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Symmetry Theorems for Isospin-Invariant Reactions
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Symmetry theorems, analogous to those well known for angular distributions and correlations, are given
for isospin-invariant reactions starting from an initial state of limited complexity. Detailed calculations are
carried out when the initial-state isospin does not exceed —,. A statistical generalization is given for averages
over experiments starting from different charge states. Some properties of the irreducible tensor operators
which arise from recoupling the angular momentum operator to itself are discussed.

1. INTRODUCTION

HE complete analysis of reactions which emit
several particles is forbiddingly complicated,

even with the help of conservation laws and the Racah
algebra. The difhculties are compounded when not all
of the emitted particles are detected, since then the
conservation laws are nearly useless. In these circum-
stances, even to determine the effects of isospin in-
variance on the measured charge distributions is not
easy, and to use those distributions to isolate any of
the dynamical parameters is much more difficult.

Let q(lit piv) represent the number of events
observed wherein particle 1 has isospin s component
p, &, etc. Identical particles may be labeled according to
any criterion not involving their charge state.

q(l t l iv) =Epl&l t leer, pl()I'. (l.l)

P stands for the final-state wave function and P for all
variables not involving the isospins of the measured
particles. The range of the summation depends upon
the selection criterion for events to be recorded. In
terms of the isospin amplitudes &n, r, p, ,p I f), where r is
the resultant isospin of the measured particles, LLt, its
s component, and e stands for all the other invariant
isospin quantum numbers of the measured particles,

q is given by

q(pt ~~)
=ZpIZ-, .&l t p~In, rp&&n, r l,PIP)I' (12)

The vector recoupling coefficients in (1.2) are known
in principle, but present an increasingly serious obstacle
to calculation for large X. In any case, the sum on P
precludes the direct use of (1.2) in interpreting charge
distribution data unless all final-state particles are
observed and all their momenta, spins, etc., are
measured.

Probably the greatest advance to data along these
lines has been made by Cerulus, ' who assumes, in
addition to isospin conservation, the "statistical
hypothesis" that the amplitude &n, r,ic,pIQ) does not
depend upon o.. He then finds ways of carrying out the

* On leave from Argonne National Laboratory, Argonne,
Illinois.

~ F. Cerulus, Suppl. Nuovo cimento 15, 402 (1960); and pre-
print (to be published).

sum on n in (1.2), to obtain a form which could be
written as

q(l t ~~)=FRIZ. ~(~t »~)&r,u,PIN) I', (1.3)

with manageable coefficients A. When 7- is definite in
the final state, (1.3) expresses the charge distributions
for each p in terms of a single parameter, and thereby
gives a test of the combined assumptions of isospin
independence and the statistical hypothesis. Even
where r is not definite, (1.3) could be utilized by
broadening the statistical hypothesis to include r or p.

We present here a different approach, of overlapping
applicability with the statistical one, but assuming only
isospin invariance. We give symmetry rules closely
related to those familiar for angular distributions' and
correlations, ' which claim effectively that an initial
state of limited complexity cannot lead to very complex
final-state distributions. Some of those isospin relations
have in fact been derived before in special cases, usually
by direct calculation. ' ' The most famous example is
the requirement that nucleon-deuteron collisions must
produce charged and neutral pions in the ratio two-to-
one. '

In Sec. 2, we construct the symmetric irreducible
tensor operators, which play the role usually assigned
to the spherical harmonics in angular analyses. In Sec.
3, we carry out the analysis of a charge distribution in
terms of its tensor moments. We also derive inequalities
on the moments, which follow from the necessity for
the charge distribution to be positive. Section 4 presents
the symmetry theorems. Tensor moments too high to
be constructed from the highest isospins in the initial
state must have zero expectation for every part of the
final state. Symmetric systems must have vanishing
odd moments. Detailed results are given for initial-state
isospins up to ~. In Sec. 5, the results of Secs. 3 and 4
are generalized to cover averaged data from experiments
involving several charge states. The previous analysis
is unchanged, except that the effective 5 is reduced to
half the rank of the highest rank irreducible tensor in
the statistical matrix.

s L. Wolfenstein, Anuual Review of 37uclear Scieuce iAnnual
Reviews, Inc. , Palo Alto, 1956), Vol. 6, p. 43.

