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A theoretical calculation is made of the magnetic anisotropy in the cubic perovskite structure of KMnF3
at room temperature and in its distorted structures at lower temperatures. These distortions are of two
types: first, a small tetragonal distortion of the entire crystal; and then, below the antiferromagnetic Noel
point, a distortion of the octahedron of Ruorine atoms surrounding each manganese. The cubic anisotropy
is obtained from a general spin-wave calculation of the zero-point dipole-dipole energy in a cubic antiferro-
magnet. The result is found to be the same as that for the ferromagnetic case. The anisotropy from the
tetragonal distortion is obtained from the change in the classical Lorentz factors. In calculating the e8ect of
the Quorine distortion, a generalization is introduced of Kondo's method for obtaining the anisotropic
effective spin Hamiltonian produced by overlap and electron transfer between an Mn++ ion and its non-
magnetic neighbors. In its present form the method permits the ready calculation of this anisotropy for any
symmetry and number of neighbors. Comparison with the microwave resonance and torque measurements
of Portis, Teaney, and Heeger, reveals the last effect to be the most important and confirms the form of the
spin Hamiltonian found here and its approximate magnitude.

I. INTRODUCTION

ECENT magnetic resonance experiments by
Portis, Teaney, and Heeger' on antiferromagnetic

KMnF3, and torque measurements by Heeger on the
same crystal have revealed the presence of important
anisotropy fields acting on the manganese spins. It is
the purpose of this paper to examine the sources of
these helds and predict their magnitude.

The most important source of anisotropy is found to
be a distortion, at temperatures below the Neel point,
of the octahedron of Quorine atoms surrounding each
manganese. In order to calculate the effective spin
Hamiltonian produced by this distortion, a generali-
zation is introduced of a method due to Kondo' for
estimating, in lowest order perturbation theory, the
anisotropic effect of overlap and electron transfer
between a manganese ion and its nonmagnetic nearest
neighbors. In its present form the method permits the
calculation of this effect for any number of neighbors
and any symmetry with very little additional wopk.

Keffer, Oguchi, O' Sullivan, and Yamashita' have
shown that the spin-dependent interaction between an
Mn+ ion and an F ion can be thought of in terms of
an antibonding orbital of the type

where C represents a manganese 3d function and 0" a
fluorine s or p function; S is the overlap between C

and O~, and X the coeKcient of electron transfer. Since
the problem under consideration in that paper con-
cerned nuclear magnetic resonance of the Quorine

$ Supported in part by the U. S. Air Force Otiice of Scienti6c
Research.

*This work was done during the tenure of a Westinghouse
Electric Corporation Fellowship.

'A. M. Portis, D. T. Teaney, and A. J. Heeger (to be pub-
iished).' J. Kondo, Progr. Theoret. Phys. (Kyoto) 23, 106 (1960).' F. KeBer, T. Oguchi, W. O' Sullivan, and J.Yamashita, Phys.
Rev. 115, 1553 (1959).

nucleus, the 4 part of that function was negligible and
a hyperfine interaction proportional to (S+X)' was
obtained, Here, the concern is with the manganese 3d
electron spins, so the C term should be the important
one; and indeed the method used here shows that, to
second order in 5 and X, the spin Hamiltonian does
depend on those quantities in the combination 5'—)P.
In principle, then, it should be possible, when more
accurate experimental values for the electron-spin-
Hamiltonian constant and the exact positions of the
Quorine are known, to combine this information with
Quorine nuclear resonance results and obtain values
for (S+X)' S'—X' and hence S and X individually.

At room temperature the KMnF3 crystal has the
cubic perovskite structure, with a manganese atom at
the body center, Quorines at the face centers, and
potassiums at the cube corners. Thus the magnetic
symmetry is simple cubic, and each manganese is
surrounded by an octahedron of Quorine nearest
neighbors. The cubic anisotropy effects are discussed
in Sec. II. As the temperature is lowered, the first effect
is a contraction of the lattice constant from its value of
4.186 A at room temperature, and then a tetragonal
distortion of the entire crystal occurs, as shown in Fig.
1. The anisotropy resulting from this tegragonal dis-
tortion is considered in Sec. III. Finally, below the
Neel point a distortion of the Quorine octahedron is
observed. This is dealt with in Sec. IV.

