" enters the effective Hamiltonian
like a term which transforms to a moving coordinate
system. The factor 1—m/m~ expresses the reluctance of
the electrons to follow the lattice.
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APPENDIX A

We have stated that the introduction of the ODB
representation is essentially equivalent to mapping the
electron wave function so that it deforms with the
lattice as it vibrates. In this Appendix we will discuss
the introduction of such a mapping and show explicitly
how this approach is related to the introduction of the
ODB representation. '4

First we consider the boundary value problem:

H& % (x,q, t) =ih((l/Bt)+(x, q, t),

%(x,q, t) =%(x+L;, q, t),
(A-1)

we see that H, +L~" may be replaced by the effective
Hamiltonian

1( ] mq
p +11— 1m*v &

- 2m* & m*)

and therefore

e(k) =e(0)+Q
2m*

where H( ) is the differential form of the operator II
defined in (1)—(4). We then introduce the change of
variables (18) and obtain the boundary value problem:

(P~ I pp I g,)= (m/m*)Ikey.

We consider only matrix elements between states of the
same total energy and therefore,

&«ILH.,~sjl v ( &= —
&v(ILH~Nsll ( ().

where

H(»Z(y, q, t) =iAB/Btz(y, q, t),

z(y, q, t) =z(yyL;, q, t),

H 4(( q,xt) = H" 4(')( (xy), tq)

=H &"'Z(y, q, t).

(A-2)

(A-3)
The local velocity of the lattice is

Vt)~= (i/A) [Hr„u(3],

and then we can write

1
t mq

&«If-""I «&=&- @ksl 1—
() 2 E m*i

+I 1— l&«l Vs'I «)k4'
m*)

Then noting that to the lowest order in (k—k')

&& (I vs I(,.)=&x~e'"'*I vs IX~ e'"''"),

We call Il(» the Hamiltonian in "y space" and it can
be written as

H(w) —Hs(w)+. H t(y)

where IIO(» is the diBerential operator which can be
obtained from the differential form of E LEqs. (1—3)j,

84 E. 1. Blount LPhys. Rev. 114, 418 (1959)g, in the course of
developing a theory of ultrasonic attenuation in metals, intro-
duces a change of variables very similar to the one used in this
paper. He gives a discussion of the transformed Hamiltonian in
which he tacitly neglects the non-Hermitian part (which we feel
is probably quite appropriate for the special case of ultrasonic
attenuation). The reasons he gives for introducing the change
of variables are to a large extent the same reasons that motivated
this work.
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by replacing all the x's by y's, (including, of course, the
variables which are held constant when differentiating
with respect to q). Hi&» is a complicated non-Hermitian"
differential operator proportional to 5 & and

I H~, u ],
which we will not write down explicitly, but we will
show below that to the first order in S & the Hermitian
part of Hi&» is just Ei+Eii+Eiii ('written as a dif
ferential operator with y replacing x).

Having introduced the change of variables, we could
now use (38) for the crystal potential and solve the
boundary value problem (A-2) by perturbat:ion methods,
obtaining a set of eigenfunctions Z~(y, q, t) and eigen-
values 8).

For each eigenfunction in "y space" there is a cor-
responding eigenfunction +i(x,q, t) =Z&(y(x), q, t), in
"x space" having the same eigenvalue 8~. Then the
expected value of some operator 0'*) for a system in
the state +i(x,q, t) is given by

(+i(x) I
o'*'I+i(x)) =

J
d'ydq Zi*(y,q, t)

X~ '(y)0'»Zi(y, q, ~), (A-4)

where 0'» is defined in the same way as H "i and J '(y)
is easily expressed in powers of the strain I:see (19)].If
0& ' is Hermitian, (A-4) will, of course, always be real
even though 0(» is in general not Hermitian. This then
constitutes an entirely adequate procedure for solving
a problem in the "y space, " which we will show is
essentially the same as introducing the ODB functions.

Since the above procedure can be thought of as a
mapping of the quantum operators, we would expect
that there is an equivalent procedure which involves a
mapping of the basis states. In order to see what these
new basis states are, we first de6ne the matrix elements
of an operator 0 in "y space" as

is given by

where

0"=S—'OS,

5=P, l ,(y(x)))&&,(x)l,
5- =P,

l &,(x))&„(y(~))l~-',

55t= J, (5—') tS-'= J—'.

Then since J ' transforms from DB to the ODB repre-
sentation, we have that

O'= J 'SOS''.
But we have to the first order in S & that

J l=1+-',5,
and hence

-', (0"+0"~) =0',

or an operator in the ODB representation is just the
Hermitian part of the corresponding operator in "y
space. "

which we call the deformed Bloch (DB) functions, and
which may be thought of as Bloch functions that
deform with the lattice. The fact that the DB functions
are not orthogonal is no serious obstacle to their use,
although it leads to some awkwardness when talking
about transition rates. We have chosen to orthogonalize
them because it can easily be done without essentially
changing their character. In fact, we will now show that
to the first order in S ~ an operator in the ODB repre-
sentation is just the Hermitian part of the corresponding
operator in "y space, " and it is in this sense that the
use of the ODB representation is equivalent to intro-
ducing a change of variables in the Hamiltonian.

