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The Landau model of a Fermi liquid is employed to obtain an expression for the coefficient of self-diffusion,
D, in liquid He'. It is found that D=A/T', where A =2&&10 cm' sec ' degree', and I' is the temperature in
degrees Kelvin. As this temperature dependence diiiers from that experimentally observed (T &), although
the order of magnitude of the theoretical prediction agrees well with experiment, the possible eA'ect of the
1% He4 impurity known to be present is investigated; it is found that the diffusion coefficient is essentially
unaffected by the impurity (a result also obtained experimentally). It is estimated that the Landau model is
applicable only well below 0.05'K. As even the most recent experiments have been carried out only down to
0.03'K, it is concluded that the transport properties of He' should be investigated experimentally at lower
temperatures in order to check the validity of the theory.

METHOD for treating the transport properties

~ ~

of He' employing Landau's model of a Fermi
liquid' has been developed by Abrikosov and Khalatni-
kov. ' Now that experiments on self-diffusion in liquid
Hes have been performeda in the temperature region
where this model may be expected to be valid, it seems
desirable to examine the theoretical predictions con-
cerning the behavior of the diffusion coefficient. We
follow closely the method and the notation of I.

We consider a system of He' in which there exists a
magnetization gradient in the absence of an external
field, maintained by unspecified sources of "up" and
"down" spins. A steady-state diffusive Qow is main-
tained. In the absence of impurities the Boltzmann
equation is

Bn/Bt+V, n Vo» V,n V,»—=I(n.), (1)

where»(p, ir) is the actual energy associated with a
quasiparticle of momentum p and spin e and is given
for small deviations from the equilibrium distribution
at zero temperature by

2
»(p, e) = »s(y, ir)+2 Tr. f(y, p', e,e')Bn(p', e') dp'.

(22rli)'

(2)
We may write f(y, y', e,e') in the form:

f(y, y', ~,~') f(p, y=')+f (y, y') ~ ~' (3)

if we assume that all of the spin dependence of f is of
exchange origin. Thus quasi-particle spin is not a good
quantum number, but it provides a convenient ap-

$ This work was supported in part by the Office of Ordnance
Research, U. S. Army.

*National Science Foundation, Predoctoral Fellow.
' L. D. Landau, J. Exptl. Theoret. Phys. (U.S.S.R.) 30, 1058

(1956) LEnglish translation: Soviet Phys. —JETP 3, 920 (1957)g.' A. A. Abrikosov and I.M. Khalatnikov, Reports on I'rogressin
I'hysics (The Physical Society, London, 1959), 32, 329, hereafter
referred to as I.' H. R. Hart and J.C. Wheatley, Phys. Rev. Letters 4, 3 (1960).
More recent experiments LA. C. Anderson, H. R. Hart, and J. C.
Wheatley, Phys. Rev. Letters 5, 133 (1960)],of greater accuracy
and carried to lower temperatures (0.03'K), con6rm the order of
magnitude of D as observed earlier and more definitely establish
the temperature dependence as T &.

proximate description. In (1),n is the actual distribution
function for quasi-particles

="+B, l~ I«. ,
«(») =

I e'p((' —&)/&)+17 ' (4)

where p may be a function of position and is chosen as
usual to make the total number of particles come out
right. Unless otherwise indicated in specific cases, tem-
perature will be taken in energy units throughout this
paper.

The distribution functions and the chemical poten-
tials of the systems of up and down spin particles should
be considered separately for the system of interest in the
present problem. However, the calculations are greatly
simplified if we consider the point where the mag-
netization M=0. Then the two chemical potentials will
be equal, although their gradients will be opposite in
sign. This results in the relation bet= —beg, where we
have now introduced a spin index. Furthermore, there
is a simple relation between the gradient of p for
particles of a specified spin and that of the corresponding
concentration, N. With dr= L2/(221222)27dp, we have

BN 1B t 1 t Bn( B» Bpy
n(.)dr =

Bx 2Bx~ 2~ Bc E.Bx Bxl

(dr/d»)„(BN'/Bx)+ ,'(dr/d»)„(B-ls/Bx), (5)

where i is the angular average of f (p, p') with p and p'
restricted to the Fermi surface. Thus,

Bp (d») (dr ) BN—=2l —
I 1+!il —I

Bx (dr) „(d»)„Bx
The same factor involving i occurs in the expression for
the magnetic susceptibility. '

The collision integral, I(n), is given by

I(n) =— tol n,n2(1 —ni') (1—n, ')

—(1—ni) (1—n2) ni'n2'78 (pi+p, —p, ' —y, ')

XB(»1+»2»1»2 )dr2dri dp2 p p)
669



DANiEL HONE

FIG. 1.Relationship of
momenta for He3 —He'
collision.