II. ZERO-POINT ANISOTROPY IN A
CUBIC ANTIFERROMAGNET

The first anisotropy to be considered is the cubic.
Van Vleck' has shown (and the calculation in Sec. IV
confirms) that a cubic array of ordered dipoles can
produce no anisotropy in erst order perturbation
theory, so no cubic contribution from the overlap and
transfer effects is to be expected in lowest order. In

' J. H. Van Vlecit, Phys. Rev. 52, 1178 (1937).
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FIG. 1. Volume contraction and tetragonal distortion of the
KMnF3 crystal with temperature. c, u, and u are the tetragonal
lattice constants. LAfter O. Beckman and K. Knox, Phys. Rev.
121, 376 (1961).g

second-order, however, cubic anisotropy can be obtained,
and that arising from the dipolar or pseudodipolar in-
teraction of the manganese ions was calculated. This
calculation was performed using second-order perturba-
tion theory. The unperturbed Hamiltonian, Bo, was
taken to be the exchange Hamiltonian,

H, =J P S,"S,, (2)

for one sublattice, and

S;+=—S;*+S,"=(2S)'*b;,
S. =S'—iS "=(2S)lb.

—S'=S—b;*b,

for the other. Here 5 is the spin quantum number of
s R. Kuho, Phys. Rev. 87, 568 (1952).

where i and j were taken to run only over nearest
neighbors, and J was taken to be a positive constant.
The cubic lattice was broken up into two interlaced
face-centered cubic sublattices, such that one sublattice
contained all the nearest neighbors of any site in the
other. Thus in Ho, i and j can be taken to run over
di6erent sublattices. Following Kubo, ' the ground
state of Ho was assumed to be that in which all the
spins on one sublattice were completely quantized in
the positive direction along some arbitrary axis, and
those on the other sublattice in the opposite direction
along that axis; and it was assumed that for any states
to be considered, the deviations from this ground state
were small.

On these assumptions, creation and annihilation
operators for spin deviations from maximum alignment
were introduced, and terms of third or higher order in
these deviations were ignored. Thus,

S;+=S;*+iS;"= (2$)la;, —
S; =S, iS —(v2S)—la,*,

S =S—a;*a;

+JSsfg; a;*a;+Q; b;*b;], (6)

where Ã is the number of magnetic atoms in the crystal
and z is the number of magnetic nearest neighbors of
one atom.

Introducing spin waves in the form:

a;= (2/cV) i g), ag exp( —ikx R;),
b, = (2/Ã) & Qx bx exp (ikx R;),

a,*=(2/1V) '* P q ax* exp (ikx R,),
b;*= (2/N) & P x by* exp (—ik&, ~ R,),

where X runs over all k vectors in the first Brillouin
zone for the sublattice under consideration, and using
the fact that

P; expLi(kx —k), ).R~]=by, g

one obtains for the Hamiltonian,

Hs=&o+Q) L&u(a)br+a~*b)*)
+As(a~*ag+b), 'bi)], (9)

where

Eo ————,
'JS'Es,

Egg —Er(—X)=JSps exp(ikz Rs) —=JSsyz,
(10)

(R& equals R,—R; and is independent of R,), and

E2=SJs.