3 M. E. Rose, 8/ementary Theory of Angllar 3IIomentusn (John
Wiley 0 Sons, Inc. , New York, 1957).

For example, Y. Eisenberg et al. , Nuovo cimento 9, 745 (1958).' K. N. Watson, Phys. Rev. 85, 852 (1952).
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Our notation for the angular momentum quantities
is that of Rose. In discussing the statistical matrix,
we follow the langauge and ideas of Fano. ' We carry A

in Sec. 2, but replace it by one when isospin operators
are contemplated.

2. IRREDUCIBLE TENSOR OPERATORS

C(j ij 2J All 2) = &ji,j2 Pl Ps I jl jsj,f )
with the Condon-Shortley phase convention. '

The recursion formula (2.4) results in

Tr,r, Nr, (J.+sJ„)~,——

(—s)' (2L+1) ' '
EL,=

Lt

(2.5)

(2.6)

(2.7)

The symmetric irreducible tensor operators T&~ are
de6ned in close analogy with the spherical harmonics,
Frsr(8, 9), whose transformation law under rotation
they share.

Tpp=1/(4ir) &, (2 1)

Ti,pi= T(3/Sir)~(J +sJ,), (2.2)

Tip ——(3/47r)'J. , (2.3)

4rr tr2L+1q

)
XP„C(L 1, 1, L;—p, M—p,)

XTr, i,„Ti,~ „. (2.4)

The vector coefficients C are defined by the orthogonal
transformation

they will be homogeneous polynomials of degree L in

J, J„,J„A.
The matrix elements of the T~~ can be calculated

from the Wigner-Eckart theorem.

(j',m'I Tr&l j,m)=fi p8, +~C(j,L,j';m, M)
(2»)

They vanish for jW j' because T&~ is constructed from
the operator J.The reduced matrix element is evaluated
in the Appendix by considering the case m'= j, M=L,
to yield

fr~ 2L+1 & 1 (2j+L+1)!'&
&jllT~II j)=— (2.12)

2J+1 (2~ —L)! .

These operators TJ.~ are of course not the only
tensors of rank L which can be constructed from the
angular momentum operator, but they are the simplest.
Tr„vr corresponds to coupling (Ti)~ to the resultant
rank L. Higher powers of T» can also be coupled to
rank L. These correspond to polynomials of higher
degree in J„J„,J„A. Since they must differ from the
TJ.~ only in their reduced matrix elements, they are
in fact equal to the T&~, multiplied by polynomials in
J', A. For this reason, they add nothing interesting.

The most useful of the T&~, and the only ones of
physical interest in the isospin case, are the T&o. It is
convenient to renormalize these by writing them in
terms of operators Qr„defined analogously to the
Legendre polynomials PJ..

The homogeneous harmonic polynomials Z~r( ,x,y)sof
degree L, are given by

Qr. = TLO ~

2L+1
(2.»)

Zr,~(x,y, s) =r I'r,jr(e, p). (2.11) and (2.12) show that Qr, is diagonal in j,m with

Comparison of (2.6) with

Zr. z, =1Vr, (x+sy) ~, (2.9)
&jmIQ, I jm)=&qllQ, llj)c(j J,j;mo), (2.13)

LJ„J„h=iAJ„ (2.10)

etc. (2.10) shows that however the Tr~ are written,

' U. Fano, Revs. Modern Phys. 29, 74 (1957).

shows that TJ.~ goes into ZL,~ when x, y, s are sub-
stituted for J„,J„, J„and the commutators are neg-
lected, i.e., A is replaced by zero. The shared trans-
formation law then guarantees that all the T~~ go
into Z~~ in the same sense, and can likewise be written
as homogeneous polynomials of degree L in J„J„,J,.
In fact, the known Fz,~ give by substitution explicit
formulas for the TJ.~ when products of components
J& are taken symmetrically. That is, the products are
written in all possible orders and averaged with equal
weight. Such a form is usually very cumbersome, and
better ones can be obtained with the help of the
commutation rules

~fig
~ 1 (2j+L+1)! I

&jliQ. II j)=
I

—i,

2L+3 L+1
Q = J,Q — J'—

L+2 L+2

L(L+1)
O' Qr, . (2.15)

r A. Meckler, Suppl. Nuovo cimento 12, 1 (1959). Eq. (2.14)
can be seen very simply from the above considerations, since
(1) Qr, must go over into Pr, with its recursion formula; (2) Qr,
is homogeneous of degree L in J„J„,J„A; (3) QL, is even or odd
in J„according to J.; (4) QL,+1 and QL, +2 vanish identically when

lL

It gives zero when applied to a wave function with
j&-,'L.

