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The broadening of the Lyman e line by high-velocity charged particles is calculated in the classical path
approximation without the completed-collision assumption, For noninteracting perturbers, the divergence
at large impact parameters associated with usual impact theories does not arise. Interactions between the
perturbers are introduced by the pair correlation function. The resulting line shape is valid for frequencies
larger than those permitted by the impact theory.

INTRODUCTION

'HE usual impact theories of the broadening of
spectral lines by independent perturbers (in the

classical path approximation) lead to a result which
diverges logarithmically for large impact parameters
when the radiating atom undergoes a linear Stark
effect. '' It is customary to avoid this divergence by
cutting off the range of the force at the Debye length'
X or to use a shielded Coulomb potential'; the moti-
vation being that the interactions between the per-
turbers produce a shielding effect. However, a shielded
Coulomb potential is a time-average effect whereas the
broadening is due to tl;e Quctuations of the Geld on the
radiating atom. Therefore the problem arises as to
whether the use of a shielded Coulomb potential is
adequate for computing the broadening of spectral
lines in the impact approximation. '

The source of the divergence rests in the assumption
that any collision that has its time of closest approach
in a certain time interval is completed in that time
interval. ' This falsi6es the distant collisions since the
duration of a collision increases with increasing dis-
tance of closest approach. Although the distant col-
lisions have a small effect on the radiating atom, there
are very many of them, and if one assumes that they
are completed in too short a time, one overestimates
their effect and thereby produces the divergence.

The purpose of this paper is to show that, by avoiding
the completed-collision assumption, the broadening of
the line can be formulated in such a way that the
divergence associated with large impact parameters
does not occur for independent perturbers. It will also
be shown that the effect of the interactions between
perturbers can be treated from first principles, thus
avoiding the questionable use of a shielded Coulomb
potential.
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The divergence occurs in the creak-co/lisioe contri-
bution to the broadening and we therefore restrict
ourselves to it. Since our concern is with making this
part of the impact theory rigorous our computed line
shapes are just for the weak collisions. Methods already
exist' to convert this into realistic line shapes that
include contributions from strong collisions and ion
effects.

To carry out this program we take, as a simple
example exhibiting the linear Stark effect, the Lyman
0. line. We assume that the temperature and density
are such that the impact approximation' ' is valid, i.e.,
that there is only one strong collision at a time.

Our results justify the use of the joint assumption
of completed collisions and cutoff for frequencies
(measured from the line center) small compared with

(tt/)1), and give a new result for frequencies of the order
(tt/X) and larger.

The broadening of spectral lines rests on the evalu-
ation of the average of the time development operator
(U(t)) in the interaction representation. In the notation
of Baranger, ' U(t') is given by

t E]

U(t)=1++ (—i)" I dt, " dt,
n=1 0 0

df,.V'(1,) V'(1„) (1). .

Vt (1)—&t'HptV (1)e tHpt— (2)

We assume that the interaction V(t) causes transition
only between the four degenerate components of the
state v=2. When the base functions,

tP1 $200t tP2 4'211t tPS tP21—1, &P4 ii'210&

are used, the matrix V' (i.e., that part connecting these
four states) can be written as

U'= —,'ea0I',

5 M. Baranger, Phys. Rev. 111,494 (1958).

In Eq. (1) we have set 5=1 and the matrix V'(t) is
related to the interaction matrix V(t) between the
radiator and all the perturbers by
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where the nonzero elements of I' are

r„=r„=r,p =r„*-%2(E,+iE„),
I', =F,=2E„

and a0 is the radius of the erst Bohr orbit. E„E„,E,
are the components of the electric field (assumed
uniform over the atom) at the radiating atom due to
all the perturbers. Performing an average over all
possible time sequences, we have

9a 2e2 (4

gati

(U(t)) =1— «, «,(r(t,)r(t,))+"., (4)

since (E,)=(E„)=(E,)=0. If the perturbers are inde
pendent of each other, it can be shown that