The az's and b&'s satisfy commutation rules:

Lax, a~ *]=Px,bx *]=&x,~

(a~,b~ ]= Lax', be*]= &a.,bx']= La~*,bx ]=0.
(12)

Finally, the following three successive transformations,
similar to those introduced by Oguchi':

a+) = (1/V2) (2&+i'—&) b+x= (1/V2) (Bx&iB x); (13)

(defined only over the halfspace, kx,)0),

&),=-,'Lqx+rx+i(p), +sx)],
A),*=-,'Pqx+ rx —i(px+sx)],
Bg= -,'Pqg —rx+ i(p~ —s),)],

Bx*=,'$qx r, i-(px —sx)—];—
s T. Oguchi, Phys. Rev. 111, 1063 (1958).

an atom, and the creation and annihilation operators
satisfy the commutation relations:

[a;,a,'*]=3,„', Lb, ,b,'*]=b;,,',
La;,b;]=La;*,b;]=La;a,b ]=t a;,b;*]=0.

In terms of these operators,

Ho= —-', JS')Vs+JS P La,b;+a;*b;*]
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and

q.=(1/~2) I l (ca+c, ),
E 1+va &

(1+vaq ~

iPa= (1/v2)
l

—
l (ca—ca*)

Ei—va&

(1+va) '
"=(1/~2)

I I (d.+d *),
Ei-v, &

(1-va) '
isa= (1/V2) l l

(da —da'),

(15)

(1—va) ~

A»= —2'SD Z [va'+~a' exp(ika Ra)71—
A 41+va&

(1+va) *'

+[va' Pa—' exp(ika Ra)7l
Ei —va&

(1—va) ~

Aoa= —2SD Z [va'+Pao exp(ika Ra)7l—
~1+»&

(1+vai '-
+[v„—~a exp(ika Ra)7l — l, (22)

reduce the Hamiltonian to the form:

Ho JSz[ (E——/2) (S—+1)+Pa(1—va'):7
+JS&Qa(1 —va')'*(da*da+ca*ca), (16)

with c and d satisfying

[ca,ca *7=[da,da'7=ha a,
(»)

[ca,da 7= [ca*,da *7=[ca,da *7=[ca*,da 7=o.
Thus, by analogy with the harmonic oscillator Hamil-
tonian, the eigenvalues of Hp are

Z'(n, a,n.a) =JSs[——',X(S+1)+& (1—va')'*

+Z (1-»)~(...+".)7, (18)
where e,& and ed), take arbitrary non-negative integral
values.

The perturbation, B'~, was taken in the form:

Hg DQ [S;.S;———3(S,'R;;)(S; R;;)/IE;;I'7, (19)

where R@=R;—R; is the vector from lattice point i to
nearest neighbor lattice point j. In terms of the di-
rection cosines, na, Pa, and va of R,; with respect to
Cartesian axes in which the s axis is the direction of
quantization of the spins:

&i=DIIo/J 3D P (S;~a+—S;,Pa+S,*va)

X (S~wa+S;„Pa+Sj,va). (20)

Expressing H~ in terms of c), and d)„and noting that
sums of the form Panava vanish by the crystal sym-
metry, one obtains

Hl AC+pa[A»ca ca+Aoada da

+A oa(ca'+ca ')+A 4a(da'+da ')
+A oa(cada —ca*da )+A oa(ca"da —cada*) 7, (21)

where

Ao=2oSD Q A (S+1)va'

——,
' 2 [2va'+(~a'+Pa') exp(ika Ra)7

(1—vap *

X l l
+[2va' —(mao+Pa') exp(ika Ra)7

&1+va&
(1+va) '

f'

(1—va) ~

A„=—;SD&[v.'+ "e p(k R)71
41+va &

(1+va) '
—[v„'—pa' exp(ika Ra)7l-

Ei-va&

(1+va& *

A,a ,'SD P ——[v—a'—na'ex—p(ika Ra)7l
h

1+va) ~

[va'+—Pa' exp(ika Ra)7l
Ei—va&

(1+va)t ~ (1—va) ~

A» ,'is ——
l
-l+l

&1+va& . ~

Xexp(ika Ra),
' (1+va) ' (1-vai '

Aoa ——-', iS
l l +l l

ZcaPa
(1—v» &1+va&

Xexp(ika Ra).