Proof: First we note tha, t the operator 0", defined so
that

(~i(x) I

o"
I ~i (x))= L~il 0

I «.7,

Lg IOIO ]—=
J

8 *(y,q)0' '0„(y,q)d'ydq,

where (8 (y,q)} is some complete orthonormal set in
the "y space" (ie Le I07=~-, and 2 l~]LO I

is
the identity operator). It is then easily seen that.

Lg-
I
o

I
~-7= (~-(y(x)) I

~ 'o
I ~-(y(x))),

from which itis clear that(8 (y(x)) IJ 'and
I
0 (y(x)))

are the covariant and contravariant basis vectors of a
nonorthogonal representation in the "x space, " the use
of which is equivalent to mapping the operators into
the "y space. "

We are concerned here with the Bloch functions
qi(x, q) and the corresponding mapped pi(y(x), q),

35 It is not surprising that H(» is not Hermitian since it is easily
seen that even the momentum in "y space, "

B a B»(y) B
p (»= +

i By i By Byp

(to the 6rst order in strain), is non-Hermitian.

APPENDIX 3
There are two other reasonable definitions of the

deformation potential besides (50). The first of these,
D. ~&, is the one directly obtained from most homo-
geneous strain experiments and can be de6ned:

e„"(ko")= e„(ko)+a ~D, .&"(rs, ko), (B-1)

where ko and ko" are the band edge points in the
unstrained and strained crystals, respectively. This
definition is not convenient for theoretical work because
one does not know' where the new band edge point will
be. Another choice for the deformation potential which
is close to D, ~& and yet convenient for theoretical use
is 8& dehned by:

e„"(k (I—a)) = e„(k)+a-pB&~(m, k). (8-2)

Then to the 6rst order in a, we have that

Akp
D'(~,k) =&'(~,k)+ (0-~ IP-I 0-~) (B-3)
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When k is a band edge point,

and D~ = 8& . If k is close to a band edge point which
is at the center of the zone, the two deformation poten-
tials are still very close Le.g. , for a thermal electron in
a semiconductor (Aks/m)(u, k

I p I
u, k) = (m*/m)ET,

which is about 0.02 ev at room temperature when
m*=m]. If k is close to a band edge point which is not
near the center of the zone, D~ —8& would be about

2 ev at room temperature, which although it is not a
large term may not always be negligible. However for
a completely general point in the zone D& —8& may
be as large as several ev, which is the same order of
magnitude as D& .

By comparing (8-3) with (45) we see that we can
define another deformation potential operator,

than we did in Sec. IV. Using (34) and noting that

S"P= (i/A) LP,up],

we can show that

pa pa papa + Lp-p-, (uspp+psus)]
2m 2m 4m'

Then adding and subtracting

pjVp(x)—
I Vp, (upPp+Ppup)]= —» =H, r ',

25 Bxp

we get that

pa pa papa
+H, '——LH„(»P,yP,»)]. (C-3)

2m 2m .2A

S~ =——
ppp /m+0& (x),

such that
&'(u, k) = (4-. I

8'l0-.).
Z

H'=E+ X——LE, (»pp+ppup)]-
2I

(C-4)
2M

It is possible to write II' in terms of St'" and develop
an adequate scattering theory based on this form of H'.
We have chosen to formulate the theory in terms D&

instead of S&, largely because 8& (u, k) does not
approach zero when the electron-phonon coupling does
Li.e., when Up(x) and w„q(x) approach constants inde-
pendent of strain, 8~ (u,k) approaches —h'k ks/m];
whereas DI' (n,k) does approach zero when the coupling
does.

where BC is either IX,I, ' or H, l.~', depending on which
model we are using. (C-4) is then (41) in the R.I. or
D.I. models. The standard theory (Sec. II) is based on
the Hamiltonian

(C-. 5)H=E+ X.

We will now discuss the difference between (C-4) and
(C-5). The last term of (C-4) is a small term that may
be thought of as the correction to the electron energy
in "y space" due to the mapping away of the zero-point
motion of the lattice. It is diagonal in the electron wave
vector k and hence gives no intraband transitions, but
it does give a correction to the p„(k) which we neglect
here but which we expect will be important in a self-
energy calculation. The term does have interband
matrix elements, but since it is diagonal in the phonon
number these matrix elements cannot be thought of
as giving transitions either. This term is of interest to
us in that it expresses the difference between a theory
which is taken to the first order in u, i.e., (C-5), and a
theory, like that in the body of this paper and in (C-4)
excepting the potential energy part, which is taken to
first order in S t' and LEt.,u].

That there should in fact be a difference is not sur-
prising when we remember that in Sec. III we intro-
duced a change of variables so that certain terms
involving all powers of u are absorbed into the variable
y and then treated exactly.