(r(t,)r(t,))=4iA'(h. (t,)$,(t,)), (s)

where the nonzero matrix elements of P are P»=3,
P22=P33=P44=1; b. is the s component of the electric
field from oee perturber and E is the total number of
perturbers. The higher (nonzero) terms in Eq. (5) do
not reduce to anything simple and we shall restrict the
development to the terms exhibited in Eq. (4). To this
approximation we have

p
44

(U(t)) 1—9e ap XP dti dtp(8. (ti) h.-(t2)) ~ (6)

The integral in Eq. (6) can be written as

dt'8, t' (7)

In the completed-collision assumption one considers
the impact to be completed either inside or outside the
time interval (O, t) depending on whether t, is inside or
outside the interval. This means that we take

a, =2/PPS, P,=O if 0& t, &t,

and since the perturber moves on a straight line

h. (t) = —eQ, +p. (t—t,)$r;
—

p,

r '= p'+v'(t —t;)'

Here p is the distance of closest approach, t; is the time
of closest approach, and subscript s means s component.
The integral in Eq. (7) becomes

t

I dt' B,(t') = —ep,~;(t)—ep,P, (t),
d0

t t

«' ' '('); P*()—= «'(' —«) ' '(')
0 0

4p, =P, =O if t;&0 or t;& t.
The neglected terms are necessary for a correct

description of the strong collisions and the long-time
behavior of the weak collisions. Strong and weak
collisions can be given an approximate meaning in the
following way. Consider the average effect of a complete
collision of one perturber with speed v and distance of
closest approach p. the average being taken over
directions of perturber motion. As we shall see in the
next section, there exists a distance p, =3e'a0v ' such
that the average eGect of a collision with p &~ p, produces
only a small change in the state of the radiating atom.
Strong and weak collisions are then those that have
p&p, and p~& p„respectively. We assume here that the
velocity of the perturbers is high enough so that the
impact approximation is valid, i.e., that there is only
one strong collision at a time. Since our interest is in
the weak collisions we shall neglect the effects of the
strong collisions. Methods already exist for incor-
porating the strong collisions, and the conditions are
known for when they are negligible. '

The neglect of higher terms restricts (U(t)) to short
times, but this is-adequate in a discussion of the wings
of the line and, under certain conditions, the core can
be obtained by repeated application of Eq. (6) to
successive time intervals. '

In Sec. II we shall show how, with the completed-
collision assumption, the usual weak-collision result
evolves from Eq. (6) and shall obtain p, . In Sec. III
we shall obtain the broadening without the assumption
of completed collisions and cutoff.

Therefore, if t, is within (O,t) we have

1 p ~4 q
P 2e pm

«'~. (t') I
= p ~(p)dp,),, , 3v'" . (9)

W(p) =-2~p/harp '.
the subscripts O,p indicating an average over angles
and impact parameter p, and p being an upper limit.
Equation (9) must be averaged over times of closest
approach. If v denotes the collision frequency, then
vt/iV is the probability of a given perturber having a
collision in the time interval (O, t). We then have, using
V = 7l pm 'M)2

(U(t))=1—(12m.ne4ap'Ptv ') ln(p /p, ), (10)

where e is the number density. The dependence on p
leads to a divergence for Coulomb forces since the
limit p —+ ~ should be taken for independent per-
turbers. The appearance of p, is associated with the
neglect of strong collisions.