Since in a cubic crystal the lowest powers of the di-
rection cosines which can give anisotropy are fourth
order, II~ can first give anisotropic contributions to the
energy in second order perturbation theory. Thus, only
terms of B~ which have matrix elements between the
ground state and some excited state are of concern.
These terms are

Hgg =Qa[A oa(ca'+ca*')+A4a(dao+da*')

+Aoa(cada ca da )7. (23)

The only nonzero matrix elements with the ground
state are

(n,a=2I (c,o+ca*o) lo) =&2,

(nba= 2
l
(dao+da*')

l 0)=v2,

(n, a ——1, n~a ——1l (cada —ca*da*)
l 0)= 1.

Then the second order correction to the ground state
given by B» is

&»= —2 Za(IAoal'+ IA4al'+-'lAoal')/~. , (25)

where

ZLa —=Z'(n, a=1, nba ——1)—Eo(0)=2JS (1—Va')& (26)
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Inserting these expressions and simplifying, one obtains

Egg ———$9SD'/(16Jz)) Q (Lgyg'ypPyy, '

where

—8zygy„'(1 —
yy, ') exp(ik~ Rg)

+2((1—7 ') (1—& ')+7 '( ")'( )')

)&exp(ikg (Ry, —Ry, ))7/(1 —y)P)&) (27)

ng+=rra+ipp, and nI
———erg —ipse. (28)

When nI,+, nI, , and yy, have been expressed in terms of
the direction cosines, n~, o.2, 0,3, of the axis of quanti-
zation with respect to the crystal axes, the result is

necessary, but the work of Charap and Weiss~ seems
to indicate that the corrections to this result are
relatively unimportant.

The fact that g is so close to 2 in KMnF3 indicates
that the effect of spin-orbit coupling in this crystal is
small, and that the dipolar interaction exceeds the
pseudodipolar by nearly a factor of 100. Of course, the
dipolar interaction, as contrasted with the pseudo-
dipolar, is a long-range effect. Since its second-order
energy decreases with neighbor distance as r& ',
however, the above nearest-neighbor formula should
give an indication of its magnitude. An estimate of
E, ;, in this case can thus be obtained using

D = (g'P')/ra' and J= 10'K.

The result is
Eg=7&&10 "I' erg

where

&(L4 exp(ikq (R,—R„))
—exp(2i(kg. R.))—1]1',

I =Crl rrs +rrs Qs +Qs Ql .

for the anisotropy energy at O'K. Pincus' has shown
that this anisotropy can be expected to decrease as the

(29) tenth power of the sublattice magnetization. It is too
small to have any eGect except at very low
temperatures.

Here the sum over h has been restricted to nearest
neighbors, and R, and R„represent the vectors from
the origin to two of these neighbors in perpendicular
directions.

Since the major contribution to the anisotropy comes
from large k's, it is sometimes desirable for simplicity
to replace y& by a constant equal to its average value
over the surface of a sphere of the same volume as the
erst Brillouin zone. The volume of this zone in the k

space corresponding to a sublattice is 4z'/a', where a
is the interatomic spacing of the simple cube. The
radius of the equivalent sphere is then given by

where

Lrr'=4s (s —0.06eg), Lrr*=4m (-', +0 03e,), .
(35)

L$ s4 (-',s1 94e—,), . L&s*=4rr(-', +0.97e,),

III. CLASSICAL ANISOTROPY FROM
TETRAGONAL DISTORTION

The anisotropy produced by the tetragonal dis-
tortion of the manganese sublattices can be estimated
using the results given by Mueller' for the departure
of the Lorentz factors from 4s/3 in a distorted NaC1
structure. He gives for these factors:

Then
k = (3m') &/a. (31) e,=c/a —1. (36)

y),
—= (1/z) Ps exp(ik), Rg) = (1/4s) ding exp(ika)

27i 1

= (1/4s)
~

t t exp(ika cos(ts) d(cos8q) dP~j0

=-,'Lexp (ika) —exp (—ika) 7/ika

= (sinka)/ka =Lsin(3s') &j/(3z') 1=0. (32)

The dominant anisotropy energy is that due to the
interaction of the two sublattices. Ke6er" has shown
it to have the form:

(37)

where the rr's and p's are direction cosines of the sub-
lattice magnetizations and

Es= M'(Lrs' —Lrs*) at O'K

In this approximation:

Eg $(9D'SE)/(8 Jz)J——I',
since

gq expt ikq (R,—R„)j=-',M(R,—R„)=0

Pq exp(2ikq R,) =8(R,) =0.
and

r S. H. Charap and P. R. Weiss, Phys. Rev. 116, 1372 (1959);
F. Eever and T. Oguchi, Phys. Rev. 117, 718 (1960).