In practical applications of (2.13), it is very useful
to have the Qr„or equivalently the vector coefficients,
explicitly at least for small L. These can be obtained
most readily from the recursion formula, '
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The first few examples are

o=1,

1 ~z)

Q
—3J2 J2

Qa = —,
'J,'——,'[J'—3h'jJ.,

(2.16)

4(p) =-'h(p) +lh( —p), (3 7)

2L+1
4(p) = Z 2' -(r L,r; p,0)f(r,L), (3 8)'=' r=o 2r+1

from only even and only odd I., respectively, the
analysis separates into distinct parts.

35 i5
Q4= —J.'——

LJ'—-'h']J 2+-'J'(J' —25').
8 4

The algebraic properties of the operators TI,~ have
been exposed in great detail by Meckler.

3. TENSOR ANALYSIS OF RESULTANT
CHARGE DISTRIBUTIONS

The channel intensity g(r, p) is defined by

(3 1)

where A, and A„are projection operators which select
that part of the complete final-state wave function P
which endows the measured particles with the resultant
quantum numbers r, p. The sum on P takes care of the
selection criteria for variables not involving isospins of
the measured particles. Since individual events usually
do not have good ~, the channel intensities are directly
related to measurement only through the resultant
charge distribution h(p).

h(p) =Z. a(r, p) = 2 q(pi" p~) (3 2)
Pi+' '+Pe =Ir

The channel moments f(r,L) are defined by

(3.3)

&r plQ~lr, p)
f(r L) =Zu a(r,p),

&r IIQ~llr)
(3 4)

f(r,L)=rue(r Lr l 0)f(r p)

2L+1
g(r p)=Z~ -(r L,r p0)f(r, L)

2r+1

(3.5)

(3 6)

(3.5) and (3.6) give the transformation between channel
moments and channel intensities. (2.16) gives practical
formulas for the needed vector coefficients, as in (3.4).

The tensor analysis of the measured distribution
function is given by combining (3.2) with (3.6). Since
the even and odd parts of h(p) receive contributions

for integer L~2r. The operator Qi, is understood to be
constructed from the resultant isospin operator of the
measured particles alone.

Since Qr, and the projection operators are diagonal
in', p, ,

where P+ contains only even L and P only odd. t and
T bound the isospins of the open channels.

In the usual case, (3.8) is insufficient to determine
the channel moments unless additional conditions on
the moments are assumed. A theory which implies
sufficiently many such conditions can be tested by
(3.8). In addition, if the moments are at least deter-
mined, the inequalities

R( p) ~0 (3.9)

imply a series of tests on the f(r,L). These relations,
which do not follow automatically from (3.8), must be
applied with the aid of (3.6). A weaker, but sometimes
more applicable form of (3.9) is given by

0&f (r,0~ P h(p), (3 1o)

~f(r,L) I ~f(r,0) m«u(IC(r, L,r; p,o) I) (311)

In special cases, the inequalities caii sometimes be
sharpened.

4. ISOSPIN SYSTEMS OF LIMITED COMPLEXITY

YVe consider reactions whose final-state isospin,
while not necessarily a good quantum number, does
not exceed some value S. In isospin-conserving re-
actions, this comes about either because the initial
state is one of limited complexity in the same sense,
or because the reaction goes appreciably only through
channels of limited isospin. Then, according to the
Wigner-Eckart theorem, any tensor of rank greater
than 2S has zero expectation in the final state. As the
projection operator A, is a scalar, (3.2) gives

f(r,L) =0, (4 1)

when 2S(L~2r, and Qr, is made from any isospin in
the final state.

When the final-state wave function f contains only
even integer or only odd integer total isospin, and only
zero s component, the |A'igner-Eckart theorem also
gives (4.1) for all odd L. These conditions are satisfied
whenever the initial state consists of two particles with
p, &=p,&=0. However, the success of the implied test,
h(p) =h( —p), reflects only on charge symmetry of the
forces involved. In fact, charge symmetry alone then
requires q(pi p&) = q( —pi. —p~).

Suppose first that an object of definite isospin r is
emitted in the final state, among arbitrarily many
others, and that its charge distribution is measured.
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If r)S, there are 2r —25 symmetry relations of the
form (4.1). They can be put most conveniently with
the aid of (2.16) as

(.),=o,

( '&-= 3~(~+1),

if 5& 2~ (r,
if 5&1(r,

(")..=[-: (+1)--:j.— f ~&-,&,
etc., where the expectations are defined by

E.u"&(~)

Z. h(~)

(4.2)

(43)

(4.4)

(4.5)

S=o, T&o

(4.2) always depends upon charge symmetry alone.
(4.3) reduces for pions (x= 1) to the above-mentioned
two-to-one rule.