If p is kept finite and the second term of Eq. (10)
is small compared to unity at a time equal to the cor-
relation time of the field, then (U(t)) can be extended
to longer times by using Eq. (10) for successive time
intervals. The result is

(U(t)) =exp) —(1 n2epr4Pa t p)lnp(p /p, )]. (11)

The first two terms of Eq. (11) are just those of Eq.
(10)
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We return to the evaluation of Eq. (6) without the
completed collision and cutoff assumptions. This is
accomplished as follows: We first evaluate (C(ti) 8(t2))
and note that this is just 3($,(ti) h, (t2)). The evaluation
of (8(ti) 8(t2)) involves two steps: One must calculate

(a) the probability that the particle is at r at time t2

and (b) the probability that at ti (ti &~ t2) the particle
is at some point on the sphere of radius v(ti —t2). We
must also eliminate the contribution from the strong
collisions. It is convenient to modify, in an unessential

way, the meaning of strong and weak collisions. In
Sec. II the weak-collision contribution was obtained by
averaging the effects of a completed collision over
impact parameters ranging from p, to p . However,
in a completed collision with p(p., the contribution
from the segments of the path that lie outside the
sphere of radius p„ is smaller than the total contri-
bution of a completed collision with impact parameter
p, . It is therefore consistent with the spirit of weak
e8ects to include these segments. The consequence of
this modification on the results of Sec. II is to replace,
in Eqs. (10) and (11), the factor ln(p /p. ) by {ln(p /p, )
+-,' —2 in2}.

With this modification, (8(ti) 8(t2)) for weak eAects,
is given by

3e' - 1 v(ti —t2)
for (ti—t~) ~& 2p./v,

Pe 4p,2

38 1
for (t,—t,) ~& 2p,/v.

R' .v(ti —t2)

(12)

The entire system has been taken to be a sphere of
radius E. with the radiator at the center, and we have
assumed v(ti —t2)«R; we shall eventually let R +

Equation (6) then becomes, upon defining n =1V/

(-,' m R'),
(U(t)) = 1—12e4xnao'FI (t), .

t t (tv i 2p,
I(t) = —+- ln( ~+ for t& 2p,/v

2v v &2p, j 3v' (13)

Vtt2

for t &~2p,/v.
2p, 24p,2

The definitions of p, and results, Eq. (11), are essentially the
same as in reference 1 except that, for simplicity, we assume the
perturbers to have the same speed.

Ke now select a suitable value for p, . The deviation
from unity of the time development operator for a
single complete collision with impact parameter p is

o4ao)2P/v2p2

The critical impact radius p. will be de6ned as the value
of p that makes this term of the order of unity, ' that is

p =38 ap /V.
~ t

(U(t)) = 1 3ao'e—'F dti ~ dt2(E (ti) E(t2)). (14)~o&o
In the Appendix it is shown that, for times s smaller
than the mean free time v-,

g
—VS/X

(E(ti) E(t,))=4 ne'; —&&s&&r,
PS

(15)

where s = t~ —t2 and A, is the Debye length,

X = (hT/4m. ne') .

For short and long times, Eqs. (14) and (15) give

EE't
(U(t)) —1=— [-', +ln(tv/2p. )],

2p,

EPt X
—[—' —y+ln(X/2p, )], —«t«r; (16b)

Where E—= 12e4mWa'o2, and p = Euler'S COnStant. Equa-
tion (16a) agrees with Eq. (13), and Eq. (16b) es-
sentially with Eq. (10). That is, the effect of the
interactions reduces the time interval over which the
noninterac ting result is valid and justifies the usual
approach for times large compared with (X/v), the
correlation time of the field.

The line shape F(co') can be computed from'

1 f
F(io') =—Re e'"" Tr/e '~"(U(s))pD]ds, (17)

where p is the density matrix and D= d
~ Pq)Q f ~

'8 cl is
the electric dipole moment vector and Pr is the ground-
state wave function. The ground-state energy has been
set equal to zero. Assuming p to be diagonal, and using
Eqs. (14), (15), and (17), F(cv') is

F((u') =—Q p,;D,,P,,K

1 f2p~p ) '2
-,'-y-ln]

/
+-

oP8 vq

io r,&((o&(v/2 p„(18)

g=(ip + (v/PL) coL= (E/v) ln(X/2p, ); co=—) M —Ep ) .

It is interesting to compare Eq. (13) with the usual
result, Eq. (10). Equation (13) does not have an upper
cutoff [p of Eq. (10)], i.e., the radiating atom is
interacting with a/l perturbers in an infinite volume
(except those within a sphere of radius p,).