8 P. Pincus, Phys. Rev. 113, 769 I,'1959).
' H. Mueller, Phys. Rev. 47, 947 (1935).
'0 F. Eever, Phys. Rev. 87, 608 (1952).

It is interesting to note that this result is just equal
to that obtained in the ferromagnetic case. The ap-
proximations made in the preceding paragraph are not

If for e, the value obtained from Fig. 1 at O'K is taken,
Es has the value 8&&10 "erg. It would be expected to
decrease as the cube of the magnetization. This ani-

sotropy is more than an order of magnitude smaller
than the second-order term obtained in the next section

(34) from the distortion of the fluorine octahedron.
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IV. ANISOTROPY IN THE ANTIBONDING ORBITALS

The form of the distortion in the octahedron of
fluorine atoms surrounding each manganese revealed
by the x-ray measurements below the Neel point is
shown in Fig. 2. In order to determine the symmetry
of the effective spin Hamiltonian resulting from this
distortion, the departure from cubic symmetry of the
crystal field at the manganese due to the six neighboring
Quorines was calculated on the assumption of a com-
pletely ionic crystal. In this calculation, the effect of
moving an F ion from its undistorted octahedral site
was approximated by adding to the octahedral field
the field due to six point dipoles at the octahedral sites
with moments equal to the F charge times the dis-
placement of each fluorine ion under distortion. The
field of these dipoles near the manganese atom was
expanded in a Taylor series with the manganese site
as origin, and only the second-order terms were kept.
The result was a 6eld with symmetry (x+y)s, where s
is measured along the c axis and x and y along the two
perpendicular a axes of the crystal. This indicated a
spin Hamiltonian of the form

H =A DS.+S„)S.+S.(S.+S„)j (39)

produced by the fluorine distortion.
In order to obtain an experimental check, it was

desirable to estimate the magnitude of the constant 3,
taking into account the overlap of the fluorine and
manganese wave functions and the presence of some
covalent bonding. This was accomplished by means of
a method proposed by Lowdin" and applied by Kondo, '
here generalized to apply to any symmetry. Basically,
the method consists of taking the expectation value of
the electron dipole-dipole and spin-orbit Hamiltonian
in a state consisting of a Slater determinant of one-
particle molecular orbitals, chosen to include the
electron transfer eBects. From'the anisotropic energy,
8', thus calculated, the spin Hamiltonian can then be
computed. More specifically, the Hamiltonian con-
sidered was

H=Hr+Hs —,' P Lr,, s, s; 3(s; r—,;)—"(s;r;,)$/r—,;

+2' h(r')l' s' (4o)

Actually, for the case of inversion symmetry, which
was the one of interest here, B2 has zero expectation
value, so the energy, S'&, of B2 was used. Then the
anisotropic energy 8" is

~=&0IHr I o)—2'L&0IHs Is&&sIHsI0&j/%' —&o) (41)

The ground state, IO), was a Slater determinant of
the following types of normalized one-electron orbitals:

Manganese 3d functions,

Crn=R(r)I (3s'—r')/V3jn, , C'sn=2R(r)xyn,

Csn=R(r)(x' —y')n, C4n=2R(r)xsn,
C sn= 2R(r)ysn.

"P.O. Lowdin, Phys. Rev. 97, 1474 (1955).

