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The plasma-beam instability has been studied by Akhiezer and
Fainberg under the assumption that 8=0, where 8 is the angle
formed by the direction of the beam and the direction of the grow-
ing wave resulting from the instability. Under these conditions the
interaction is electrostatic, i.e., the wave is longitudinal. In this
investigation the above assumption is generalized so as to include
the case of 8/0 and the effect of electromagnetic interaction. For
co~au&, where co& is the Langmuir frequency of the plasma, the
interaction is electrostatic for all values of 0 and the resulting
instability which produces a longitudinal wave increases expo-
nentially in accordance with the term exp(3v3caoskvocos8/8)&

(where coo is the Langmuir frequency of the beam). For a frequency
range below co& the instability is less pronounced. However, this
instability is significant, since the interaction is electromagnetic
and the "growing wave" resulting from this interaction is charac-
terized by an electric vector having both transverse and longi-
tudinal components. In investigating the above instabilities, an
assumption was made that the density of the incident beam is
small and the results cover all values of 8 except those in the im-
mediate neighborhood of v/2. For e in the neighborhood of v/2 the
assumption is more general and the results apply to any density of
the beam.

I. INTRODUCTION

~ 'HIS investigation deals with the passage of an
electron beam through plasma and particularly

with the generalization of the problem formulated by
Akhiezer and Fainberg. ' These authors ~considered an
instability resulting from the growth of a )ngitudinal
wave moving in the same direction as the beam in the
absence of an externally applied magnetic Geld. Under
these conditions the electromagnetic interactions are
negligible, i,e., the instability is of purely electrostatic
origin. A somewhat similar approach based on electro-
static interactions has been used on related problems by
Haeff, ' Pierce, ' Bohm and Gross, 4 Sumi, ' and others.

In our formulation we shall take into account the
electromagnetic interaction and investigate the behavior
of any initial disturbance in the presence of such inter-
action. It will be shown that the electrostatic interaction
is particularly effective for those frequencies that are in
the immediate neighborhood of the Langmuir frequency
of the plasma. The instability that results from this
interaction is relatively intense. An expression will be
derived representing the rate of growth of the wave as a
function of the angle 8 between the direction of the wave
and the direction of the beam. For a frequency range
below the Langmuir frequency of the plasma the
instability is less intense. However this frequency range
is of a particular interest, since it is associated with an
electromagnetic interaction and gives rise to "growing
waves" in which the electric field has both a transverse
and longitudinal component. The growing waves result-

ing from the electromagnetic interaction are polarized.
The plasma-beam instability is closely related to the

Now at Michigan State University, East Lansing, Michigan.' A. I. Akhiezer and Ia. B. Fainberg, Zhur. Eksp. Teoret. Fiz.
21, 1262 (1951).' A. V. Haeff, Phys. Rev. 74, 1532 (1948); A. V. Haeff, Proc.
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sporadic radio emissions from the solar corona. These
have been discussed in the astrophysical literature with
particular reference to the mechanism described by
Akhiezer and Fainberg. It should be noted, however,
that Akhiezer and Fainberg considered a specific case
of an instability, occuring in the absence of an external

magnetic field, i.e., the case for which 8=0. Therefore,
the only type of waves reported by these investigators
are longitudinal waves. In order to enable these waves
to propagate in free space, a mechanism for the con-
version of the longitudinal into transverse oscillations is
necessary. According to Ginzburg and Zhelezniakov, '
this conversion is effected in a homogeneous plasma by
the interaction of the longitudinal waves with the
density Quctuation AS of the electronic plasma having
concentration S. The term expressing the density
fluctuation has two components, i.e., AX=/31P+61P'.
The component 6S' designates the Quctuation of S
caused by the change in plasma density and AS"
represents the Quctuation in which the ionic concentra-
tion does not change. The transverse waves produced by
this mechanism are unpolarized.

It is noted that some of the solar emissions designated
as type I bursts are polarized, and other emissions
designated as type II and III bursts are unpolarized.
Thus one cannot correlate the type I bursts with the
mechanism described by Akhiezer and Fainberg, and it
is assumed that this mechanism is responsible for the
generation of type II and III bursts only. It is thus
generally assumed that these latter bursts occur in those
regions of the solar corona in which the external mag-
netic Geld is insignificant. In order to explain the
occurrence of type I bursts, and particularly their
polarization, it has been postulated that these bursts are
produced in those regions of the solar corona in which
an external magnetic field is present.