The results, Eq. (13), are for independent perturbers,
If the pertnrbers are not assnnMd to be independent of each

other, Eq. (4) can be written as
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where E is a conditional probability. In thermal
equilibrium we have

The lower frequency limit coz, arises from the truncated
form of the time development operator upon which the
development has been made.

For frequencies &vz«co«(v/P, ), the term within curly
brackets in Eq. (18) reduces to

(a) W(R, ', t,) = V-',

(b) W(R, 'ti ', R/'ti) = U 'C(r); r =
~

R,' —R,"~,

(c) 1~(R,'t, ~R,t,)=&(R,'~R,s); s=t, —t, .[,' —y+-ln(X/2p, )],
CO V

(19)
Using these relations along with Eq. (2a,) and Eq.

which is essentially the result (in the wings) of the
usual theory. For frequencies (v/X)«a&«(v/2p. ), this (E,t, E,
term becomes

[-,' —y+ln(v/2p. s))],
GO V

(20)
=V—'P I'X(R iR,s)$(R,').B(R,)dR, 'dR;

'e

which differs essentially from Eq. (19) by the presence
of the frequency in the logarithmic term.

Our results show that for frequencies smaller than
(v/P, ) the results of the usual theory are valid, i.e., the
line is a Lorentz shape for frequencies smaller than
(v/P, ). For frequencies on the order of (v/1 ) and greater,
the line shape is no longer of a Lorentz shape; the shape
being given by Eq. (18) which for frequencies larger
than (v/l~) simplifies to Eq. (20). The method pre-
sented here is of course applicable to all Stark broad-
ening problems when the perturbers are sufficiently
fast. We have chosen the case of the Lyman e line,
perturbed by one kind of particle of a single speed,
since this example is general enough to exhibit the
particular problems we have discussed.
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+V-' Q "E(R,"~R,s)8(R,)
, , ;,,g;J

I(R,")dR,dR, ",

I—= V—' ~C(r)b(R, ')dR .

The effect of the interaction between the perturbers
is contained in the terms E and C. For the noninter-
acting case, only the first term contributes since C= 1
and I is then zero. For the weakly interacting case,
i.e., high temperatures and low densities, we may
approximate Eq. (4a) as follows:

(a) We assume that the weak interaction does not
materially alter E from its noninteracting value for
times s that are not too long. The first term of Eq.
(4a) then gives the result, obtained in Sec. III [Eq.
(12)].For s~& 2p, /v, it is

4m we'(1/vs).

APPENDIX (b) For C(r) we use the only known approximation, '

The ensemble average of the product of E(ti), the
total electric field at a point at the time t, , and E(t2),
the total electric field at the same point at the time t2,

is given by

(E(t,) E(t,))=P
~

"W(R,'t„R,t,)h(R, ')

h(R, )dR, 'dR, , (1a)

C(r)=exp[ —e'n/kT]; n=e 't"/r,

where A is the Debye length
The second term of Eq. (4a) is then

4+we'
e
—vs/X]

(6a)

(7a)

W(R, 't, ; R,t,) = W(R, 't, )1~(R,'t,
i
R,t,),

W(R t„R,t,)= W(R, 't, ; R;"t,)

(2a)

xlt(R;"ti~ R;t2)dR;", (»)

where 8(R;) is the field at the point produced by the
jth particle that is located at R; and W(R, 'ti, R,t,) is
the probability of finding the ith particle at R, ' at ti,
and the jth particle at R; at t2

In general

(E(ti) E(ti+s))=4vree'e ""/vs; s~&2p, /v. (Sa)

Equation (Sa) is valid for times s that are short enough
so that the perturber motion is essentially that of a
free particle. If we define the mean free time r as the
time for which the perturber changes its velocity by

