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The interaction Hamiltonian for the Coulomb exchange effect between conduction electrons and magnetic
shell electrons in rare-earth metals is derived from 6rst principles. The approximations under which the
interaction can be represented by the product of electron and ion spin vectors are exhibited.

INTRODUCTION

HE exchange interaction between conduction elec-
trons and magnetic shell electrons plays an im-

portant role in some of the electric and magnetic
properties of rare-earth metals. This type of interaction
was first proposed by Zener' as a part of the mechanism
of ferromagnetic coupling in the transition elements.
Kasuya' suggested that this interaction gives the entire
coupling between the ions in rare-earth metals, so
that the crystal can become ferromagnetic or anti-
ferromagnetic even though for most of the elements
there apparently is very little overlapping between the
magnetic 4f shells of neighboring ions. He also made a
detailed calculation of the exchange interaction in
gadolinium and put the interaction Hamiltonian in a
form equivalent to As S, where s is the spin vector of
the conduction electron and S is the spin angular mo-
mentum of the ion. The problem for gadolinium is
simple because there is no net orbital angular mo-
mentum and so S is the same as the total angular
momentum J. For other rare-earth metals de Gennes'
proposed that one may replace S by (g—1)J, where g is
the Lande factor, and obtain the form A(g —1)s J.
Using this latter form he arrived at the Neel4 formula
for the paramagnetic Curie temperature of the rare-
earth metals. Brout and Suhl, ' following the suggestion
of Herring, ' proposed the same two forms s S and

(g—1)s J and justified the use of the second form in
case the multiplet splitting is large.

The anomalous resistivity in gadolinium and some
other rare-earth metals has also been attributed to this
exchange interaction. Kasuya and de Gennes and
Friedel' obtained theoretically the temperature de-
pendence of the anomalous part of the resistivity of
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gadolinium. For other rare-earth metals Brout and
Suhl' derived a dependence of the saturation value of
the anomalous resistivity on the number of electrons
in the 4f shell. The basic interaction Hamiltonian was
taken as (g—1)s.J. Their result is slightly different
from the semiempirical dependence found by Anderson
and Legvold. ' However the uncertainty in the numerical
results of the latter work was large, and so there is no
decisive disagreement between the theory and the ex-
periments. At temperatures low compared with the
Curie or Neel temperature the anomalous resistivity
has a T' dependence. "This was explained by Mannari"
using a model of conduction electron-spin wave scatter-
ing through this exchange interaction.

The same exchange interaction exists between con-
duction electrons and rare-earth ions when these ions
are dissolved in lanthanum. The net eGect is that these
dilute rare-earth solutions have lower superconductive
transition temperatures than pure lanthum. The theo-
retical work of Suhl and Matthias" gave satisfactory
explanation to the experimental results.

The effects of this interaction on other transport
properties —thermal conductivity and thermoelectric
power —were also studied by Kasuya. "

The present work is an extension of Kasuya's work
to other rare-earth metals where the spin-orbit coupling
in the ion should be taken into account. The basic in-
teraction between the electrons is assumed to be the
Coulomb exchange interaction. Under certain approxi-
mations, it is shown that the spin-dependent part of
the interaction Hamiltonian is of the form (g—1)s J.
Hence this gives a fundamental proof of de Gennes'
proposal.

BASIC MODEL AND WAVE FUNCTIONS

The model for rare-earth metals one usually employs
consists of a lattice of trivalent ions in a sea of con-
duction electrons. Each ion has an unfilled 4f shell
which is gradually ulled up as the atomic number in-
creases. There are filled Ss and Sp shells outside the 4f
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shell. This model describes all members of the group
except the following: cerium has four conduction elec-
trons at low temperatures; europium is divalent; and
ytterbium is divalent and has a filled 4f shell. The
element promethium is radioactive, so very little is
known about its physical properties. The present dis-
cussion will exclude these exceptional cases.

The angular momentum and the magnetic moment of
each ion are due entirely to the unfilled 4f shell since
all the other shells are 6lled. Because of the shielding
effect of the outer shells, the 4f shell has weak inter-
actions with the surroundings. Also the crystalline field
splitting is small compared with the multiplet splitting.
Therefore in a 6rst order theory one usually treats the
ions as free. The electrons in a 4f shell couple their
angular momenta together according to the Russell-
Saunders scheme. The total angular momentum J is
considered a good quantum number just as for a free
ion. This picture of the magnetic shell structure is
consistent with the data of paramagnetic susceptibility
and saturation magnetic moment of these metals.

