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ators. If aI, a2, ~ are the annihilation operators
corresponding to a complete orthonormal set of one-
particle states, density operators of successively lower
orders can be obtained from

It is easy to verify that this relation is independent of
the choice of basis, but not so easy to obtain useful
information from it.

As one consequence of the theorem proved earlier
in this paper, suppose one has a given function
E(xr,xs,xr', xs'). A necessary condition for E to be a
second-order density matrix for a 3-particle system is
that the first-order density matrix obtained from E
have the same positive eigenvalues as E itself. From
the eigenfunctions, possible wave functions for the
system could be constructed according to Eq. (4a).
Likewise, knowledge of the eigenvalues of the second-

order density matrix of a 4-particle system gives
extensive information about the wave function. In the
latter case, for example, if the positive eigenvalues were
nondegenerate, the wave function would necessarily be
of the form

ib =6—l P, )t„&c„g,(1,2)g„(3,4),

where the coefficients c„have modulus unity. In the
other extreme, where the density operator has six
eigenfunctions with eigenvalue 1 and all other eigen-
values are zero, the wave function would be

where the c's form a unitary matrix. The extra coeK-
cients c appear in these last expressions because,
without knowledge of the wave function, the functions
G„are indeterminate by a phase factor and, in the case
of degenerate eigenvalues, by a unitary transformation.
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The theory of electromagnetic wave propagation through an anisotropic ionized layer, including the
effects of the nonlinear terms in the Boltzmann transport equation, is presented. The method of solution of
the nonlinear equations involves an expansion of all of the dependent variables in a Fourier series in time.
The differential equations describing wave propagation are then solved, for each frequency in the series, for
plane wave propagation, including all of the rejections within the plasma layer. A solution in closed form has
been obtained, under small signal conditions, for the field at the hth harmonic in the Fourier series. A
discussion of the properties of the wave at the second harmonic frequency as a function of the dc magnetic
field strength, the electron density, the electron-neutral particle collision frequency, the field strength of the
incident wave, and the thickness of the plasma layer is given.

1. INTRODUCTION

;HE propagation characteristics of an electromag-
netic wave in the presence of an ionized medium

have been discussed by Schluter, ' ' Bailey, '—' Spitzer, '
Brown, ' and many others. ' These discussions are based
upon a set of equations which includes Maxwell's equa-
tions and the dynamical equations for an ionized gas.

*This research was supported in part by the U. S. Air Force
Cambridge Research Laboratories.
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The dynamical equations are obtained, at least im-

plicitly, from the Boltzmann equation, and they are
inherently nonlinear equations. However, the usual pro-
cedure is to linearize these equations since a general
method for obtaining solutions to the nonlinear equa-
tions is not available. It is the purpose of this paper to
discuss the effects of the nonlinear terms in the equa-
tions on electromagnetic wave propagation phenomena.

Relatively little has been reported on solutions to
these equations when the nonlinear terms are included.
Ginsburg' has discussed the mixing of two electromag-
netic waves when one of the waves, at frequency &1,

causes an electron density gradient which varies at the
+& rate. The interaction of this electron density variation
with a second electromagnetic wave, at frequency co2, is

9 V. L. Ginzburg, J. Exptl. Theoret. Phys. U.S.S.R, BS, 1573
(1958) t translation: Soviet Phys. —JETP 55(8), 1100 (1959)g.
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then discussed. Huxley and Ratcliffe" have discussed
the case of cross-modulation, the so-called Luxemburg
effect. This occurs when the modulation on a strong
electromagnetic wave produces a variation in the elec-
tron-neutral particle collision frequency, because of its
electron temperature dependence, at the modulation
rate. This modulation is then transferred to a second
signal which is traversing the same part of the medium.
These papers'"" discuss the interaction of a strong
signal and a weak signal with a plasma when the strong
signal produces a variation in one of the plasma parame-
ters. Although such phenomena are related, in a certain
sense, to the nonlinear nature of an ionized gas, in effect
these discussions relate to the interaction of an electro-
magnetic wave with a plasma in which one of the pla, sma
parameters varies as a function of time.

Sturrock" has given a general approach to the eGects
of nonlinearities on electron plasma oscillations in the
absence of collisions. Dawson" has discussed several
special cases for a similar situation. However, a hydro-
dynamical approach is employed in these two papers
and they are, therefore, restricted to low-frequency
phenomena.