L. D. Landau and E. M. Lifshitz, Statistical Physics I'Addison
Wesley Publishing Company, Inc. , Reading, Massachusetts,
1958), Sec. 74.
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an amount equal to its velocity, i.e., by the condition

((Av)') =((v)')
where

av—= e/m
~0

E(t,)dt„ (9a)

then the restriction on s is s(&T. We can estimate the
order of magnitude of 7 by using Eq. (Sa) in Eq. (9a)
even though K, the field produced by the perturbers
in Eq. (Sa), is at a fixed point in space whereas E in

Eq. (9a) is the field at the moving perturber. The result
1S

tX~ )X~' 36'.
T=

Et) Ed) in(X/a)
(10a)

where d=e—l and a is a lower cutoff distance Lreplacing
p, in Eq. (ga) j that can be taken as the mean distance
of closest approach. Since r is much greater than (X/e),
it is possible to have s large enough to guarantee Kq.
(16b).
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A process of electron-ion recombination is considered, involving three bodies (one ion and two electrons),
in which an electron, as a result of a collision with another electron, loses enough energy to be captured in one
of the excited electronic orbits of the ion and then ends in the ground state by emission of one or more light
quanta. It is shown that such a process might account for the large values of the recombination coeflicient
found experimentally.

I. INTRODUCTION

ADIATIVE recombination is the process in which
an electron comes within a small distance of a

positive ion and is captured in one of the low-lying
electronic orbits, with the emission of a light quantum.
Quantum mechanical calculations ' ' on such a process
predict recombination coefficients of the order of 1.0 "
cm'/sec. Experimentally, recombination in many gases
has been studied and in all those cases in which it is
almost certain to occur between positive ions and elec-
trons, recombination coefficients of the order of 10 '
cm%ec have been found. ' ' So far none of the man' y
processes considered to eliminate such a discrepancy
seems to account for the large recombination coefficients
found experimentally. "Neither dissociative recombina-
tion nor effects due to negative ions are likely to be
important in the gases investigated. '"

The purpose of this paper is to show that there is a
process of electron-ion recombination which might
account for the values of the recombination coefficients
found experimentally. Consider a fully ionized gas, con-
sisting entirely of singly charged ions and electrons. A

'E. C. G. Stuckelberger and P, M. Morse, Phys. Rev. 36, 16
(1930).' G. Cillie, Roy. Astron. Soc. M. N. , 32, 820 (1932).

3 C. Kenty, Phys. Rev. 32, 624 (1928).' F. L. Mohler, J. Research Natl. Bur. Standards 19, 447, 559
(1937).' J. D. Craggs and W. Hopwood, Proc. Phys. Soc. (London)
59, 771 (1947).' H. S. W. Massey and E. H. S. Burhop, electronic and Ionic
ImPact Phenomena (Clarendon Press, Oxford, 1952).

process is possible, involving three bodies (one ion and
two electrons), in which an electron, as a result of a
collision with another electron, loses enough energy to
be captured in one of the excited electronic states of the
ion and then ends in the ground state by emission of
one or more light quanta. This process is by no means
new and has been considered implicitly, for instance, in
the study of stellar atmospheres. ' It appears, however,
to have been somehow overlooked in the explanation of
any one of the recombination experiments mentioned
above.

The calculations presented here are for the case of a
fully ionized hydrogen gas. The conclusions arrived at
might be expected to be at least qualitatively valid also
for other atomic gases.

II. THEORY

Consider a fully ionized hydrogen gas. As a result of
a collision between two electrons, one of them may lose
enough of its kinetic energy to be captured in a close
orbit around an ion (say in a state of total quantum
number n and orbital angular momentum t) Once the.
electron is bound, either of two processes can occur:
(a) The electron is re-ejected into the continuum by
collision with another electron, or (b) the electron
makes a radiative transition to a lower level, from which
it can still be re-ejected into the continuum or make
another radiative transition. Recombination will be

VR. G. Giovanelli, Australian J. Sci. Research A1, 275, 289
(1948).