This paper may possibly contribute to a modification
of this assumption since it is shown that a growing

6 V. L. Ginzburg and V. V. Zhelezniakov, Astron. Zhur. 35, 694
(1958); 36, 233 (1959),
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polarized electromagnetic wave may occur in those Substituting P„as expressed in (6) and (7) in (4) and
regions of solar corona in which an externally applied B as expressed in (2) in (4), we obtain the following
magnetic Geld is absent or negligible. relationship for E,'

II. GENERAL DISPERSION FORMULA

Consider an extended uniform medium consisting of
S beams of charged particles. . Each beam is of infinite
width and is characterized by a uniform density n„of
particles having mass rN~, charge e„and velocity V~
(p= 1, 2, S). In the absence of a perturbation these
beams neutralize each other, i.e., g rs„e„=0. We assume
that the medium is subjected to a perturbation caused
by an electromagnetic Geld

E'=E exp/i(cot —k r)$; B'=B expLi(art —k r)].
If the perturbation is sufficiently small, the velocity of
each beam may assume a value V„+V„',where V„'«V~.
The electromagnetic Geld polarizes the medium and the
total polarization P' can be expressed as a sum of terms
P„'=P„exp/i(&ot —k r)$, each of which is associated
with a corresponding beam p. Neglecting small terms,
we obtain:

where

&v»= Z~ ~~,.A~

@11=822=C h' j M

co 2k2V ' sin'0

oP (o'((o—k V„cos8„)'

coy2k V„sin8„
6y, 13 6p, 81

co(~—kV„cos8 )'

e„,88=1—
CO~

2
CO@

2

6p, 22

(or —kV„cos8 )'

612 621 623 682

~12 +13 ~21 ~23 ~31 ~82 +33

(10)

where

E'+-V„&&B',
Dt' 4n- c

The relationship (8) is satisfied if

(a;;—P„e„,;;( =0.
D 8—=—+V~ grad,
Dt

curlE' = ——
c Bt

(2)

The interaction of the electromagnetic Geld with the
beams can be described by 3Iaxwell's equations as
follows:

The expression (11) represents the dispersion relation.

III. PASSAGE OF A BEAM THROUGH A
HIGH-TEMPERATURE PLASMA

We shall apply the expression (11) to a medium com-
prising an electron beam having velocity V= vo, density
no, and passing through a plasma having density n1, and
characterized by a Maxwellian velocity distribution

divB'=0;

curlS' =

(3)

1 8E' 47r 8P„'
+curl (P„')&V„); (4)

c Bt c u Bt

f(V) =@if
/ exp( —3s'/2V'),

&2~s')
(12)

where
P„g=~„g(I' (, (k, l= 1, 2, 3), (6)

Kp, 11 Kp, 22 =—
4'(o ((o—k V~ cos8~)

co„2k'„sin8„
Kp, 31=

4~(u(cv —k V„cos8 )'

Kp, 12 Ky, 13=Kg,21 Ky, 32 Ky, 28 0 j

(7)

Kp, 33=
4n (~—k V„cos8„)'

divE'= —kr P„divP '.

Ke choose rectangular coordinates x, y, s, and k,=k;

=V„,a= V„cos8„. Then using the expression (1) and
(2) we obtain. :

where s is the mean thermal velocity. We shall designate
by 0 the angle formed by ~0 and the s axis.

We assume that both the beam and the plasma are
charge equilibrated, i.e., the electrons are compensated
by a positive charge that is continuously distributed
throughout the space. The velocity distribution f(V)
represents a limiting case of an assembly of discrete
beams. In order to form the assembly we divide the
velocity space into equal volume elements AV, . A

vector V; connecting the origin of coordinates to any
point within the cell hV; represents the velocity of an
electron beam having density f(V;)EV,, and the density
of the entire assembly is co=+ f(V;)4V;. The con-
tinuous distribution represents a limit as each volume
element hV; tends to zero.