SPACE GROUP D~h
—Pb np) x, =0.060a

xq = 0.05a
x& = 006a

FrG. 2. Distortion of the Quorine sites in KMnFg at 65'K. The
open circles represent the undistorted positions of the Quorines.
(After Beckman and Knox. )

Nearest neighbor (fluorine) functions,

~ Q~ n ~ ~ ~ Q&yn

"Mixed" orbitals,

XgP X P. XgP

The number Ã depends on the number of nearest
neighbors (six for KMnFs) and on the number of
orbitals considered for each neighbor (in the calculation
for KMnFs, one s and three p functions for a total of
four). The manganese 3d functions above are expressed
in terms of the crystal axes, and each of the , 's is
quantized along the line joining the site of that par-
ticular neighbor with the manganese site. The direction
of spin quantization implied by the spin functions o.
and p is an arbitrary one having direction cosines l, m,
and n with the crystal (x,y, s) axes. The mixed functions,
X;, have the form:

X;=8;+),S;, O,=Z;;,~;. (42)

The particular combination, iP;, chosen for each i forms
that one of a complete set of manganese 3d functions
quantized along the same axis as O~, which has a non-
zero overlap with O~;. This overlap is denoted. by S;.
All of the O~, functions are assumed to be orthogonal
to one another. The parameters );measure the amount
of electron transfer.

In principle one could orthogonalize these orbitals,
obtaining functions of the type given in Eq. (1), and
calculate straightforwardly the matrix elements for
their Slater determinant. However, a theorem proved
by Lowdin facilitates the calculation of matrix elements
of the type needed here between Slater determinants of
large numbers of nonorthogonal orbitals. He defines
the function p(x, y) by

p(x, y) =P;;d;; 'u;*(x)N;(y),— (43)

where I;(x) are the one-electron orbitals (including
spin) and d;; is the "overlap matrix, "

d;y=) Q; (x)gg(x)dx.
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He then shows that for quantization. The overlap matrix d has the form:

H=H"'+H"'=Q V~+-'2 Q V;, (45) 4210! ' ' 4'50! 0~1o. ~ 0~NO. X1P ' ' 'XNP

the matrix element, (OIHIO), of H in the Slater deter-
minant state of the g.'s is given by

A

I
0

0

0

I+8

(OIHIo) = Vip(»'»)d»
aJ

where the row and column designations are listed across
the top. The I's are unit matrices. The elements of
submatrix 3 are

1 t' p(xi', xi) p(xi )x2)+—
~

V» dxidx2. (46)
2 p(x2', xi) p(x, ',x,)

A;;=— dr C, (r) 0;(r).
4

(51)

Here V; and V;; are one- and two-particle operators,
acting on the coordinates x and x of particles j and
j.The convention is adopted that the V's operate only
on the unprimed coordinates which are then set equal
to the primed ones. The first term of Kq. (41) is im-

mediately of the required form. The second term be-
comes of that form if the approximation introduced by
Kondo, of replacing the energy denominator E;—E0
by an average value, (»), is used. That equation can
then be written:

Expanding C; in the set of five orthonormal manganese
functions of which P; is one, one obtains

A;;=, dr/;(r) 0, (r) ) drC, (r)f;(r)

=S; dr@,(r) Q2 a;242(r) =S;a,, (52)

Similarly for I+8:

W=(OIL2 p fr~1's, s, 3(s,""r,,—)( rs;;))/r;, ' 8;,+8;1=) drX, (r)X, (r)—

-(1/(»)) Z P(r')(1' s')' = "«I:o'(r)+l 4'(r))501(r)+&A'(r))

—L1/(2(AZ))) P 2&(r,)g(r;) (1,"s,) (1,"s;)) I 0). (47)i' d Lo"( )0 ( )+&4'( )0 ( )

Only the first term will be dealt with in detail here,
the others following in close analogy.