P, Pq=P, Pq

where we have written n(pr, o) =n, (the spin index is
suppressed temporarily) for notational convenience. We
note here that the operator f appearing in the expression
for the energy of a quasi-particle is an important
characteristic of a Fermi liquid; Landau has demon-
strated that it is related to the forward scattering
amplitude of two quasi-particles.

As collisions conserve momentum, we see that the
scattering of one quasi-particle from another of like
spin will contribute nothing to the diffusion of spin.
Thus if we consider the Boltzmann equation for n~q, we
need in the collision integral only those terms in the
initial state for which particle 2 has spin down. Because
of the identity of particles, we may without loss of
generality tak.e in the final state 1' to have spin up, and
2 spin down.

The collision integral vanishes when the equilibrium
distribution functions of the true quasi-particle energies
are inserted. Therefore, we express the distribution
functions appearing in I(n) in terms of no(e):

n(e) =no(eo)+bn
1 (Bno)

(n)oeI—-I Tr, ybn'ar'+bn. (8)
2~8., &

We write bn in the form

(no(1 —no) q (Bno )
bn= —

I
Iv=

IT 3 (800&

e—t = vo(P —Po) = (P Po)P0/~'—

to transform variables again. Then

(14)

der
l

rtrz b(01+02 el 02 )J
zn*oT' (dQq (d$, y

(1.~)
Szr'h' cos(8/2) E2zr) ( 2zr )

where dQ=sin8d8~, and 0~&10~&2zr. By extending the
range of y to 2z and restricting the spin of particle 1' to
be up we have taken into account all possible results of
the scattering of 1t with 2g.

On the left hand side of Zq. (1) we insert n=no, as
defined by Eq. (4). Then the kinetic equation becomes

.Since at low temperatures only quasi-particles with
momenta near the Fermi surface will contribute to I(n),
m depends —approximately —only on |I, the angle be-
tween yr and ys, and on P, the angle between the planes
determined by (p, , ps) and (yt', ys'). Rotating one of
these planes about their line of intersection, pt+ps,
until it coincides with the other, we have the diagram
of Fig. i. The angle between each of py, p2, p&', and p2',

and p&+ye is approximately 8/2, as
I fI«po, the Fermi

momentum. We integrate first with respect to p2 to
eliminate the momentum 8 function. Then, transforming
to integration over f instead of rr".

drr' ~P, sin(8/2)df&f, AX 2/(2zrA)s, (12)

where we have used cylindrical coordinates with y&+p&
as the polar axis, and r, s, and p take on the usual
meanings. We note that this is the same sense in which

P was used above. We introduce the dimensionless
variables:

*=(er' —t )/T, y= (ez' —t )/T,
(13)t= (e,—tz)/T, a=a/T

and use the approximate relation between energy and
momentum,

BSp
n(e) =no(e)+

Btp

(dr) 1 t

v+
I I

— f (8)vdQ/4zr

BNp

no(e)+—lt. (10)
~&o

Van V,e+V,n Vve

nz*'T' ( tv(8, y)
dQ I~ dS

16zr4ho " 4zr cos(8/2)

Xno(x+y —t) I
1—no'(x))L1 —no(y))

Substituting into ("t) and keeping only first-order terms
in f, we find

~(n) sT J tvnoln02(1 not ) (1 n02 )

X (lt'1+it'2 lt'I lt'0 )b (Pl+ Pz Pl Po )

Xb(et+ex —0] —es )aT'sdTr Zps'. (11)
4L. D. Landau, J. Exptl. Theoret. Phys. (U.S.S.R.) 84, 262

(1958) t translation: Soviet Phys. —JETP 7, 182 (1958)g.

X (&+A—lt'
' 0) (16)—

with the restriction throughout that x+y t ~& (—r). —
As V n' Vve+Vsn V,e= —(dno/deo)V' tz' Vve, we see

from symmetry considerations that f must be of the
form fr g(t)Vve Vp——Call 8t' the ,.angle between yr and
y&' and call 82' that between p~ and p2'. Then

lt s= rl(x+y t)Vve —VP, cos8, — .

lPt =g(x)Vvc Vtz cos8r ~

fz = —g(y)Vve Vtz COS80 )
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where the average is over the angles.
Torrey' has shown by a semi-classical argument that

the magnetization satisfies a conservation law:

BM/Bf —V DVM=Q,
, (20)

where D is the diffusion coe%cient, so that the mag-
netization current is given by J~—— DdM/dx. Th—is of
course implies a similar relation between the particle
current and the concentration gradient

J~= —Ddl/dx. (21)

We have assumed a one-dimensional inhomogeneity in
M. Hart' has demonstrated that the above relations are
valid even in a quantum Quid.