If two or more particles are emitted with definite
resultant r, these rules apply unchanged to their
resultant p. Combining them with the vector coupling
formulas can also give some information about the
g(p& p~), but the additional results test only the
purity of the resultant isospin, and not the charge
invariance. The simplest example is the required
absence of events with p~= @2=0when r —7y r2 is odd.

The inequalities (3.9) are automatic for unique 7,
and test nothing.

Where more than one r channel is open, the results
are too complicated to write out generally, but the
method remains simple. We give complete details for
the most useful cases, 5~ 1.

The even part of the analysis is identical to that for
5=0. The same procedure is applied to the odd
moments.

C(r, i,r, p,0) =
[r(v+1)]&

2m+1 )r+1i &

f(r, 1)=
I I

h (r)
3

(4.10)

If t) 1, the symmetry equations are

h (p,)= h (p+1)
@+1

(4.12)

for 0&@,&t. The inequalities become

h (u) -h—-(~+1) (h+(~) —h+(~+ 1) (4.13)
p, +1

for 0&p.
S=1, T&1

The odd part of the analysis is identical to that for
S=—,', except that (4.13) no longer applies. In fact, the
inequality (3.9) can be tested only if the even part of
the analysis can be carried out. (3.10), (3.11) give the
rather weak inequality

For 5=0, charge symmetry alone gives

h (p)=0. (4.6)

x+1 3
h (r) h(r+—1) & P h(p). (4.14)

r 2r+1 I —~

h+(~) =h+(~+ 1) (4.8)

for Ogp&t. Whatever the value of t, (3.9) is nontrivial
and gives

Since all the moments vanish except for L=0, the even
system (3.8) can be solved sequentially, starting from
p= T. All the vector coefficients are equal to one when

Ipl (r, zero otherwise.

f(r,O) = (2r+1)[h+(r) —h+(v+1) j. (4.7)

The otherwise meaningless symbol h(T+1) is to be
read as zero. If t) 2, the even equations (3.8) also give
the symmetry equations,

The even system (3.8) now fails to separate in the
unknowns f(r,0) and f(r,2). Nevertheless, these
moments can be found if they are not too numerous.
Counting out the unknown moments shows that the
excess number of equations, E, is given by

8= 2t —I(T+3), (4.15)

where I(x) is the greatest integer which does not exceed
x. Thus there are E symmetry equations in the even
(3.8) if E 0, and in that case the inequalities (3.10)
can also be tested.

Even when X&0, some tests can be performed if
t)1.From (2.16) and (3.8),

(4 9) h+(IJ,) =Fo+F2p, ', (4.16)

for p)'0. (4.6) and (4.9) are the only general tests
obtained when 5=0 and t&1.

When two particles are detected with integer ri and
r2, the information that an event with p& ——@2=0 must
have r—rj —r2 even can be used to put a lower bound
on the sum of g(r, O) for such r This bound is .not
implied by (4.9).

when p(t, where

r 1 5 r(v+1)
f(r,O) —— f(w, 2), (4.17)- 2+1- 2( Ila. ll )

p 5 f(r2)
p~= —p (4.18)' '2.+« IIQII )
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(4.16) gives I(t+1) equations for Fo and F2, so that channel amplitudes and moments are defined as
there are I(t—1) symmetry equations. In special cases,
useful inequalities can be found by combining (3.10), G(,.) =Zp T (p~W.~.},
(3.11), (4.11), with (4.17) and (4.18). Where Foand
F2 are determined, but not the f(r,0) and f(r,2), these F(,L)=

'
inequalities represent the only use which we have made &r IIQ~II.&
of h+(p) for p)t.

(5.3)

(5.4)

Higher 8

The odd moments for S=2 are treated similarly to
the even ones for S=1, except that now (2.16) gives

H (ti) =Q p Tr(pA pA„}=Q, G(r, ti). (5.5)

where r, ti, and Qr. refer to the isospins of the measured
particles alone. The sum on P is the same as that in
Sec. 3, and Ap represents the selection criteria on other
variables than the isospins of the measured particles.