The dispersion relation for the medium is represented

(13)
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where

G)p k Itlp sin 0GOp

E]1 1
(o M (co—k'vp cos8)

—4xK„.

as follows:
(~22—%2+„=0;

~11 +11 +13

(19)

(20)

Cup

E22
——1———47t'K g, E33——1—

GO

Mp —4m Ki,
(1—hap cos8)' (14)

cop2kvp sin0
&13=&31=——

cp (cp —k2Ip cos8)'
+12 +21 +23 +32

(vp = (4n mpe2/nz) '*; (ui ——(4~vie'/m) l.

co12
t

f(V)dV
Kg=

42rcp "r cp —kV
(15)

In the above expressions the terms K~ and K~ are
defined as follows:

The expression (19) represents a purely transverse
wave in which the electric vector is perpendicular to k
and vp. The form of this expression is independent of vp

and, therefore, the propagation of this wave is not
influenced by the motion of the electron beam. There is
no instability since this wave is characterized by a small
attenuation that is inherent in the propagation of a
transverse wave in a plasma. '

The expression (20) represents a wave in which the
electrical vector has a transverse component E, and a
longitudinal component E,. For 8=0, i.e., when the
wave is propagated along the direction of the beam,
these two components are separated in the form of the
following two waves:

t
f(V)dV

Kg=-
42r "r (cp —kV)'

(16) lcpjP
+4~., (Z, =o;

E cd2
(21)

t
~12 ~12(gs)2 3~12(gs)4 15&F12(gs)4

+ + + +
47I I cp 3cp 3cp 3 Go

We shall consider an initial value problem in which
the perturbation applied to the medium at t =0 is
expressed as a function of space coordinates. The corre-
sponding oscillations of the electromagnetic Geld are
defined by the expression (13) in which k is real and co

may be complex. Since the wave motion is of the type
expr-i(cut —kr) j, we would obtain a wave having an
amplitude increasing with time if Im(co)(0. We are
primarily interested in ascertaining whether or not the
medium is unstable against small perturbations. There-
fore, our problem consists in determining the sign of
Im(~). In the expressions (15) and (16) the contour of
integration F is along the entire real axis from —txr to
+~, unless the pole of the integrand has a nonpositive
imaginary part in which case F dips down below the
pole. Assuming ks((or and using an asymptotic series
expansion, we can represent the expressions (15) and
(16) as follows':

GOp —4~.I PZ, =0.
(PI —k~p)'

(22)

IV. INSTABILITY FOR ZERO TEMPERATURE

Equation (21) represents a purely transverse wave
similar to the one denoted by (19). Equation (22)
represents a purely longitudinal wave that has been
found by Akhiezer and Fainberg to be unstable against
a small perturbation.

We shall investigate a more general case in which the
direction of the propagation of the wave is inclined with
respect to the velocity of the beam, i.e., 8/0. More
specifically, we shall determine the possible occurrence
and the nature of the instability for this more general
case and shall examine the dependence between the rate
of growth of this instability and the angle 0.

Our investigation will be directed to the dispersion
form (20). We shall first consider the passage of the
beam through a cold plasma and subsequently consider
the eGect of the temperature.

/ 1
v3X' s Assuming s=0, the dispersion relation (20) can be+ '

' P( '/ ' ') ' ( ) ex ressed in the form

~12 (g12(ps)2 5(g12(ps)4 3~3~* (F12~
Kl= + + + i

4m oP o)' 3G0 2 k's'

F ((u, 8)= (co'—cup —M1 —c k ) (GP ——Np) ((u —hip cos8)
(%2 Mo2 ~ 2 C2$2)~o2~2

—coo'k'vo' sin'8 (oP—co ') =0. (23)

The expression (23) represents a relationship between
the frequency cp and the wave number k of an electro-
magnetic wave for which the wave vector k is in-

It is noted that the dispersion relation (13) can be
represented in the form of two independent equations 24, 453 (1953).
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expressions in (26) and neglecting small terms, we obtainclined at angle 8 with respect to the velocity vo of the
beam. Our problem consists in ascertaining whether the
waves propagated in the medium are of a "growing" or
"decaying" type. This can be determined by solving
(23) with respect to cv for real values of k.