The Fermi distribution function np(e) corresponds to
no current, so the spin up current is obtained from the
expression

J~t ——— $e(e) e(p)je—(Be/Bx)dr
2~

1
(dnp/dep)P(Be/Bx) dr

2 J

', [P(dr/d-e) -(Be/Bx)j„(22).
Substituting for If in terms of q and using the relation

(6) we lnd that Eqs. (21) and (22) give the diffusion
coefFicient as

D= xD+xi (dr/«). lVv p'~ (23)

where vp is the Fermi velocity, v p= pp/m . This result is
in a form which can be compared directly with the
kinetic theory expression for D in a Fermi gas. The
modification due to the dependence of the quasi-particle
energy on the distribution function is exhibited in the
factor involving t', which may be evaluated empirically
from measurements of the susceptibility. ' We may
interpret q as the appropriate relaxation time.

' H. C. Torrey, Phys. Rev. 104, 563 (1956).
H. R. Hart, Jr., thesis, University of Illinois, Urbana, Illinois

(unpublished).

where p=p&, e= e& and p=pi'. These last results have
been obtained by using the addition theorem for
spherical harmonics and integrating over gp. We use the
same theorem to establish the relations

cos8&' ——cos'(8/2)+ sin'(8/2) cosg,
(18)

cos8p'= cos'(8/2) —sin'(8/2) cosg.

Then the kinetic equation becomes an equation for q.
It is shown in I that under the assumption t'&(n', g can
be taken to be approximately a constant. (We note that
this is equivalent to the assumption of a constant re-
laxation time. ) Then

16+Vi' 0
tv(8, &) cos—(1—cosP)

m*31 2

D=A/T', (25)

where A = 1.5 &(10 ' cm' sec ' degrees', and I' is in 'K.
Because of the approximations made, the value of A

may be trusted only to within about a factor of 6ve.
This result for D agrees in order of magnitude with

the empirical data obtained in the estimated region of
validity of the models, namely below 0.1'K. (D is ob-
served to be about 1.5X10 ' cm'/sec at 0.03'K.)'
However, the experimental temperature dependence
seems to be T—

& rather than 1 '.
A small amount of He4 was known to be present in the

samples tested. At low temperatures one would expect
scattering of He' atoms from He4 to become increasingly
important due to the lack of an exclusion principle for
He', which limits the fraction of atoms able to partici-
pate signi6cantly in the scattering processes. We there-
fore investigate the behavior of the self-diGusion coefB-

' Our expression dMers from that of I because we have used a
more recent value for m~/m, obtained from low temperature
specific heat measurements. D. F.Brewer, J. G. Gaunt, and A. K.
Sreedhar, Phys. Rev. 115, 836 (1959) give m~/ra=2. 0a0.05. The
value of the velocity of sound in He1' at T=0 has also been revised
slightly from 183 to 183.9 m/sec. PH. L. Laquer S. G. Sydoriait,
and T. R. Roberts, Phys. Rev. 113, 417 (1959).

We now evaluate q and thereby D, Due to the
relationship between fand the forward scattering ampli-
tude of two quasi-particles' we may use w= (2pr/h) f'.
In terms of Fig. 1, forward scattering corresponds to
having the angle between y&' and y2' equal to 0 and also
having q equal to zero. That the 6rst of these conditions
is always approximately satis6ed is obvious from the
diagram; using the forward scattering amplitude to
evaluate m then corresponds to equating that value—
taken at fp=0—with an average over q. If f for p=p'
=P, is expanded in a series of Legendre polynomials in
the cosine of the angle, y, between y and p', the 6rst
two terms can be obtained' in terms of the velocity of
sound in the liquid and the eQ'ective mass m*, defined
as the ratio of the Fermi velocity to the Fermi momen-
tum. To this order, for He':

f(x) =L(dr/de). =p j '(6 &+3 o cosx) (2&)'

This expression should be modi6ed to include the eGect
of the limitation of collisions to those between particles
of anti-parallel spin. For most transport properties the
occurrence of both parallel and anti-parallel spin col-
lisions tends to average out the eGect of the spin-
dependent part of f, and it is the resultant f which is
determined by the empirical values of m* and the
velocity of sound in the liquid, We must therefore in-
crease f by a factor of the order of 1 4i/f —From .em-
pirical data on the magnetic susceptibility' and the
specifK heatv we estimate this factor to be 1.12.