5ti' —[3r(r+1)—1]ti
C(r,3,r; p,0) = (4.19) Since Qr, is diagonal in r and ti, it follows that

2( IIQ. II &

for p~t.
h (p) =Fip+Fgp') (4.20)

~.Qi=&. (r,pl Qilr, t &ti-,tt,

F(r,L) =Q„C(r,L,r; ti,0)G(r,p),

(5.6)

(5.7)

1 3f(r, 1)

2r+1. [r(r+1)]'*

5[3r(r+1)—1)f(r,3)

5 f(r,3)
F3= l Z.

2r+1(rIIQ3llr&

(4.21)

(4.22)

2L+1
G(r,p) =Jr, C(r,L,r, p,0)F(r,L). (5.8)

2r+1

p= Q B(y,L,M)SrMr.
y, L,M

(5.9)

For twice the maximum isospin appearing in f, we
wish to substitute the rank of the highest rank irre-
ducible tensor appearing in p. We therefore express p
in the form

The general analysis of the even moments for S=~3
and all cases for higher S is more complicated and less
useful except in the event of large t.

S. STATISTICALLY SIMPLE ISOSPIN SYSTEMS

L

RSr,~'R '= P Sr,~'-DNm~(R), (5.10)

Each set SLM& forms an irreducible tensor of rank I.,
that is it transforms under rotation according to

%hen the maximum isospin S of the initial state is
too high to make the symmetry theorems useful, it
may still be possible to test isospin invariance by
analyzing a suitable average of the results of experi-
ments with diferent charge states. This average is
analogous to angular measurements with incompletely
polarized collision partners. It will be analyzed using
the statistical, or density„matrix technic. The main
result may be anticipated: the distributions in an
equally weighted average over all charge states of one
of the collision partners may be treated as if that
partner had zero isospin.

The statistical charge distribution Q(pi pir) is
defined as the weighted average of the q(ui. tiir) for
the individual experiments. The statistical total charge
distribution is then

&(t)= 2 Q(t i "t~)
p]+ o ~ ~

p(L,M) =Q„B(y,L,M)SI ~r. (5.11)

It can in principle be calculated, by using the ortho-
gonality of the D&M, as

2L+1
p(L,M) = D~~~(R)*(RpR ')dQ, (5.12)

8x'

where the integral is carried over all rotations.
The orthogonality of the D~&&L also shows that

where R is the rotation operator and DL the corre-
sponding irreducible representation of the rotation
group. ' The SLM& include, but are not exhausted by,
the TL,~, since the latter are diagonal in the total
isospin. The coeKcients B(y,L,M) may be functions
of operators which commute with all the isospins. Then
the part of p which has rank I. is given by

(5.13)Tr(pQ~} =»(p(L, 0)Q~},
We now proceed to restate the previous consider-

ations in terms of the statistical matrix p of the Anal since the trace is invariant under rotation and may be
state, instead of the wave function P. The statistical replaced by its average over all rotations. (5.13) is
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then the statistical analog of the Wigner-Eckart
theorem, and implies the analog of (4.1), that

it includes all cases where one of the collision partners
has a definite charge.

F(r,L)=0, (5.14) p;(L,D) = P pi(Li, O)ps(Ls, O)C(Li, Ls,L; 0,0), (5.20)
LI, L2

Qg(mims) = Tr(p;AmiAms g p A pAp}, (5.15)

where the Ap are the weights of the nonisospin states.
Since Pp ApAp is a scalar, it may be ignored for our
purposes.

Consider first the statistical matrix p, for a single
particle of isospin s.

Q(m)=Tr(p, A }=Jr„srTr(p, (L,M)A }.(5.16)

Since A is diagonal in m, (5.16) receives contributions
only from M=0.

Q(m) =Pi (simp, (L)its)C(s,L,s; m, 0), (5.17)

2L+1
(s[(p, (L) )[s)= P C(s,L,s; m, O)Q(m). (5.18)

2S+1

From (5.18) it follows that S~s, and that p, (L,O)
vanishes for odd L if Q(m) =Q(—m). p, (L,O) may also
vanish accidentally for other 1.&2$, a possibility which
does not exist if Q(m) represents a pure state, since
the coupling coefficients never vanish for m~0. In
particular, if all the Q(m) are equal, so that the particle
is "unpolarized, "S=O.

In an experiment where the charge distributions of
the collision partners are independent,

p'= p~X p2. (5.19)

This is in fact the most likely statistical situation, since

when 2$&L&27, where now 2S is defined to be the
maximum L for which p(L,O) is different from zero.
The scalar factors Ap, A, in (5.4) do not disturb the
applicability of (5.13).