If we neglect the last term in (C-4) we see that H
and H' are related, to the erst order in u, by a unitary
transformation:

APPENDIX C

In order to compare the present work with the
standard theory, ' we will now rewrite H' using the
deformable- and rigid-ion models. From the statement
of the deformable-ion model in (12) we get that

V(x(y), q) = U (y+u(y) —u(x(y)))

which to the lowest order in u gives that

V(x(y), q) = Vp(y). (C-1)
I'herefore

VDi'(x, q) = Up(x),

where the prime has the same meaning as in (24). From
(15) we see that the rigid-ion model gives, to the first
order in u(y) —u„, that

l9

U(x(y), q) = Vp(y)+2 I u(y) —u.]. p(y —R.'),
Bp

and hence

Uar'(x, q) = Vp(x) H, r, '+H, I. ', —(C-2)

where H, ralnnd H, r,
~' are defined in (14) and (16).

It is convenient for our present purpose to use a
slightly different form of the electron kinetic energy H T HTp

(B 4)
Them combining (C-3), (C-1), (C-2), and (38), we get

(B-5)



where

It is easy to show that this is the same T (to the first
order in Ns) as was defined in (23), and it is clear from
its form that it is an operator that translates the electron
a distance u. 4Ve also note that the electric field operator
&,i„' (55) and p

' (34) are obtained, to the first order
in I, by application of T to H, i„and p .

Since in the body of this paper we neglect the last
term in (C-4) (i.e., Err') the only difference in the
physical approximation made when using the ODB
instead of the Bloch functions, is the use of (39) instead
of the R.I. or D.I. models (i.e., except for E"r and the
model used for the effective potential, II and H' are
related by a similarity transformation and therefore are
equivalent). We note further that since the third term

in (C-4) involves a, factor (L&'i —I.'i), it is zero for
matrix elements between states of the same total
energy H. ence, the matrix elements of II, to the fi,rst
order ie u, in the D.I. and R.I. models aed beseem
slates of the same energy, are exactly the same in the
Bloch and ODB representations. Since this property is
true for both the R.I. and D.I. models, it is probably
independent of the model used. These similarities prob-
ably do not extend to higher orders. "

36 In second order perturbation theory, matrix elements between
states of different energy are important and one may think that
terms like the third term in (C-4) will become very large. The
fact that these terms result from a change of representation rather
than a different physical approximation suggests that they will
have no profound effect on the observables. A situation somewhat
similar to this was encountered by J. M. Ziman, Proc. Cambridge
Phil. Soc. 51, 707 (1955), and it became clear that these terms
did not lead to an important physical effect. Bernard Goodman,
Phys. Rev. 110, 888 (1958); J. C. Taylor, Proc. Cambridge Phil.
Soc. 52, 693 (1956). In a situation like ultrasonic absorption
where u is large, and the theory must be expanded in powers of
5 &, there might be some real effect.
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Decay of Excess Carriers in Semiconductors. II
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A physical interpretation is given of the nonlinear differential equations which govern the decay of excess
carrier populations through recombination centers. No restrictions are placed on the magnitudes of the
excess carrier densities or the center density. Criteria for trapping are presented; with semiconductors for
weigh the trapping level lies in the opposite half of the intrinsic gap from the Fermi level, it is shown that
trapping can be described as being of either a temporary or permanent nature. The variety of possible modes
of decay are illustrated with the aid of numerical solutions and approximate analytic solutions.

I. INTRODUCTION

HE lifetime of an excess carrier population is for
many semiconductors controlled by a process in

which the charge of a recombination center changes by
+e and —e alternately. For example, when a recom-
bination center captures a hole of charge +e, the next
process experienced by this center may be either the
reliberation of the hole or the capture of a previously
free electron. Either process will restore the center to
its original charge state.

The details of the carrier dynamics will depend on a
number of parameters and variables. As parameters we
should list the absolute and relative magnitudes of the
electron and hole capture cross sections, and the density
and energy of recombination levels. Variables which
enter into the problem comprise the equilibrium Fermi
level (which characterizes the thermal-equilibrium
carrier densities ns and ps) and the concentrations of
excess carriers. The excess free carrier densities
An= (e—es) and hp= (p —ps) are not necessarily the
same, since intermediate levels tend to indulge in

trapping as well as recombination. For this reason, we
shall use the terms "trap" and "recombination center"
interchangeably in this paper.

The kinetics of the excess carriers during buildup,
maintenance and decay may be described in terms of
two coupled first order diGerential equations which are
expressed in terms of the above mentioned parameters
and variables. Solutions of these equations for the
special case of steady state nonequilibrium have been
presented by Shockley and Read' and by Hall. 2 Even
then, these published solutions are valid only for the
limiting conditions of vanishing trap density or van-
ishing excess carrier density. More recently the tran-
sient behavior of excess carrier populations confronted
with arbitrary trap density has been discussed by us'

in a paper to which we shall in future refer as NB1.
From the study of the general decay equations in

' W. Shockley and W. T. Read, Phys. Rev. 87, 835 (1952).
2 R. N. Hall, Phys. Rev. 87, 387 (1952}.
3K. C. Nomura and J. S. Blakemore, Phys. Rev. 112, 1607

(1958).