We shall consider the behavior of the medium for a
beam of very low intensity, i.e., when or«&o)y. If alp=0,
Eq. (23) describes three types of oscillations as follows:
(A) &)cop= ppP+c k

& (8) Mrop=o=coP& and (C) Mcop=0

= kvp cos9. For small values of orp these solutions may be
expressed in the former=~ p=o+n, where!n!(«o p=o=0.
The term n shall be designated as the "frequency
increment. "This term is of particular interest since the
stability of the medium depends upon the character of
n. Thus if Im(n) (0, the solutions are unstable and the
magnitude of Im(n) indicates the rate of growth of the
wave that results from the instability.

For small values of cop the solutions of the type (A)
and (8) do not give rise to any instability. Our par-
ticular attention will be devoted to the solution of the
type (C), which is expressed as

(28)o.3—~02k~0 coso= 0,

and consequently

(~pPkvp cos8y & (—1&iv3 ~n= !
2 j ( 2

(29)

Therefore, the wave grows exponentially in accordance
with the term expL(343~p'kvp cos8/8)'t j.

Note that n=O(cup'), from which it is evident that
I.=0 is in agreement with our assumption.

Weak Interaction

For the case of a weak interaction the separation into
transverse and longitudinal waves is not possible. The
instability is described by Eq. (23) and gives rise to
growing electromagnetic waves in which the electric
vector has a component parallel to k. Substituting (24)
in (23), taking into account the inequality (25) and an
additional inequality

(24)co= kvp cos8+n,

!n [«kvp cos8.
2!n! kvp cos8((~P& (30)where

(25) we obtain
p cos8—c k cos 0

~2 —~ 2$2p 2 . (31)
(k'vp' cos'8 c'k' —ppP) —(k'v ' cos'8 —ppP)

The term kvp cose shall be designated as the "charac-
teristic frequency" of the beam.

In investigating the dispersion relation (23) we shall

differentiate

between a "weak interaction" and a
"strong interaction. " The nature of the interaction
depends upon the magnitude of the term

L= lim (&up/In I).
cop~0

The numerator in this expression and the Grst factor
in the denominator are negative. Therefore, the
occurrence of an instability depends on the sign of the
term (k'vp' cos'8 —coP). We have an instability if the
characteristic frequency is below the Langmuir fre-
quency of the stationary plasma, i.e., if

For a strong interaction we have L,=0, and the rate of
growth of the instability as expressed by e is, by an
order of magnitude, higher than in the case of a weak
interaction for which L~O.

Strong Interaction

If we neglect terms involving ppp'/n4, Eq. (23) repre-
sents two waves: a transverse wave having the form
(au —Eu)E,=O which is stable, and a longitudinal
wave expressed as

k'Vo COS0(M j. (32)

The inequality (32) is a necessary but not suKcient
condition for an instability. Additional restrictions as
expressed by (25) and (30) have to be imposed. Further-
more LAO and, consequently, n=0(~p).

It is noted that the value of the characteristic fre-
quency given by (27) is not included in the region of
weak interaction, since, by substituting (27) in (31), we
obtain n= ~ and the formula (31) is not applicable. As
shown by (32), the characteristic frequencies at which
the weak interaction is effective have an upper bound.

G00l ay—!z,=o.
(pp —kvp cos8)' oP ) (26) Variation of the Rate of Growth

with the Angle 8

~80 COSH= coz. (27)

The frequency of the wave is then determined by the
expressions (24), (25) and (27). Substituting these

The behavior of the longitudinal wave (26) is
particularly significant when the characteristic fre-
quency of the beam is equal to the Langmuir frequency
of the plasma, i.e., when

We shall now summarize some of our results, pointing
out the regions of applicability and the significance of
the frequency decrement n as expressed by (29)
and (31).

We considered two frequency ranges: a relatively
high-frequency range in the neighborhood of co& for
which the rate of growth of the instability is relatively
large ("strong interaction"), and a lower frequency
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range below co~ for which the rate of growth of the
instability is smaller. These frequency ranges shall be
designated as (42) and (b), respectively.

