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For a system of N identical particles in a pure bound state, the density matrices of positive orders p
and N —p have the same nonzero eigenvalues with the same multiplicities. If the number of nonzero eigen-
values is 6nite, these density matrices are unitarily equivalent.

~(ENSITY matrices (sometimes specifically called
generalized' or reduced' density matrices) are of

interest in describing many-particle systems because
many important properties of the system can be
calculated from knowledge of a low-order density
matrix, without reference to the complete wave function
of the system. For example, the energy of a system of
particles interacting through two-body forces is com-
pletely determined by the second-order density matrix.

The density matrix of order p for a system of 1V

identical particles in a pure state with wave function
P(xt xtv) is defined by

) 1Vqr, (xi x, ; xi' x,') —=
I I p(xi x„y„pi y&))~

the density operator is finite:

1V~
Trr = ~dxr„(x,x)=I

Hence the density operator is a non-negative Hermitian
operator with finite trace; such an operator has a
purely discrete spectrum and its eigenfunctions include
a complete orthonormal set.' The elements of this set
will be denoted by g„(x) (r=1, 2, ) and the corre-
sponding eigenvalues by )„;we shall omit an additional
index p indicating the order of the density operator.
The density matrix then has an eigenfunction expansion
corresponding to the spectral resolution of I'„:

r~(x,x') =Q„)~,g, (x)g„*(x').

X0*(»'' 'xo'~ye+i ''ytv)'dye+i' ' 'dy& (&) Because of the completeness of the g's, the wave
function of the system can also be expanded in the-form

The wave function is assumed to be normalized to
unity. The variable x; stands for the space and spin
coordinates of a single particle; the particles may be
either fermions or bosons. Letting a single symbol x
represent the p variables xi xo and y represent the
1V—p variables y~t .yiv, we rewrite the definition
(1) in the briefer form

t'1Vq
—

&

4(xy)=I I Z. g.(x)h.(y);

to each g, we have thus associated a function h„of
1V—p variables defined by

(1V)r.(x,h') —=
I 1„4(x,y)4*(x' y)dy.

I&
(la)

)1Vy
'*

t

(y) =
I I ~

cx g„*(x)p(x,y).

A density matrix of order p)0 may be regarded as
the kernel of a linear integral operator F„in the Hilbert
space @o of square integrable functions f of p
variables:

r,f(x) = r„(x,x')f(x')Cx'.

We shall now prove that the density operators I'„and
I'~ „have the same nonzero eigenvalues with the
same multiplicities.

It is easily verified that the scalar product (f,r„f) is
non-negative for every element f and that the trace of

We shall now show that the different functions h„
are orthogonal:

(h„h.)=I
I dy dx'g„(x')P*(x', y)

Lp) J

X dx g,*(x)P(x,y)

t t dxdx' g,*(x)r, (x,x')g„(x')

dx g,*(x)g, (x)

*This work was performed in the Ames Laboratory of the
U. S. Atomic Energy Commission.' P. O. Lowdin, Phys. Rev. 97, 1474 {1955).' R. McWeeny, Revs. Modern Phys. 32, 335 (1960).

3 J. von Neumann, Mathematical Foundations of Quantum
3fechaeics {Princeton University Press, Princeton, New Jersey,
1955), pp. 188-191.
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This result implies also that h„(y) vanishes ident. ically
for X,=O; only those g's that correspond to positive
eigenvalues of F„appear in the expansion (4) of the
wave function. The h's that do not vanish are con-
veniently replaced by normalized functions

(7)

correspondence'

G, ~c—g, =SG,

then defines a unitary mapping 5 of @~ ~ on @„.The
mapping and its inverse may be represented by integral
operators with the kernels

The expression (4) for the wave function now becomes

From Eqs. (3) and (8) we then obtain

F~ „=5 'F~5. (10)

Because the g's are orthonormal, the density matrix of
order X—p can be written as

Alternatively one may regard the wave function
P(x,y) as the kernel of an integral operator 4„ that
maps @ii „on @~. It is convenient first to define a
unitary operator T by

(8)

TG Q

This equation exhibits the spectral resolution of Fz „..
the G's are eigenfunctions of F~ „and its spectrum of
nonzero eigenvalues is identical with that of F„.

In the preceding proof we have never had to ask how
often zero occurs as an eigenvalue of either density
operator. However, the answer is important in the
discussion of two further questions: whether there is
a unitary equivalence between the two density oper-
ators, as suggested by the equality of their positive
eigenvalues; and, if there is, whether it can be proved
by a method of polar decomposition. In both instances
we try to define a unitary mapping of eii „on @„by
establishing a one-to-one correspondence in which each
eigenfunction G„of F~ „corresponds to an eigenfunc-
tion g, of F„having the same eigenvalue. This proce-
dure appears to be straightforward provided that only a
finite number of positive eigenvalues occur. If there are
an infinite number of positive eigenvalues —and ex-
amples can easily be constructed in which this is the
case—there seems to be no guarantee that one can
establish a one-to-one correspondence between the two
subsets of eigenfunctions belonging to the eigenvalue
zero. There need be no relation between their cardinal
numbers, so far as we have been able to discover; it
may even happen that an infinite number of G's and
no g's at all belong to the eigenvalue zero. We shall now
investigate further the special case of a finite number
of positive eigenvalues, with the understanding that
the results are not generally valid.