There are Coulomb forces between the conduction
electrons and all the electrons in the ion core. However,
since filled shells do not contribute any spin-dependent
effect, it is sufficient to consider only the conduction
electrons and the 4f-shell electrons. To simplify the
writing one may start by considering one conduction
electron interacting with the magnetic electrons of one
ion. The total interaction can be obtained by summing
over all the conduction electrons and all the ions. Thus
the interaction Hamiltonian may be written as

g2

where C(4SJ; m, M —m) denotes the vector coupling
coefficients. The wave function pi.„is constructed from
single-particle orbit:al waves functions gi„(r) and is
completely antisymmetrical with respect to exchange of
particles. The function Ps sr contains only single-
particle spin functions and is completely symmetrical.

(b) When the magnetic shell is more than half filled
(1V)23+1), the space and spin wave functions have
more complicated symmetries. It is most convenient to
express the symmetries by the Young diagrams"
shown in Fig. 1. One labels the electrons by 1, 2, E
and arranges them in the frames such that the first.

(2l+ 1) electrons are in the long column of the space dia-

gram and the long row of the spin diagram. One first sym-
metrizes with respect to all particles in the same row
and then antisymmetrizes with respect to all particles
in the same column of the diagrams to obtain the wave
functions gi, , i(1,2, .E) andes, sl, ,(1,2, 3).Here
] denotes the complementary tableaux obtained by this
arrangement of the particles in the frames. Similar
terms can be obtained by arranging the particles in
di6erent ways in the same frames. The completely anti-
symmetric eigenfunction of L', L., S', S, can then be
expressed by a sum of the form

, i(1,2, ' ' &)ii's, sr—,~(1,2, ' ' '»),
where the summation is taken over all possible tableaux
with the same frame. One should note that since the
terms in the above sum are not linearly independent,
the coef6cients A & are not uniquely de6ned even though
the sum is. Therefore the required wave function of
the shell is

4zsr=Z C(I.SJ; m, M rN)A 4r. , its, sr—, i (5)

where r~+~ is the position vector of the conduction
electron and r, is the position vector of the ith magnetic
shell electron. The summation is taken over all elec-
trons in the shell.

The wave function for the conduction electron is of
the form

P(r, s) =Ni, (r) exp(ik r)x, (2)

which is the Pauli wave function for a Bloch wave nor-
malized in a large volume. Here x is the Pauli spinor.
The wave function for the magnetic shell has a rather
complicated structure. In the usual approximation in
the theory of atomic spectra each electron in the 4f
shell should have a wave function of the form

4i.(r)x= &(r) 1'i.(0A)x

The wave function of the whole shell should be con-
structed from single particle wave functions according
to the Pauli principle and Hund's rules as follows:

(a) When the magnetic shell is half filled or less than
half filled (X&~2l+1), the wave function is of the form

)ger(1, 2, lV)=p C(ISJ;e, M —mgi (1,2, S)
Xii s,sI- (1,2, &), (4)

FIG. 1. The Young dia-
grams for space and spin
symmetries of a more than SpACE p~AGRAM
half filled 4f shell.

SPiN DIAGRAM
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MATRIX ELEMENTS OF THE COULOMB
EXCHANGE INTERACTION

In this section the exchange part of the matrix ele-
ments of the interaction Hamiltonian (1) will be calcu-
lated using a wave function constructed from (2) and
(4) or (5). The wave function of the system of one
conduction electron and one magnetic shell i. , with no
regard to symmetry,

4 =g~ir(1, 2, N)P(N+1), (6)

where p(N+1) denotes lt (rial+i, sing+i) of the conduction
electron. This wave function should be antisymmetrized
with respect to all the (1V+1) particles, the result is

M, = .—P P C(LSJ; m, M m—)C(LSJ; m', M' —m')
fnm'

X fr, *(1,2, i, N)gs, ir *(1,2, i, N)

g2

XP (N+1) Pzm(1, 2, 1V+1, 1V)