It is the purpose of this paper to discuss the nonlinear
interaction of an electromagnetic wave incident on a
layer of ionized gas in the presence of a dc magnetic
field. The ionized medium is assumed to be of finite
thickness in the direction of propagation of the wave
and infinite in extent in the other directions. It is as-
sumed that the ordered motion of the plasma caused by
the electromagnetic forces predominates over the ran-
dom motion caused by thermal and pressure eftects and,
therefore, these terms in the equations are neglected in
the following development. However, the eGects of
electron-neutral particle collisions are included in the
theory. An iteration technique is employed in order to
solve the nonlinear equations, and this scheme restricts
the validity of the solutions to the case of small ampli-
tude signals. A solution, in closed form, is found for the
second harmonic power generated within an ionized
medium because of the nonlinear interaction of the
wave and the plasma.

In subsequent reports on this work, we will discuss the
experimental verification of the theoretical predictions.
In addition, a measure of the range of validity of the
small signal theory, in terms of the magnitude of the
incident power, will be given. The equations describing
the propagation of the incident wave will be reiterated
to obtain the effects of the nonlinear terms on propa-
gation at the fundamental frequency. We will also
discuss eGects introduced when the incident wave pro-
duces ionization within the plasma layer.

"L.G. H. Huxley and J. A. RatcliGe, Proc. Inst. Elect. Eng.
96.3, 433 (1949)."P.A. Sturrock, Proc. Roy. Soc. (London) A242, 277 (1957)."J.M. Dawson, Phys. Rev. 113,383 (1959).

V&&H= BD/Bt+env, V D=e(n —n, p);

c)n/r)t+V nv=0;,
r)v/t)t+ (v V)v= (e/ns) (E+vXB)—vv;

(2)

(3)

(4)

and D= epE and B=ppH, where E and H represent the
electric and magnetic field intensity vectors, respec-
tively; eo is the dielectric constant of free space; po is the
permeability of free space; n is the electron density; n, o

is the steady-state ion concentration; v is the electron
velocity vector; e is the charge of an electron and is
negative; m is the mass of an electron; and v is the
electron-neutral particle collision frequency. Mks units
are used throughout this discussion. Equations (1) and

+J. Kannelaud and R. Whitmer, J. Appl. Phys. (to be pub-
lished).

2. AN OUTLINE OF THE THEORY

The theoretical model to be discussed is assumed to
have the following properties:

(a) The plasma is electrically neutral in the absence
of the externally imposed electromagnetic wave.

(b) The electron density is uniform in the absence of
the externally imposed electromagnetic wave.

(c) All inelastic collisions between the plasma con-
stituents are neglected.

(d) Only elastic collisions between electrons and
neutral particles are included, and these are assumed to
be represented by a constant, v, which is independent of
the electron velocity.

(e) Thermal gradients are neglected.
(f) Pressure gradients are neglected.
(g) The positive ion current is neglected.
(h) The plasma has a 6nite thickness, d, in the direc-

tion of propagation and is infinite in the other directions.
(i) The externally imposed electromagnetic wave is a

plane wave propagating normal to the plasma surface.
(j) The externally imposed dc magnetic 6eld is as-

sumed to be uniform throughout the extent of the
plasma.

Assumptions (a), (e), (f), (g), and (j) are generally
accepted as providing a reasonable model of an ionized
gas under steady state conditions. Assumptions (c) and
(d) are good approximations in the case of He gas when
the electron temperature is above two electron volts,
particularly in the case of propagation of a weak electro-
magnetic wave. Assumptions (b), (h), and (i) are not
usually satisfied in a practical situation. However, these
conditions can be approached experimentally" and have
been reasonably approximated in the experimental ar-
rangement to be discussed in a subsequent report.

The following set of equations will be used to describe
the interaction of an electromagnetic wave with an
anisotropic ionized medium under the above set of
assumptions:

v B=o;
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(2) are Maxwell's equations, Eq. (3) expresses the
conservation of the number of electrons, and Eq. (4)
expresses the conservation of momentum of the elec-
trons. Equations (3) and (4) can be obtained' by taking
the first and second velocity moments of the Boltzmann
equation if it is assumed that the collision integral is
independent of the electron velocity. It can be seen from
Eqs. (2), (3), and (4) that the terms Nv, (v V)v, and
vXB are quadratic with respect to the physical vari-
ables, and these are the nonlinear terms which will be
taken into account by the present theory.