For the frequency range (a), the wave that results
from the instability is purely longitudinal and its
frequency decrement is expressed by (29). The rate of
growth of the wave depends upon the angle 8, i.e., it
decreases when 8 increases from 0 to 2r/2. The electro-
magnetic interactions do not inQuence the behavior of
the wave.

For the frequency range (b), the instability is caused
by an interaction of the electromagnetic field with the
plasma-beam system. The wave resulting from this
instability is significant since the electric vector has
both longitudinal and transverse components. The rate
of growth of this wave decreases when 8 increases from
0 to 2r/2. This can be shown by differentiating (31) with
respect to 8. We obtain d(n2)/dg) 0 for M kvp cosg&M1,
and since n2 is negative in this range, the term I42I

decreases with the increase of 8.
If we take a finite but small value of cop and assume

that 8-+ 2r/2, the expression (31) becomes inapplicable.
We shall now remove the restriction that MpQQ(oy and
show that under these more general conditions there is
an instability for 8=or/2 and for 8 or/2.

For 8=2r/2, the dispersion equation (23) contains
only even powers of or. Therefore, this equation can be
expressed as F(M,2r/2) —=G(M2) =0. Substituting in (23)
oP=O; and oP= —cop') we obtain

3G0 y G)p k sp sin 0 c'k'r Mp

M2 3M2 k2$2 M2 (M kvp cosH) 2 M2

-ig, I

where

Gap

xI 1—
(M—kvo cosg)' M2 —k's' )

o)p4k'ep' sin'g
=0, (35)

M (M —kvp cosg)4

orV3 M12

$1 — exp (—3M2/2kss2) .
V2 kSM

32rV3 Mt M

82= exp (—3M'/2k's')
v2 k's'

(36)

(37)

The expression (35) is derived from (20) using (14),
(17), and (1&). Following the procedure used by
Akhiezer and Fainberg, we have neglected in the
development (17) and (18) the effect of terms of the
order (ks/M) 4. The following expression for 41' is obtained
from (35):

a2 =A/8,
where

V. TEMPERATURE EFFECTS

Assuming s/0, the dispersion equation can be
represented in the following form:

G(0) =M o2M 2V 2k' (33) =Mo2 (c2k2+M o2 k2vp2)

G(—Mp) = —(2Mo+Ml)(LM0 +Mo (Mo+c k +Ml) j
—Mp'vp'k') —Mr'k'vo'. (34)

+Mookovoo cos28I
(3k vp cos g—k s

—ig, I

It is apparent that G(0))0 and G(—Mp') &0. Con-
sequently G(M2) has a negative root between M'=0 and
oP= —cop' for all values of k&0. Thus the equation
F(M,2r/2) =0 has a root that is purely imaginary and,
therefore, there is an instability. This instability, which
corresponds to 8=or/2, is related to the instabilities
occurring in media having certain anisotropic velocity
distributions discussed by Weibel, ' Fried, ' and Harris. "

It can be shown that when 8 differs from 2r/2 by a
small amount, there appears a real component in the
expression for M (in addition to the imaginary compo-
nent already present when 8=or/2). In order to show
this, one writes the expression F(M, H) so that the even
and odd powers of co are separated and finds that
the assumption: "co is pure imaginary" leads to a con-

tradiction.

2 E. S. Weibel, Phys. Rev. Letters 2, 83 (1959).
2 B. Fried, Phys. Fluids 2, 337 (1959).
'OE. G. Harris, paper presented at the International Plasma

Physics Institute, Seattle, Washington, August 31—September 5,
1959 (unpublished).

+Mp k vp sill HI

(k 'vp co$0—k s

8= —c k —cop2 —k sp cos g

—ig, I;

(3S)

—k'vp' cos'HI —ig1
I(3k vp cos g k $2

Ml

xI 1—
k'v02 cos'8 —k's'

ry(c2k2+Mo k vo cos28)I —ig2 I ~

(kov02 cos'8

If we assume that 8~=62=0, then the expressions
(35) and (38) will be based on the hydrodynamical
representation of the medium. If s is suKciently small,
the hydrodynamical representation does not introduce
any substantial modification in the frequency range for
which an instability sets in.


