
P H YS I CAL REV I EW VOLUME 121, NUMBER 2 JANUARY 15, 1961

Extension of the Variational Method for Hard-Sphere Bosons
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The coordinate-space variational treatment for the hard-sphere boson gas developed by Aviles and
Iwamoto has been extended to include the first logarithmic term in the ground-state energy expansion.
The result agrees, within four percent, with the exact results of Wu and others. The form of the variational
wave function used is discussed and compared with that obtained using the pseudopotential method of
Lee, Huang, and Yang.

1. INTRODUCTION mass m, radius ro and of density p is given by:

ECENT advances in the problem of the infinite
volume, many-boson system have been due largely

to the introduction of novel methods of calculation,
often based on the formalism of field theory. ' lt has
remained of interest, however, to attempt more
straightforward solutions based on the conventional
many-particle Schrodinger equation in coordinate space.
Aviles' and Iwamoto' have independently developed a
variational treatment, based on earlier incomplete
work of Mott, Dingle, 4 and Jastrow, ' and have suc-
ceeded in calculating the first two terms in a series
solution for the ground-state energy of the boson
hard-sphere system, which agrees well with the results
of the exact methods. We have extended the investiga-
tion to include discussion of one more term in the series,
which had been overlooked in the earlier exact calcula-
tions. This additional term was recently discovered by
several authors, and had been inherent in the varia-
tional method. We also discuss the relation between the
variational wave function and that obtained using the
pseudopotential method of Lee, Huang, and Yang. "
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I dsxP(~f(x))' —f(x)~'f(x) jGs(x). (2)
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In this formula the two-particle correlation function
is defined as

p 2

G,(x)=1+ I dsk e—'" *,
grrsprs' " 1

where

f(k) =pre'~t d'x$f'(x) —1)e ' *x='r/rs (4)

and only the "chain-connected" terms, ' which are
dominant at low density, have been included. For
mathematical convenience, both Aviles' and Iwamoto'
have chosen the variational two-particle function

f(x)=1—x 'e " '&, x~1
=0, x &1.

This form has the correct behavior near the hard-core
boundary (x=1), and is short-ranged, (i.e., approaches
unity rapidly as x~ 0o). A detailed discussion of the
properties of this function will be given later. The
parameter e is left free to be varied after the integrations
have been carried out, but it is important to bear in
mind that consistency requires it to be proportional to
p:, as Aviles' has shown.

Using Eq. (5), i (k) can be evaluated from Eq. (4).
For low density, the two leading terms are

2. CALCULATION OF THE ENERGY

The variational method makes use of a trial function
of the form

+(ri, rs, r~) = II f(r, r;). —

Aviles' has shown that the ground-state energy per
particle for a system of spinless, hard-sphere bosons of
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which will be referred to as is and i'&, respectively.
Aviles showed that is contributes to lower order in the
density than fr, and he therefore consistently omitted
the latter. To evaluate the next term in the expansion
of the ground-state energy we must retain f'r.

z We have not been able to evaluate the complete
expression for Go with both of the above terms included
in i. The main difficulty arises because of the presence
of the transcendental function i i in the denominator of
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Eq. (3). We therefore have recourse to a Taylor's
expansion about t = fo, which yields the following
expressions:

K —PLANE

= Z Q-(k)fi" (7a)

2

Q-(k) =-

pi!I

df'o" 1—f o

(7b)

1 oo f
Go(x) =1+ Q d'k e

"'" *Q (k)i p. (7c)

The n=0 term in Eq. (7c) has just the original form
discussed by Aviles, since it corresponds to neglect of|i. It consequently produces a term in Go of the form: f I —2|g

2
GoII(X)=1+ [e e~ j—P=(o.+e)&.

Qi(k) can be written in the simple form

Q (k)=[1—&oj
'—1,

from which it follows immediately that, for e&1,

Q-(k) = L1—~.3-.-'

%e must now evaluate, in principle, all the higher terms
Gp in order to find the next term in the energy expan-
sion. We can show (see Appendix), however, that only
the terms m=0 and m= 1 contribute, and will base our
demonstration on the fact that the form of the higher
terms [Eq. (10)j differs sharply from that of the first
two.

To evaluate the term Goi we rewrite i i in the form

e
—2eg

eik yi i(k) =—"d'y
Sm ~ y2

We substitute this result in Eq. (7c) and then reverse
the order of integration and, af ter trivial angular
integrations have been performed, obtain

CUT

FIG. j.. Contour used to evaluate the two-particle
correlation function Gpyit).

sion, and we obtain the final result
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Some care must be exercised in evaluating this expres-

The integration over k is easily done by contour
integral methods and we have the expression

We have also been able to derive Eq. (14) by a more
elegant method, involving contour integration of the
expression

1 t" (k)
G'oi(x) =—Im dk e'~*Qi(k) tan

plx pp E2e/

over the contour shown in Fig. 1.Qi(k) has second order
poles at k= &iP, and branch points at k= &2ie.