Since a method of obtaining a general solution to a set
of equations such as Eqs. (1) through (4) is not avail-
able, a perturbation technique for obtaining an ap-
proximate solution will be employed. It will be assumed
that each of the variables E, 8, I, and v can be expanded
in a Fourier series of the form

3. THE GENERAL EQUATIONS

If the series form for the dependent variables in Eq.
(5) is substituted into Eqs. (1)-(4), these equations can
be combined to form a single equation for Eo, the
electric Geld for the hth harmonic, in terms of lower
order quantities. This equation is

[~—ih~+ (vo. V') —oo, X$
X[VXVXE +(ih&o/c)'E (—duo/c')(V' Eq)v j

—(ih~/c')a&~ Eo, (~—„%')voX (VXEo) = Go, (6)

where
oo,= —(e/m) Bo, oo „'=rtoe'/moo,

and Gq is of the form

(5)
+-', Q (A,+gD, *+A,*D,~g), (8)

where the incident wave is assumed to be at frequency
co and f~&&fo&) ))fo and fo is a constant. This as-
sumption is justified when the incident wave is of sufh-
ciently low amplitude so that the nonlinear terms are of
second order importance. The procedure then will be to
write Eqs. (1)—(4) in terms of the series representations
of the dependent variables given in Eq. (5). The non-
linear terms will be written as products of the appro-
priate series. Then, in each equation, terms multiplied
by the same power of e '"' will be equated. This will
result in a set of equations, similar to Eqs. (1)-(4), for
each power of e—'"'. Within each of these sets of equa-
tions any term which involves a dependent variable
with a subscript which is higher than the power of e '"'
for that particular set of equations will be neglected.
For example, in the set of equations for the e ""'power
there may be terms of the form fofo, f&f&, f&*fo, etc. , where
the asterisk indicates the complex conjugate. All terms
involving f, or higher will be neglected since it is as-
sumed that fo«fo«6.

The next step will be to solve the individual sets of
equations. Each set of equations consists of four equa-
tions in four unknowns and, therefore, each set can be
reduced to one equation in one unknown. For example,
the single equation for the e ""'set will appear as

L(fo) =G(fifo),

where L is a differential operator. Such an equation will
be treated as an inhomogeneous equation in which the
right-hand side is a known function which has been
determined from solutions to the lower order equations.
This equation can be solved directly. In addition, the
equations can be reiterated at any step to provide
successively more accurate approximations to the solu-
tions obtained up to that point. A discussion of this will

appear in a subsequent report.

i7uu(o (1—bog)

2c2
(9)

X P ((v, XBq,)—(m/e)(v, .V)vq,

+(m/eeo)[v —ihco+(vo'V) —6) Xjs vo ),

and this equation, with the appropriate boundary con-
ditions at the surfaces of the layer, is to be solved.

The method. for obtaining plane wave solutions to
Eq. (9) is straightforward. Setting h=1 and assuming

(10)

where kq is the propagation vector of the wave at fre-
quency ~, the right-hand side of Eq. (9) reduces to zero.
The equation for E& is linear and homogeneous, and the
solution for the J th component of E~ is

Ej =Zg+e+'"" j=x y s

where A and D represent typical variables such as v, 8,
or n, and b~~ equals zero for h/1 and. one for h= 1. The
factor "one-half" enters since when a term such as
"vXB" is written in Eq. (4) the implied meaning is
"RevXReB." Because of the iteration procedure
adopted here, in which it is assumed that each succeeding
term in the series of Eq. (5) is much smaller than the
preceding term, all terms of order greater than h will be
dropped in Eq. (8). This simply implies that these
terms are assumed to be of second-order importance
when compared with the remaining terms. Equation (6)
then reduces to

[v—ihcu+(vo V) —oo.X]
X[VXVXEq+(ihru/c)'Eq —(ihco /c)(V' Eo)voj

—(ih(v/c')co 'Eg —((o,'/c') vo X (VXEo)
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where the partitions of h should be arranged in an
arbitrary order and so numbered. "ns then indicates the
number of a particular partition and the sum is taken
over all the partitions of h. q signifies all the integers in
a particular partition and the k, should be taken with all

combinations. The Ei„+ are the complementary
solutions and the Ei,„+ are the particular solutions to
Eq. (9), and ki, is the propagation constant obtained
from the solution to the homogeneous equation for EI,.