Xfs, or (1, N+1, . N)

XP(i)dridr, drip+i. (11)

For gadolinium the above expression is particularly
simple because I.=o and 5=J. Hence one finds

LQJiLz(1, 2, 1V)p(N+1)
(N+1) l

—P fqir(1, z —1, N+1, z+1, N)f(z) j.
i=1

Xexp( —ik' r~+,)
g2

Now the particles are considered as completely indis-
tinguishable, so the Hamiltonian (1) must also be
symmetrized,

Xgoo(1,2, N+1, N)zzi, (r,) exp(ik r;)

Xdri dry+i L43r *(1,2, z, . N)

Hr=
r —r

(7) XX'*(N+1)x(z)4's~(1,2, . N+1, N)3.

where 1&&i, j&~N+1 and i'. Consider the following
(unsymmetrized) initial and final states

@,=lt gg (1,2, . N)P(N+1),
P&~. (1,2, ——N)P'(N+1),

where
lt (1V+1)=zzi, (r~+i) exp(ik r~+i)X,

P'(N+1) =zzi, (r~+,) exp(ik' rio+,)x'.

The matrix element (+y,Pr+;) of the Hamiltonian (7)
contains the following groups of terms: (a) direct
interaction between shell electrons, (b) exchange inter-
action between shell electrons, (c) direct interaction
between the conduction electron and the shell elec-
trons, and (d) exchange interaction between the con-
duction electron and the shell electrons. One is interested
only in the last group of terms. If the totality of these
terms is denoted by 3SI, , it can be easily found that

M.» = —Q Pgiir *(1,2, zl N) P'*.( +N1)

g2

Due to the complete antisymmetry of the orbital wave
function, the integral over the coordinate space is inde-
pendent of i. One may denote it by I'(k, k'). In the
product of spin functions one may replace x'*(N+1)X
fsiir(1, 2, N+1, N) by x'*(i)gsiLz(1, 2, i, 1V)
because the product contains only the spin functions
of the remaining (1V—1) particles. Hence the product
can be written as

(SM'~ x(z)x'*(z)
~
SM).

The following four cases will be examined:

(a) x=x'=n It can be .easily shown that

x(z)x'*(z) =
p L1+~*(z)]= p+'(i)

(b) x=x'= p. In this case

x(z)x'*(') =
p
—~.(z)

(c) x=p, x'=n. In this case

x(z)x'*(z) = s—(z).

(d) x=n, x'=P. In this case

x(z)x'*(z) =~+(z)
X tggzr(1, 2, ' ' 'N+1, 1V)

where s(i) is the spin vector of the ith shell electron
and s~(i)=s, (z)&is„(i). All these cases can be com-+' t 1 bined into one expression,

where s is the spin vector of the conduction electron.

This will be calculated separately for N&~21+1 and (SM'~x(z)x'z(z) ~SM)
=(SM'x'i-,'+2s s(z) iSMx), (12)In the case of N&~21+1, one substitutes Eq. (4) in

Eq. (10), this gives
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Thei efore

M..= —P, I'(k, k')(SM'x'l-. ',-+2s s(i) l SMx)
=I'(k, k')(SM'x'I o-tV+2s SISMx),

where S=g~s(i). Hence the spin-dependent part of
the exchange interaction Hamiltonian may be taken as

H= —2I'(k, k')s. S= —2I'(k, k')s J. (13)

This result was first derived by Kasuya' and is generally
valid for any initial and final states of the conduction
electron.

For other rare earths with iV(2l+1, the Hamil-
tonian can be reduced to a form similar to Eq. (13)
only under some restricted conditions. Each term in
(11) contains an integral over the coordinate space of
all the particles,

I(k,k', m, m')

This last; int;egral requires careful study. The conduction
electrons are 6s' and Sp electrons. If one considers that
both the initial and the final states are in the s band,
the functions u~(r) and u~ (r) are isotropic and can all
be approximated by up(r) for k=0. The phase factor
exp(ik r,) can be expanded as

exp(ik r;) =4s P P ~'j t(kr;) Y&~*(k)Fq„(r";)',

where k denotes the unit vector k/k. If the radius of
the 4f shell is small compared with the wavelength of
the conduction electron, only the leading term will be
of significance. If one is concerned only with the e8ect
of the leading term, the integral can be evaluated by
standard techniques to obtain

I(k,k', m,m')=P (e„',e„)I(k,k') S„„

Pr,„*(1,2, i, N') ug *(rg~g)
where

=I(k,k') (Lm'
l Lm). (18)

X exp( ik' —r~~,.)