For the interesting special case e'=a/3, care must be
taken with singularities in both ln and Ei functions,
since then P = 2e. Making the change of variables
s= ex, we can theo. write the correl', tiog. function.
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Gaa+Gai as

G.()
2» 3»a ( 13)=1+—(e '—e ")+ e "

~
3s——~ln4s —3s

16s ( 2 ]

+e"~ 3s+—~Ei(—4s) . (14a)
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Aviles has evaluated the terms which contribute to
the energy to order n:, and we are interested here in
the terms of order n inn, after the dimensional quantities
47rpra'k'/2m have been removed. It is possible to evaluate
(15) using the forms (8) and (14) for the two-particle
correlation function, with the exact numerical value
of » unrestricted (although proportional to n'*) If thi. s
is done, one derives a result for the logarithmic term in
the energy which is independent of the value of e.
This calculation is long and straightforward, so we will
illustrate the method by evaluating (15) letting»'=n/3
instead. This is the value of e which was previously
found' to minimize the lower terms in the energy. We
break up the integral into parts, '

(16)

and observe that the first of these cannot contain a
term of the desired form. Since ~ is supposed small, we
can expand all parts of the second integrand about
a=0, and integrate term by term. Here we used the
expansion of Ei(—4s)—1ns+P C„Z". The only terms
contributing to the desired order are the following:

t

' 3 lns
E=—2m.pra»' ~' ds ——+6»—.

2m ~ s 2'
(17)

Thus it is easily seen that the logarithmic contribution
to the energy is

Still using the trial function defined in Eq. (5), we
can write the final form for the energy as

52
X=2m.pra
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ds Ga(s)
2m~,
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DISCUSSION OF THE WAVE FUNCTION

To discuss the relationship between the variational
method and the pseudopotential method, ' we must
consider the forms of both the general many-particle
trial function, Eq. (1), and the specific form of the
two-particle trial function, Eq. (5). It is clear that, for
variational methods in general, good agreement of
ground-state energy calculations does not necessarily
indicate an accurate agreement between the assumed
wave function and the correct wave function.

Lee, Huang, and Yang' have evaluated the coordinate
space form of the wave function corresponding to their
pseudopotential method for ending the energy. They
point out that it consists of a part of the wave function
of Eq. (1).That is, if we write

f(r")= 1+g(r") (20)

then Eq. (1) can be expanded in a cluster series of the
form

+=1+ 2 g( ',)+ Z Z g( ')g(. )+" (21)
e&y k&l
i j ~k, l

The result of the pseudopotential method selects from
Eq. (21) only those terms in which each subscript
appears no more than once. This truncated wave
function obviously fails to satisfy the exact boundary
condition that 0' must vanish if any two particles
approach closer than rp, but the error in the energy thus
introduced is of higher order than pn&.

Thus, we can now compare the form given by the
pseudopotential method for the function g(r;,) with
our trial. function. The former is given indirectly as a
Fourier integral,

0

1
g( ) = — ~d'kLk'+ —k(k'+2 )&) '"'*. (22)

~an' ~

Wu and others' give the value (4/3) —(V3/s) for
the exact coefBcient of the n lno, term. This is equal to
0.782 and is to be compared with our approximate
result of 4. Note that the error is about 4%%u~, and is in
the right direction for a variational estimate, since for
small n the entire term is negative. With»'=n/3 the
ratio of the variational result, including all three terms,
to the corresponding exact result becomes

E= (1+0.962n'*+0.750n lna)/
(1+0.960a'*+0.782n 1no,). (19)

oo

g(x) = — Im ~' dkLk'+a —k(k'+2n) '*jke" (23)
Wn~X ~ p

Both of these integrals diverge at the lower limit although their
difference must be Qnite. One can formalize the procedure to be
followed by replacing the lower limit by some small quantity c,
which is smaller than, and independent of, e. ' We are indebted to Dr. I. Harris for suggesting this procedure.

This function can be simplified by a contour integration
process' as follows: After performing the angular part

and as we stated before, this result is independent of « the integration, we have

the variational parameter.
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X-PLANE The corresponding expansion applied to Eq. (5) yields

1l ( e'
f(x)=l 1—(I 1+e——Lx—1j.) &

+—Lx—1j ——Lx—1]+" ~. (26)
)6 24

-ig2a

CUT~

Fxo. 2. Contour
used to evaluate the
coordinate-space
function f(xi, given
by the pseudopoten-
tial method.