We assume that X„ is positive for r= 1, 2, -, ns and
zero for r&m. The functions G&, G2, ~, G defined by
Eqs. (5) and (7) are then the only eigenfunctions of
F~ ~ with positive eigenvalues (aside from their linear
combinations in case of degeneracy). However, F~ ~
has a complete orthonormal set of eigenfunctions in

9& ~, and those with zero eigenvalue may be selected
in any order and denoted by G~&, G~2, . The

We shall need also the transposed density operator
F~ „, defined by

(12)

By use of Eqs. (3), (4a), and (8), we then obtain the
(nonunique) polar decornpositions

(13)

from which it follows that

Since F& „ is Hermitian, it is unitarily equivalent to
its transpose and thus, once again, to F„.'

One might hope to relate the eigenvalues of density
matrices of different orders by a quite diGerent method,
using the formalism of annihilation and creation oper-

4 The g's (and likewise the G's) are countable because they form
an orthonormal set in a Hilbert space of square-integrable func-
tions of the particle coordinates. Such a space is separable and
has a dimensionality that is denumerably infinite.

~ We are indebted to Professor Klaus Ruedenberg for suggesting
the polar decomposition as an alternative way of establishing the
unitary equivalence. We have not been able to prove the existence
of a polar decomposition of 4'„without essentially reproducing
the steps that were used above to arrive at Eq. (8). It should be
noted in this connection that I'„does not have an inverse.
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ators. If aI, a2, ~ are the annihilation operators
corresponding to a complete orthonormal set of one-
particle states, density operators of successively lower
orders can be obtained from

It is easy to verify that this relation is independent of
the choice of basis, but not so easy to obtain useful
information from it.

As one consequence of the theorem proved earlier
in this paper, suppose one has a given function
E(xr,xs,xr', xs'). A necessary condition for E to be a
second-order density matrix for a 3-particle system is
that the first-order density matrix obtained from E
have the same positive eigenvalues as E itself. From
the eigenfunctions, possible wave functions for the
system could be constructed according to Eq. (4a).
Likewise, knowledge of the eigenvalues of the second-

order density matrix of a 4-particle system gives
extensive information about the wave function. In the
latter case, for example, if the positive eigenvalues were
nondegenerate, the wave function would necessarily be
of the form

ib =6—l P, )t„&c„g,(1,2)g„(3,4),

where the coefficients c„have modulus unity. In the
other extreme, where the density operator has six
eigenfunctions with eigenvalue 1 and all other eigen-
values are zero, the wave function would be

where the c's form a unitary matrix. The extra coeK-
cients c appear in these last expressions because,
without knowledge of the wave function, the functions
G„are indeterminate by a phase factor and, in the case
of degenerate eigenvalues, by a unitary transformation.
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The theory of electromagnetic wave propagation through an anisotropic ionized layer, including the
effects of the nonlinear terms in the Boltzmann transport equation, is presented. The method of solution of
the nonlinear equations involves an expansion of all of the dependent variables in a Fourier series in time.
The differential equations describing wave propagation are then solved, for each frequency in the series, for
plane wave propagation, including all of the rejections within the plasma layer. A solution in closed form has
been obtained, under small signal conditions, for the field at the hth harmonic in the Fourier series. A
discussion of the properties of the wave at the second harmonic frequency as a function of the dc magnetic
field strength, the electron density, the electron-neutral particle collision frequency, the field strength of the
incident wave, and the thickness of the plasma layer is given.

1. INTRODUCTION

;HE propagation characteristics of an electromag-
netic wave in the presence of an ionized medium

have been discussed by Schluter, ' ' Bailey, '—' Spitzer, '
Brown, ' and many others. ' These discussions are based
upon a set of equations which includes Maxwell's equa-
tions and the dynamical equations for an ionized gas.

*This research was supported in part by the U. S. Air Force
Cambridge Research Laboratories.

' A. Schliiter, Z. Natnrforsch. 5A, 72 (1950).' A. Schluter, Z. Naturforsch. 6A, 73 (1951).' V. A. Bailey, J.Roy. Soc. N. S.W. 82, 107 (1948).
4 V. A. Bailey, Australian J. Sci. Research Al, 351 (1948).
5 V. A. Bailey, Phys. Rev. 7S, 428 (1950).
'L. Spitzer, I'hysics of Fully Ionized Gases (Interscience Pub-

lishers, Inc. , New York, 1956), Interscience Tracts on Physics and
Astronomy, No. 3.

7 S. C. Brown, Haedbuch der I'hysik, edited by S. Flugge
(Springer-Verlag, Berlin, 1956), Vol. XXII, p. 531.

For an exhaustive list see "Bibliography on Plasma Physics
and Magnetohydrodynamics, "Engineering and Physical Sciences
Library, University of Maryland, College Park, Maryland, 1959.

The dynamical equations are obtained, at least im-

plicitly, from the Boltzmann equation, and they are
inherently nonlinear equations. However, the usual pro-
cedure is to linearize these equations since a general
method for obtaining solutions to the nonlinear equa-
tions is not available. It is the purpose of this paper to
discuss the effects of the nonlinear terms in the equa-
tions on electromagnetic wave propagation phenomena.

Relatively little has been reported on solutions to
these equations when the nonlinear terms are included.
Ginsburg' has discussed the mixing of two electromag-
netic waves when one of the waves, at frequency &1,

causes an electron density gradient which varies at the
+& rate. The interaction of this electron density variation
with a second electromagnetic wave, at frequency co2, is

9 V. L. Ginzburg, J. Exptl. Theoret. Phys. U.S.S.R, BS, 1573
(1958) t translation: Soviet Phys. —JETP 55(8), 1100 (1959)g.