Since d, and consequently d ', have no elements
connecting n and P spins, p has the form:

+X;O,(r)|t,(r)+X;X,&,(r)P, (r))

p=pau +ppp (4g) Thus

Substituting this into Eqs. (40) and (46) and performing
the spin integration, one obtains

W'1 = (g'P'/8), dridr2((3 cos'8 —1)/r12')

&&I ~p(rl~ri)~p(r2 r2) ~P(r2 ri)~P(ri r2)), (49)

where

8,,= (X,S,+X,S,+X,X;) Q2 a,.a;2. (54)

At this point, two approximations were introduced.
First, since the ) 's and 5's are small, quantities of higher
than second order in them were neglected. Second,
because of the fact that the C and 0 functions have
diRerent centers and because of the presence of the
1/r»' factor in the W integral, any term containing
both O~'s and 4's was assumed to be negligible. To
second order in 5 and X, d ' is given by:

Dp=p p

and 0 is the angle between rJ~ and the direction of spin

1+AH
—A

0

—A

I+AA
0

0
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Then,

hp= P (I+AA);P,Ct+ P (1+ZA)@O;0;

(I—&)v(e'+&'0') (et+~A t)

= Z C',C',[8;;++Ssasdsas;]

+ Q [8;;++S;a;sS,ajs]O,O;

N

[8 —(~ S +X S +~ ~ ) P a,,a;,]O,O;

+ Z 8;;~;ltt[Z '.~.][K;K

Xoting that, for r2& r1,

82

(3 cos'8 —1)/rrs = (1/rrs)
8812

GO

Z [4tr/(»+»][" /" .]
12 l=0

X Z Ft-(8„e,)F,-*(8„@,)

L4 /(2l+1)7[ ' '/ '+']
l=0 m~l

8
XFt *(8+s) —(2l—1) sm8q cos8r

881

—l(2l —1) sin'8&+l(l —1)+rrt Ft"(8r,y&), (59)

one can write for lV1 '.

[ls—m'][(l —1)' —m']
Wr = ——,'g'ps+ Q 4or

&=o m t „(2l+1)(2l—3)

[b,t+P s (Ss'—its') as;as;]C',C';
i,j=a

drs P'(rs)r
"0

r 1t 2P2 (r1)
—
drr

+ Q P;S,+lt,S;+X,A;+S,S;]
t

dQrdQs Ft "(Qs)Ft s"(Qr)

X[Pr, a;sa;s]O, O;. (55)

The last sum can be neglected, since in the products
ApAp which occur in W it contributes only terms of
fourth order in ) and S, and terms which contain both
C's and O~'s. Finally, 'then,

X( (5/Sor) [p'(Qr, Qr) +p'(Qs, Qs)]

—po(Qq, Qq) p'(Qs, Qq))

(ls—rrt') [(l—1)'—rms]
2g'fl'rr Z- El 2

t=o t=(2l+ 1)(2l—3)

ap=[P C',e,]+[P P a&;a„(S,s—)„s)eP~]
i, j=l tb=1 fn,r m,l I ml r I

r

(5/Sn)8 ",o dQr Ft s"(1)

—=[2 C'.+']+[Z ~'PA]—= (po+p')~ (56)
dQ F m*(2)F m'(2)F m" (2)

Each C; can now be expanded in spherical harmonics
in a system in which the spin direction is the s axis.
This gives for p0 and p'.

po=Zm Fs Fs, p =Em', m" pm, m"'Fs Fs ", (57) where

dQr Ft""'*(1)Ft '(1)Ft sm(1)

dQs Ft "'(2)Ft '(2)Ft "(2) p ~ ", (60)

and for 8'1 .'

W'~ =—(g P /8) t'dr~dry (rr)E (rs)

~00 ~rm

drs P'(rs)rs ' s P'(r&)rr'drr

The integrals of products of three spherical har-
monics were evaluated using the tables given in Condon
and Shortley. "In terms of the coe%cients c"(l,rts; l', m')

X[(3 cos 8—1)/rrs ][ps(ry, ry) p (rs, rs) "E. U. Condon and G. H. Shortley, The Theory of Atomic
Spectra (Cambridge University Press, New York, 1935), Chap. 6,

+po(rs, rs) p'(rr, rr) —2po(rr, rs) p'(rs, rr)]. (58) p. 178.
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The following values of the 5's and ) 's were used:

5,=0.05; 5 =5 =0.07;
X,=0.02; ) =X =0.15.