In order to simplify, somewhat, the calculations to
follow, two additional assumptions will be made. First,
it will be assumed that vp= 0. Since it can be shown that
vp enters into the equations in such a manner that vp is
compared with c, this assumption is easily satisfied in
most experimental arrangements. Secondly, the follow-

ing discussion will be restricted to the case of propaga-
tion in the x direction where the uniform dc magnetic
field is assumed to be in the s direction. This case has
been chosen because of the ease in which it can be
realized experimentally. In this situation it is known"
that

E —(& + ++)i g +)&+ikrzr+s g 6&+ikrzr (14)

where k~, is independent of the dc magnetic field and

El z QIE1y )

where
oo,[c kz~ QP]

Pl
GO PGO Z CO~ GP

(16)

Later in the discussion it will be shown that the effects
of the nonlinear terms are predominant in the region
co=co,. Since the s component of the incident field does
not depend upon Bp, and E, never enters into the
equations in such a way as to be multiplied by 8p, the s
component can only affect the harmonics as a second
order effect. Consequently, it will be assumed thatE, =0
because of the simplification in the resulting equations.
Hereafter, kz, will be written ki. (These conclusions

"R.F. Whitmer, Microwave J. 2, 3, 47 (1959)."E,g., the partitions of 4 are {1,3); (1,1,2); (1,1,1,1); (2,2).

where the k~; are well known'4 and the E-i;+ are de-
termined by the boundary conditions. Setting h=2
yields an inhomogeneous equation in which the right-
hand side can be determined from the solution for Ei.
The E2; are then given by

.or (E +) c+i.kr r+(E +) .c+ioirr r (12)

where the K2,+ are the complementary solutions and the
Eo„+are the particular solutions to the inhomogeneous
equation and ko is the propagation vector of the wave at
frequency 2oo. The E»+ are completely determined
from Ei, and the Eo.+ can be determined from the
boundary conditions. By induction the general solution
to Eq. (9) can then be written as

E@——(Ei„+)c+"&o'+g (Ei,y+) ZJq e+'&" )™' (13)

concerning the importance of Ei, have been verified
experimentally, as will be discussed in a subsequent
report. )

From the homogeneous part of Eq. (9) one obtains,
for the general case,

oop /hiv[h oo Go& +zhrdP]
X —1+ , (1&)

hio(h &o
—io„—io. —zz)+ir (2h io ro—r )

oo.[c'kz,'—sP]
QA

bio

Prov+i�

(io,'—h'io') )
Before proceeding to the solutions of Eq. (9), it is of

interest to examine the nonlinear terms. The nonline-
arities enter into the equation in three terms, vXB,
(v V')v, and zzv. The effects of these terms can be
foreseen intuitively through the examination of the case
h=2. For this case

since the terms involving E-i+Ei cancel. The right-hand
side of Eq. (9) then becomes

mo „'(+zkz) (Ezo+)'
2

Capt.'Igp cvMp GP

X [xo(kP —io'/c')+ jo(io'/c')y~]+7z
(p 2zCo) z

M&
2 2

COp

XL
—&o(~'/c')+So(»' —~'/c')] (22)

where the terms multiplying p&~, and v —2iar come from
zz&v&, the term multiplying i/io' from v&XB&, and the
term multiplying i/io„ from (v& V')v&. First, it is ap-
parent that the nonlinear terms may be of the same order
of magnitude, depending upon the values of the plasma
parameters, and therefore all three terms must be re-
tained in Eq. (9). Furthermore, if io, =O, which implies
that the longitudinal component to the electric field at
frequency or is zero, all the nonlinear terms are zero
except for the v&&(8& term, and this term has only a
longitudinal component. Therefore, the wave at the
second harmonic frequency is longitudinal and there is
no power Row associated with this wave. Hence, the

viXB&= E&w+[+o(kP —co'/c')Ez„+
Pp&+p

+0o(oo'/c')&~*+], (19)
&1k]

(v1'+)vl= +lr. [So( M /c )Elm
poc8 so

+go(kP —oo'/c')P +], (2O)

ZZ, V, = E„+[io(—io'/C')E„+
GOpp C 8 Sp

+io(k' —~'/c') J'-i.'], (21)
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FREE SPACE Pl ASMA FREE SPACE and