Using this expression for f to calculate the appro-
priate angular average of m, we obtain q= 2.9)&10—I31

sec. The values of the other quantities needed for the
calculation of D are: 0.21 for the factor involving i' and
vp

——8.27X10' cm/sec. Then we lnd
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cient under the assumption that He' —He' scattering is
the dominant process. '

IMPURITY SCATTEMNG
y

v+q = v+q

e '
q'

Zinov'eva and Peshkov' have found that one cannot
maintain an arbitrarily high concentration of He4 in He'
at suSciently low temperatures (below 0.88'K). A phase
separation occurs; for temperatures below 0.67'K the
He' —rich (upper) phase is in the normal rather than
superQuid state. We postulate that in this phase the He'
concentration is reduced with temperature in just such
a way that condensation never occurs. We will return to
this point later; for the moment we consider that the
He' concentration is sufficiently low that no phase
separation occurs over the temperature range of inter-
est (i.e., that of the experiments'). The estimated actual
impurity concentration of 1% at least approximately
satisfies this condition.

If He' —He4 scattering is the dominant process in-
hibiting diffusion, then the important term in the col-
lision integral of the Boltzmann equation for the He'
distribution is

I(I)= — wLe1V(1 —rt') —(1—e)n'1V'j

VT = C IV o/T. — (27)

However, at low temperatures we may neglect 4 with
respect to f.o Furthermore, since condensation is pre-
vented, we take as an approximation to X a Holtzmann
distribution. We have

I(e)=T ' wroolVo(1 too )(P lP
—)

X8(y+ q —y' —q') 8(e+E—e' E')dr'd—qdq', (26)

where X=the distribution function for He4, a=the
distribution function for He', y= the initial momentum
of the He' particle, q= the initial momentum of the He4

particle, a=the initial energy of the Hea particle, and
A=the initial energy of the He4 particle. Primes indi-
cate the corresponding quantities in the. final state.

We can define P as before, and similarly 4

Fro. 2. Relationship of momenta for He' —He' collision. The
size of q and q' relative to that of p and p' has of necessity been
greatly increased in order to clarify the diagram.

q'b(e+E e' E—')d—
q
=M*q, (30)

where,
q= PM*(x+y *)T):.— (31)

We consider the integral over p' with q fixed by trans-
forming to the variables f„, f„and g.

p,+ (e t )/no p'=p+——f, cosn+ f„sinn= p+ f„
(2M*E')'= q'=q+ f, cos(7r —8—n)

+f„sin(or —8—n)
= q f. cos8—+f„sin8,

where n is the angle between y and y+q.
dy'= po sinyd fgf, droop,

(32)

(33)

where 7 is the angle between y' and y+q. But we have
the approximate relation

po sin'y po slnrr+ fg, (34)

and we can drop the f. as it will tend to zero upon
integrating by symmetry considerations. Furthermore,

po slnrr q sln8.

We transform to integration over x and y instead of f,
and f, and insert the explicit expression for 1Vo '.

Then
1Vo N(2rrTM*) ie ——l*+" '&. (36)

I(os) =T 'wLmo(1 —mo-'))Q —f')1Vor—'*(2orh) —'

q. Indeed we assume it to be a constant. We define f as
before and introduce new variables,

x= (e' tj)/T—, y =E'/T, t = (e p)/T—, Ir = tJ/T. (29)

We next integrate over the magnitude of q

Xb(y+q —y' —q')3(e+E —e' —E')drdqdq'. (28)

As before, we integrate over q' to eliminate the mo-
mentum 5 function and we have the diagram of Fig. 2
corresponding to that of Fig. 1 for pure He' scattering.
As q«po, we would not expect w to depend strongly on

' A discussion of various other transport properties of weak
solutions of He4 in liquid He' with similar assumptions is given by
V. N. Zharkov and V. P. Silin, J. Exptl. Theoret. Phys. (U.S.S.R.)
37, 143 (1959) LEnglish translation: Soviet Phys. —JETP 10, 102
(1960)3.