There may of course be isolated I less than 25 for
which p(L,O) vanishes. For instance, it will appear
below that p(L,O) vanishes for odd L in statistical
systems having up-down symmetry. However, p(L,O)
might also vanish "accidentally" for some L,, and to
this extent (5.14) is broader than its mechanical
analog (4.1), where that cannot happen.

(5.14) completes the statistical generalization of the
symmetry theorems, which now apply directly under
the substitution of F, G, H for f, g, h. It remains only
to determine $ in the initial state of isospin-conserving
reactions, since for such reactions the vanishing of
p;(L,O) in the initial state implies the same in the final
state. If the initial state consists of only two objects
the analysis can be carried out, provided that their
charge states are uncorrelated with other variables.
The importance of the proviso is that then the initial
charge distribution takes the form

S=Sr+Ss. (5.21)

If pi(L~, O) and ps(Ls, O) vanish for all odd Li, Ls, then
p, (L,O) vanishes for all odd L. If Ss=O, the accidental
zeroes of p; coincide with those of p~. To find the acci-
dental zeroes of p; when neither S~ nor $2 vanishes, it
is necessary to find the reduced matrix elements of
p, (L,O), as implied by (5.20) and the vector recoupling
laws.

(s'j~ p;(L) ~)s) = L(2s+1)(2L+1)(2st+1) (2ss+1)g&

X P (sr[(pi(Li)][sr)(ss][ps(Ls))(ss)
LI, L2

S]. $9 S

X~ I.i Ls I. . (5.22)

Sy $2 S

The last factor is the Wigner 9-j symbol. ' To ensure
that F(r,L) =0, (5.22) must vanish for all pairs s, s'.

Finally, where Q(m&, ms) is not a .product of inde-
pendent distributions, the only useful result is the
obvious one that only even I. enter the analysis if
Q(mi, ms) =Q(—mi, —ms). There might in principle be
accidental zeroes, but these would not be useful with
S=si+ss, since the statistical equations (3.8) would
remain underdetermined. Furthermore, to find the
accidental zeroes requires a calculation substantially
more complicated than that involved in (5.22).

6. DISCUSSION

The symmetry theorems presented here are obviously
far from giving all that can be learned from charge
distributions, as they deal only with the total charge
distribution h(p) and discard most of the information
contained in the joint distribution q(pt pz). Addi-
tional information about channel intensities and mo-
ments, pertaining to the other invariant isospin quanti-
ties 0., could be obtained by constructing tensor oper-
ators from such vectors as Jt+Js —Js. This would
make fuller use of the data in events where at least
three particles are observed, at the price of a somewhat
more complicated analysis. However, the example of
the two-particle event, where there are no other in-
variants n, shows that even then much of the data
would not be used. Constructing other tensors from the
same operators does nothing to remedy the lack, since
they are only invariant multiples of the TJ„'~. It there-
fore appears that the above-noted use of isospin

A. R. Edmonds, AnguIar Momentum in Quantum Mechanics
(Princeton University Press, Princeton, New Jersey, 1957),p. 100,
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differences presents the only prospec( of finding addi-
tional symmetry theorems.

It is not at all surprising that the isospin invariance
should give such limited general results, since much of
the information contained in the joint distribution
function may be regarded as dealing with "internal"
variables which are not affected by rotation of the
system as a whole. For this reason, it may be antici-
pated that the use of difference vectors will not produce
very much more, in, e.g. , a three-particle analysis, than
would be learned by analyzing each pair by the methods
given here. Some weak additional limitations arising
from the vector coupling coefficients when the last
particle is added will probably emerge.

It is interesting to see that the ideas of Sec. 5, applied
to single-particle angular distributions, give the sym-
metry theorems for those problems' almost without
writing any equations. For instance, suppose particles
of spin s impinge on unpolarized targets, and the
maximum partial wave that reacts is Z. Then, since
the statistical matrix is quadratic in the wave function,
the statistical matrix has no L greater than 2Z+2s.
Consequently, the final-state expectation of FL,~
vanishes for L)22+2s. Some generalizations for
incompletely polarized initial states, analogous to
those in the isospin case, can likewise be given.
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APPENDIX

(j, jl2'ill j, j—L)

=&~(i,i I (I.+~J.) lj, j L)—
=&z&' Il LU —~)(j+~+1)3'*

1 ! hy z (2L+1)! l (2j)!L!
(A.1)

L! & 2) 4n- . (2j—L)!.
(2j+1)!(2L)! i

C(j, L, j;j L, L)=(——1)z . (A.2)
(2j+L+1)!L!

(A.1) is divided by (A.2) to give (2.12).