Eo

Etr

E )+

E)
Ett

Eat

p, = —~. ~+a- L(E ')-+(E .)-j
p„,= —kpEQ5hl+p (&,) L(Rh,+) —(Rhv ) jv

p y P L(E +) II e '(hc)

+(E.-).II, -"'-"j
p.;=K-(&,)-L(E')- II ""'-'

(E —
) II e—t(hc)m&j

where it has been assumed that

E,—y g e (Gtt+1lGpc

(25)

(26)

X=O

'Bo

E+
h

x=d

In principle, then, one can determine completely the
6eld both inside the plasma layer and in free space from
the above equations. Therefore, each term in the solu-
tion for the hth harmonic, Eq. (13), has been speciffed
with the exception of Eh„. Ehv is, in each case, known
from Kq. (9) and Eq. (13);however, the form of Rh„ is
much too complex to write down for the hth harmonic
and, therefore, it will be derived for the specific cases to
be discussed in this paper.

FIG. 1.The plasma layer and the reflected and transmitted waves.

where

Eh.
Ehg

(~-(t) (E
.(Eh. )v.

Phr

P th
Ph, c

.Phc

(23)

1
—kp8 p

——
0

. 0
&skpd

P ~ikpd

—1
—kI,

~ikgd

~ikgd

kI,
~
—ikgd

g
—ik@d

(24)

'6 J. A. Stratton, E/ectromagnetic Theory (McGraw-Hill Book
Company, Inc. , New York, 1941), p. 511.

propagation of energy is affected by the nonlinearities
only to a third-order approximation when co.=0. The
effect of the dc magnetic field is to couple the longi-
tudinal wave to the incident transverse wave, giving
rise to second-order effects. In addition, since k~ and y~
have resonances in the region or=M„ it would be ex-
pected that the nonlinearities are most effective within
this frequency range. It can be shown that the coupling
of E,+ with E, does not affect any of the even har-
monics but does play a role in the generation of the odd
harmonics.

pn order to proceed to the solution of Eq. (9) it is
necessary to introduce the boundary conditions. The
plasma will be assumed to exist between x=0 and x= d,
with free space on either side of the plasma. The geome-
try of the system is as shown in Fig. 1. Since E and E„
are related it is sufhcient to employ the condition that
the tangential components of E and II are continuous
across the boundaries in order to completely determine
the required ffelds. Following Stratton, "(E,+)„is given

by

(R2„+)„=(eD/mc(d) (S+/a)Eo'
where

a= L(1+b])'—eP (1—by)'y

S+= L2(1&bt)et'~j'

where 8~= (1%1)/2 and

(27)

(28)

where

gp —ttto
D= ibg

gr —qo
(29)

b, =ck,/~,

~ ik].d
1

g= 2i(4—(e„'/(e') —4v/&o,

ttt=7'( '/ .')(3 —/ )+(1—b')(' —7 ~/ '),
(30)

0 = 4Mc/M~

p= VP~.M/~. '+rig(1 —bi') (~'/~') (»—v/~) —ij,
q = —4 ((d,/a&) (1—bP),

r = 2i14(1—b ') —s) '/oP) —(4v/&u) (1—bh2),

and Eq. (23) was used to obtain 8~v~ in terms of Eo.
Now Eq. (23) can be used to determine (E2,+)„.

Since the most accurately measured property of the
second harmonic wave is the power, at 2', which is
radiated from the plasma layer, this quantity will be
calculated directly. If I'2 is the power per unit area, at

4. THE SECOND HARMONIC

In this section the solution for the second harmonic
wave will be discussed in detail. The wave at the second
harmonic frequency can be determined from Eq. (9) and
Eq. (13) by setting h= 2. The nonlinear terms for this
case have already been written in Eq. (22). (E»+)v
becomes
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frequency 2', in free space, then

E,=$ Re(Esg)&Hs, '), (31)

where Es& can be determined from Eqs. (23) and (27).
Equation (31) can be written as

I' s= (1/2Jrsc)f(ReEs&)'+(ImZs&)'7, (32)
where

5.0—

I I I 1 I I I I I I I I I I I

G)p—=2
(d

Es ( eEs'——DX)/(mcreaA), (33)

S= —1
0
0

—b2

82

5282

—es (S+)+eP(S—
)

bees brL(S+) —eP(S )j, (34)
—

t '(S+)+(S )j
b, ——b,LeP(S+) —(S-)j

3.0—

2.0—

bs= eke/2M,

~ik2d
2

A = (1+bs)'—es'(1 —bs)'.