The 5's are based on a calculation of Casselman and
Ke6er" with 5 and 5 set equal for convenience. The
X's were estimated from nuclear resonance results of
Shulman and Knox. ' With these numbers and the
symmetry pictured in Fig. 2, the 6 matrix is:
—0.05 0 +0.00008 —0.002

—0.05 +0.003 +0.0009
—0.07 —0.0008

—0.07

given there, 8"~ becomes

[P—m'][(/ —1)'—ms] 1

t, m, m', m",m"' (2l+1) (2l —3)

XRt s[(—1)"'[5(2l+1)'/Sir]
Xc'(2,m'; 2,0)8o, t8o, 3o,

—[(—1)"'/4 7[(2l+1)(2J—3)]'
Xc' '(2,m'"; 2,m')c'(2, m"', 2,m')

Xb - b ]p ~ '. (62)

Wi = —2g'p'or

—0.002
—0.0005
—0.0009
—0.0001
—0.07

Evaluation of these coeKcients gives

(3g P /~) (Ro SRs/7) (po, o pi,—i ps, —s ) (63)

In terms of the 6, s previously defined (Eq. 56):
Wi ———(3g'P'/7) (Ro SRs/7) Q—C;;6,;, (64)

giving for 5':
W=[2X10 "(1+m)n+2X10 "lm

—2X10—"(l—m)e] erg. (68)

Matrix element 3,3 does not rigorously cancel the
contributions of 4,4 and 5,5, so it is possible that, if
more significant figures were known, a term in 8' pro-
portional to n' might be present. The spin Hamiltonian
constant 2 of Eq. (39) was obtained by taking the
expectation value of that equation in a state with spin
component ss along (l,m, e) and equating this to W. The
result was

where C is the matrix:

~ =2X 10-» erg.»

V. COMPARISON WITH EXPERIMENT

Portis, Teaney, and Heeger's' resonance results and
Heeger's torque measurements confirm that the domi-
nant term in the spin Hamiltonian has the above form,
and Heeger from his torque data estimates a value of
A equal to 6&(10 "erg. Thus the results given here are
in order-of-magnitude agreement with experiment.

W, = (2&»))—')t](rt)((ro)it*le* Q p
m, m', m"

XFs (1')Fs (2')I's™'(2)Fs'(1)drtdro

=-«e/&»&7[p. —.-4".—.]
=—[(&)'/(»&7 2 C'~'~' (65) ACKNOWLEDGMENTS

ig 1 2 3 4 5

1 —,
' (3a' —1) v3 (P—m') ——2vZlm v31N 43mN

2 —-'(3n' —1) 0 3ln —3mn

3 —-', (3a' —1) 3ml 3ll
-', (1—Bm') 3lm

5 ,' (1 3P—)—

The evaluation of 82, the spin-orbit term, proceeds
along the same lines. After the spin integration has
been performed and inversion symmetry invoked, the

only anisotropic term remaining is:

where

(8)—=~~ &'()5()d,
0

(66)

and C;,' difIers from C;; only in its isotropic parts. For
anisotropy calculations such as this, that difference can
be ignored, and the total energy, 0', written as:

W —Wl+ W2 —[(3g'p'/2) (Ro—SRs/7)
+4&'/&»&7 & ~' ~' (6&)

The anisotropy energy for any crystal symmetry and
number of neighbors can now be obtained simply by
calculating the appropriate 6; s and substituting them
into this general formula. Note that to this order of
perturbation theory no cubic terms occur, as mentioned
earlier.

In the particular calculation for KMnFS, Kondo's
values were used for Ro, Rs, &P&, and (»&. They are:

Ep=3.06ap ', 82=0.54ap ',
&t&=395 crn '; &»)=29250 ctn '.
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