Since our wave function is only approximate, it is not
surprising that the value of e which minimizes the energy
gives poor agreement between Eqs. (25) and (26).
However, a very close correspondence can be achieved
if one chooses e'=n. With this value inserted in (26),
we find that the ratios of the 6rst few coeKcients of
(25) to those of (26) are

Co ——1, Ci =0.96) C2 ——1, Cg ——1.10, c4 ——5/4. (27)

Several points should be noted concerning these
functions. First, when one uses the above value of e

in Aviles' expression for the energy Lhis formula (66)],

E=4mPrp 2'
n * 1

1+.] (»)
1+L1+n/e']»

'

Using the contour shown in Fig. 2, noting the presence
of branch points at +i(2n) '*, and the absence of singular-
ities inside the contour, it is easily shown that the
integral along contour I is equal to that along contour
V. Hence, the function (22) can be rewritten as

one finds that the ground-state energy is given by the
first two terms of (26). This is also true for the pseudo-
potential method, where the first two terms of (25)
give the exact energy value up to order po. '. This is the
only choice of the variational parameter for which
this relation is true. Second, with this value of the
parameter the error in the logarithmic term is almost
exactly the same as the error in the lower term. That is,

16
f(x) = 1+g(x) = 1—— ds s'(1—s') l

7lX p

&&exp/ —(2n) ~xs]. (24)

4-4 v3- -32v2-

3 3 ~ 15m..
= 1.0009. (29)

Expansion of the exponential in Eq. (24) about s=0,
combined with term-by-term integration, yields a series
expression for f(x) which satisfies the boundary condi-
tion at x= 1 only approximately. This has been pointed
out by Lee, Huang, and Yang, 7 who note that this
inaccuracy does not affect the pseudopotential energy
calculation except in higher order. Since our trial
function satis6es the boundary condition exactly it is
convenient, for comparison purposes, to replace x in
the integrand of Eq. (24) by x—1, which insures the
vanishing of f(x) at x=1. The exponential can now
be expanded about s=0 or x=1, and integration
carried out term by term. The result is

From the series results, Eq. (27), it appears that the
two functions under consideration begin to diGer
widely for larger values of x. To examine this, we
evaluate (24) for large x, and find that the exact
function approaches unity as

f(x)-1 Cx 4, C=32s=—'(2n) '. (30)

This is a much longer ranged behavior than the
exponential fail-off of Eq. (5), and indicates that the
trial function, although adequate for the ground-state
energy, which depends mainly on behavior near the
hard-sphere boundary, would not be good for an
investigation of the low-lying excited states, whose
phonon character requires longer-ranged correlations.

1) ( 32(2n)' n
f(x)=] 1—— [] 1+

x) ' 15m. 2

l64(2tt) & 5a'
+— Lx—1j'——Px —1j'+ i. (25)

315~

3. CONCLUSIONS

In the spirit of variational approximations, we have
used a two-particle product wave function to calculate
the first logarithmic term in the low-density series ex-
pression for the boson ground-state energy. It has been
previously shown' that this product form is correct



VAR I AT IONAL M ETHOD FOR HA k 0 —S P HERE BOSONS

in the same approximation as is the pseudopotential
method. However, Wu' has stated that a more compli-
cated wave function is given by a higher order pseudo-
potential method, which also yields an exact result for
the erst logarithmic term in the energy. The good
agreement between the results of the two methods,
however, would seem to indicate continued usefulness
for the variational technique, but probably only for
ground-state energy calculations.

We have also studied the detailed behavior of the
two-particle trial function assumed and have indicated
that its success is due to its close accidental resemblance
to the function derived by Lee, Huang, and Yang. '
Mathematical difFiculties have prevented us from
applying this latter function directly to a variational
calculation.

where

$0 . il
1+(y/s)'

tan-'] —).
&2.)

(A2)

where the various parts of the integrand have been
expanded in power series which converge for y&2s.
Integration by parts converts Eq. (A3) to one involving
the cosine integral function,

The integrals appearing in Eq. (A1) are broken into
two parts, for y~2s and y~2s, respectively. For
m=1, the first of these integrals may be approximated
by

—6e' dyy 2 siny,

—6e2t (2s)
—' sin(2s) —Ci(2s) j, (A4)
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APPENDIX

G2(s) = 1+ P I dy y sinygnf1", (A1)

In order to show that terms in Go(x) higher than the
second do not contribute to the logarithmic terms in

the energy, we will now develop a method for obtaining
the contribution from each of the terms in the sum

given in Eq. (7). In this way, we can easily obtain the
expression in Eq. (17) without completely calculating
the expressions (8) and (14). Extending this procedure
to Go„(x) for 22 ~ 2, we show that no terms in the energy
of order n lno. appear.

Making the substitutions x=s/e, kx=y, and choosing
the special value n=3t.' as before, we can use the energy
expression (15) with

&n+Isn —3(3&/4) n 111yy—l—n sjny
2Z

(A6)

For example, we can see that for m=2 the leading term
is proportional to e's ', while for v=3 it is proportional
to e41ns. Neither of these terms contributes to the
energy to the desired order, and similar arguments can
be applied to the rest of the terms. Therefore, the
result of Eq. (18) is the correct variational expression
for the energy up to this order.

and for small s Lwhich is the only region of importance;
see Eq. (16)j this can be expanded to give the leading
term:

6e' lns.

Inserting this expression in Eq. (15), we find exactly
the result shown in Eq. (1"I). A similar expansion for
y(2s is applied to the second part of the integral, and
can be seen to give no additional terms of interest.

In the same way the higher terms can be shown not
to contribute to the logarithmic term in the energy.
For y) 2s, the leading term of Q„ is unity and this part
of the integral for the correlation function G2„(s)
becomes