(35) !.0

i l J i i I i I i i i I i I l I I I

4.0—
(dp
QJ

2.0—

QJ
=.0005

-2.0

V
QJ ~

0'.2
r ~ l

.5 .8 I.I l.4
~c
QJ

I i l I

l.7 2.0 2.3

Pro. 2. Second harmonic power versus cu, /~ for co~/cu 0.4.

Equation (32) then can be written as

Es (2y«'/m c)——(Pe/ro)'Q(rd~/ro, v/ro, co,/rd, rod/c), (36)

where I's is the incident power and Q is a dimensionless
function of the plasma parameters.

Before discussing I'2, the following characteristics of
the field at 2' can be noted. First, there are two waves
at 2ro, one with a propagation constant of ks (corre-
sponding to the complementary solution) and one with
a propagation constant 2kr (corresponding to the par-
ticular solution). Furthermore, Es,„——yeas„where ys
can be obtained from y» by replacing k» by k2 and co by
2'. In addition, when co=co„k», and hence 2k», exhibits
a resonant characteristic whereas k2 does not. Therefore,
it may be expected that the wave corresponding to the
particular solution will contain the major portion of the
power in the second harmonic wave.

From Eq. (33) and Eq. (36),

Q= DD*SS*/(AA*aa*), (37)

where Q is the quantity to be investigated in order to
predict the dependence of the power radiated, at the

-l.0—
I l 1 1 I I

.65 .77
I I

.89

@JAN,

QJ

I I t

l.ol l. l3

FEG. 3. Second harmonic power versus ca,/co (near resonance)
for co„/co=0.2.

second harmonic frequency, on the plasma parameters.
The value of Q for various extremes of the parameters
can be seen immediately. For example, if the ambient
electron density goes to zero, then co~=0, k»=co„and
y&=0. Therefore, D=O and, consequently, Q=O, as
would be expected. Similarly, if co,=O, p»

——0, D=O, and
therefore Q=O. It can be shown that in this case a
purely longitudinal wave exists within the plasma at the
second harmonic frequency, and since no power is
transmitted by this wave the output power, E2, is zero.
If d goes to zero then it can be seen that D=O and
therefore Q=O.

It is of more interest to examine the resonance
properties of Q. However, due to the complexity of this
function it is not easy to perform such an examination.
Therefore, curves of the output power, at the second
harmonic frequency, as a function of the plasma parame-
ters, obtained from computer plots of Eq. (36), will be
presented. A typical case, &vd/c= 18.63, is used.

From Eq. (36)

%SAN

I2

2p«Vo/~)
(3g)

where Ps and Pe are in watts/m'. LogrpQ versus ru, /rd is
plotted in Fig. 2 for re~/ra=0. 4 and for two representa-
tive values of v/ro. For the low value of v/co it can be seen
that there is one major peak in Q near re,/co= 0.915 and
that there are several smaller resonances in Q on either
side of this value of co,/ro. In addition, there is a series of
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5.0—

I I I I I I I I I I I I I I

(dp
=.7

s 4m+1p=-
a 4

5$1) 2p 3 (41)

4.0— for the maxima and P satisfies the relationship

3.0

CX

C90 2 0

tan(aP) = —aP
1+P2

for the minima. In these equations

P= (c/(o) Reki,

(42)

(43)

I.O— 01

25

—I.0—
I I I I I

.65 .77
I I I

.89
~c
(d
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FIG. 4. Second harmonic power versus &o./co (near resonance)
for tv/(u =0.7.

resonances near co,/&u=2X0. 915, but these peaks are
much smaller than the major peak. For the large value of
v/&u, all of the resonance effects are smoothed over and
the amplitude of Q is much lower than in the preceding
case. In Figs. 3 and 4, logtsQ versus te,/oi in the region
of the major peak is plotted for several values of v/co, for
ce„/~=0.2 and 0.7, respectively. From these curves it
can be seen that the amplitude of Q decreases with in-
creasing v/co and that the width of the resonance curve
increases with increasing v/t0. For low values of v/co

there are many minor resonances and these are smoothed
over as v/ce increases. The position of the major reso-
nance is given by

so that these resonances due to the boundary sects are
caused by standing waves within the plasma produced
by the wave propagating at frequency co with a propaga-
tion constant k&. All of the resonances predicted by Eq.
(40) do not appear in Figs. 3 and 4. However, for very
low values of v/o& (i.e., v/re&0. 0001) they do exist.