K. N. Zinov'eva and V. P. Peshkov, I. Exptl. Theoret. Phys.
(U.S.S.R.) 37 33 (1959) LEnglish translation: Soviet Phys. —
JETP 10, 22 (1960)g.

X (T/po) nt*M*(x+y t)y &dxdydQ~'. (—37)-
We consider the rate of Row of particles of one spin

only; spin conservation in collisions then introduces a
factor of rs into I(e). As before we take P=q(t)V~e Vp.

1—rto(t)

=-,'or *(2rrk) o(T/Po)m*M*1V

X dQ ' dx dy wg1 —rto(x)7J a „J,
XLq(t) —q(x) cos8'j(x+y t)y :e *+ '—

, (3—8)— —
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with the restriction x+y~&t. 0' is the angle between y
and p.

If we estimate e'+1=2, we can again consider q to
be a constant and

n.~(2~A)'po ( 1
v=

2m*M*ÃTw & 1—cos8'), .

We note that 0' is not strictly only a function of 0 and
P, but by using relations between o., y, and II, we may
treat it so approximately. As 8' is always small for the
collisions of importance, we cannot take 1—cos8' to be
of the order of 1. Instead we estimate this quantity by
taking p=po, g'/2M*=T, p'=(po2+q')', 0=m/2, so
q'=0. This gives 1—cos8' as approximately the ratio
T/EF=2X10 ', where FI is the Fermi energy. Thus
the exclusion principle for He' plus the low momenta of
most of the He4 particles restricts collisions to those
involving small-angle scattering. The corresponding re-
duction factor in the transition probability is essentially
the same as that due to the extra exclusion principle
restriction in He' —He' scattering, so that we expect
impurity scattering to be unimportant in limiting self-
diffusion.

We will take m to be the same as that used for
He' —He' collisions with one He' atom at rest and the
other with the Fermi velocity —that is, w= 4(w(m/3, p)), .
(This should not include the anti-parallel spin correction
factor. ) To justify this, we note that exchange effects do
not contribute a large amount to the transition proba-
bility in pure He'.

Then by a calculation similar to that corresponding to
pure He' we And

Dr = (po/A)'43~'5'(no*'M*X) '

X (-,') 10'T-'L4( ( /3, 4))-j-' (40)

We take E to be 10"/cm', i.e. , we take about a 1%
solution. Then

Dz =B/T, (41)

where 8=10 ' cm' sec ' degree, and T is in 'K.
Thus for small impurity concentrations our assump-

tions concerning domination of impurity scattering is
wholly invalid. Experimental results on purified samples
(Anderson et at. ') seem to verify the lack of dependence
of the diffusion coefficient on He impurity concen-
tration.

Equations (25) and (41) would appear to indicate
that at suKciently low temperatures impurity scat-
tering would become the dominant process. However,
we must take into account the phase separation process.

If we assume that condensation would occur for a
concentration of 1% He' at 0.1'K, then Eq. (41) must
be modified to account for the temperature variation of
impurity concentration:

DI=BT '(0 1/T)'

We must still explain the discrepancy between the
temperature dependence of D as predicted above and
that observed experimentally. We note that the estimate
for the upper bound on the temperature region in which
the theory may be expected to be accurate was obtained
by locating the temperature below which the paramag-
netic susceptibility is very nearly constant, as it must
be for a degenerate Fermi liquid —the case the Landau
theory treats. However, the behavior of the suscepti-
bility is governed by the exchange interaction, whereas
the transport properties are determined largely by the
spin-independent part of the interaction. We can esti-
mate a mean time of Qight from the magnitude of the
transition probability, w(8, p). Using this to estimate the
uncertainty in the quasi-particle energies, we find that
the temperature at which this uncertainty is of the
order of the thermal energy, T, is about 0.05'K. For the
theory to be valid, the quasi-particle energies should be
well defined, so we expect to find verificati. 'on of the
theoretical predictions only well below 0.05'K. The
temperatures reached so far are at best borderline by
this criterion. Also, the temperature region investigated
was su%ciently small so that only the local slope was
observed; deviations toward faster temperature de-
pendence at the low-temperature end might well have
been too small to be noticed. One can readily plot a
curve as given by the above theory which will join
smoothly with that obtained experimentally by Ander-
son et a/. ,' with a reasonable interpolation between, for
instance, 0.01'K and 0.03'K. Thus we believe that
future experiments both with other transport properties
than self-diR'usion and at lower temperatures will be
needed to check the theoretical predictions.
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