It is probably of more practical interest to examine

Q as a function of the parameters. In Fig. 5, logisQ,
versus v/to is plotted, and Fig. 6 shows logisQ, versus
to~/oi It can. be seen from these two figures that the
maximum second harmonic power is obtained when v/oi

approaches zero. Of course, the width of the resonance
line approaches zero under this condition so that a finite
v/co, that is v/te) 10, is desirable. From Fig. 6 it can be
seen that for 0.1&tov/oi(0. 9, Q is a constant and
that outside this range Q, decreases from this con-
stant value. The relationship between Q and the

5.00-

4.50

4.00

3.50-

( ./ )o- = t:1—( ./ )'3'+ ( / )', (39)

where Q indicates the value of P when oi,/to is
adjusted for maximum second harmonic power. This
indicates that for small values of to„/to and v/o& the
resonance occurs for to,/co=1; and as to„/to is increased
the position of the resonance shifts to lower values of
te,/&u, whereas the shift is to higher values of co./oi as v/to

increases. The minor resonances, which appear only for
v/co(0. 03, are caused by refiections within the plasma
layer. These disappear for high values of v/a& due to the
increased attenuation within the plasma. The position
of the maxima and the minima corresponding to these
boundary resonances is given approximately by
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1—2 Fin. 5. Second harmonic power at resonance versus v/co.
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Fro. 6. Second harmonic power at resonance versus co„/co (dashed
curve indicates approximate formula).

plasma parameters is given approximately by

ioglpQ= —1 g+25 iogrp(1 —(1 6)"L(~v/~) —0 57")
—2.5 logrpv/(v, (44)

and this empirical relationship is plotted as a dashed
line, for a single value of v/rp, in Fig. 6. The relationship
between Q,„and cpd/c is relatively simple. For low
values of v/pp and ~v/a& reflections between the bound-
aries cause Q, to oscillate as ppd/c is varied through
multiples of quarter wavelengths within the plasma.
However, as the attenuation within the plasma in-
creases, that is for higher values of v/~ or cpv/rp, then

Q, is relatively insensitive to changes in rod/c.

Finally, Eq. (36) shows that I's has a square-law de-
pendence on Po for constant values of co and the plasma
parameters. In addition, it indicates that P2 varies
inversely as the square of the driving frequency, pro-
viding the parameters co„, v, and d are adjusted so that
pp„/cp, v/cp, and ~d/c are held constant as cp is varied.

S. SUMMARY

The Boltzmann transport equation, coupled with
Maxwell's equations, has been solved, under a small
signal plane wave assumption, including the effects of
the nonlinear terms in the equations. Using a Fourier
series expansion in time for all of the dependent vari-
ables, a solution to the equations has been obtained, in
closed form, for the wave at the hth harmonic of the
Fourier series, including the eGects of all of the rejec-
tions within the plasma layer. The theory predicts that
a major peak in the power at the second harmonic fre-
quency exists near ~,/co= 1 for low values of rp„/rp and
v/~. As urv/&p increases, the peak shifts to lower values
of pp, /rp, and to higher values of pp,/co as v/cp increases.
Minor resonances occur on either side of the major peak
because of the standing waves within the plasma layer.
An additional peak, of reduced magnitude, exists near
&p,/pe=2. The second harmonic power varies directly as
the square of the input power and inversely as the
square of the frequency of the input wave.

The peak value of the second harmonic power, Q, ,

has been examined as a function of the plasma parame-
ters. The theory indicates that Q, is essentially con-

stant in the range 0.1(cpv/cp(0. 9 and that Q,„de-
creases rapidly outside this range. Also, Q, is inversely

proportional to v/pp and relatively insensitive to the
thickness of the plasma layer. An approximate equation
relating Q, to the plasma parameters is given.

In subsequent reports on this work, a discussion of the
experimental verification of this theory, the sects of
the nonlinear terms on propagation at frequency co, the
limits of the small signal theory, and the eGects of
ionization produced by the incident wave will be given.
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