Xfr. (1,2, N+1, N)u~(r;) exp(ik r,)

Xdr) dr~+), (14)

4xe'
I(k,k') = R*(r;)R(r~+g)up*(r~~g)uo(r, )z+»

(")',
Xjo(k're+i)jo(kr;) r,'r~+Pdr;dr~+~.

(r )'+'

XI(k,k')(I.m'l I.m)

and a product of spin functions,

4s, or ~ *(1,2, i, N)x'*(N+1)
X ( )p (1 2 N+. 1 N) (15) Mex= —g g C(LSJ; m, M m)C(LSJ; m', M'——m')

The latter can be reduced by a similar calculation to

and

= Q C„'(1, i—1, i+1, N)gg„(r;),
v=—l

&ir (1 . .N+1 N)

(S, M' —m', x'
l

—,'+2s s(i)
l S, M —m, x). (16)

In the space integral (14), one may expand

(1, i, N)

X(S, M' —m', x'
l

—,'+2s s(i) l S, M—m, x)
=—I(k,k')(JM'x'P1V+2s S

l JMx).

Within the manifold of ground-state J value, S may be
replaced by its projection along J, namely (g—1)J
where g is the Lande factor. Therefore the spin-de-
pendent part of the Coulomb exchange interaction
Hamiltonian is

H= —2I(k,k')(g —1)s J, (20)

where

C'„= 4 1.„(1&2, N+1, N)4 („*(r~~,) rd~ &+

etc. Then one obtains

I(k,k',m, m') =Q(4, ',C„)

X, f(„*(r;)ug.*(r~~g) exp( —ik' r~+g)

Xgq„(r&v+~)u~(r, ) exp(ik r,)dr;dr&v+~. (17)

which is the de Gennes Hamiltonian. If either the initial
or the final state or both of the conduction electron is a
Sd state, the integral I(k,k', m, m') cannot in general
be put into the simple form in Eq. (18). Then the
Coulomb exchange interaction can no longer be ex-
pressed by a simple product of spin vectors.

In the case of 1V)21+1, one uses the wave function
in Eq. (5). A similar calculation can be made for the
matrix elements of the interaction between any two of
the terms in Eq. (5), so that only functions corre-
sponding to an arbitrary pair of tableaux at a time
need be considered. The result is that the Hamiltonian
(20) also applies.
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DISCUSSION

It has been shown that the Coulomb exchange inter-
action between conduction electrons and 4f-shell elec-
trons in rare earths can be represented by a Hamiltonian
—2I(k,k')(g —1)s J it the following approximations
are made:

1. The conduction electrons are the s electrons so
their wave functions have spherical symmetry.

2. The wavelength of the conduction electron is large
compared with the size of the 4f shell so the phase
factor exp(ik r) can be approximated by the leading
term of its multipole expansion. Hence a simple spin
product Hamiltonian follows only if one neglects the
dependence of the conduction electron wave functions
on the direction in space.

The first approximation is rather di%cult to justify
because of the lack of knowledge about the various wave
functions. Since most of these wave functions are
oscillatory in space, so it is very important to know
their space dependences to some detail. This is a task
which is beyond the scope of this discussion.

By the method of screening constant of Pauling, "
the size of the 4f shell is estimated to be about 0.4 A.
Using a free-electron model one estimates the wave
number at the Fermi energy to be k—1.5)&10' cm '.
Hence k r~&0.6(1. Therefore the second approxima-
tion should be fair.

The exchange integral I(k,k') should be the same for
all rare earths. Hence according to de Gennes' the Curie
(or Neel) temperature of rare metals should be propor-
tional to (g—1)'J(J+1). For the elements between
Gd and Lu this reduces to

To (or T~) ~ 5'(I+1)/J,
which is the Neel formula and is verified experimentally
except for Yb."For the elements from La to Sm the

» L. Pnnling, Proc. Roy. Soc. (London) A114, 181 (1927).' F. H. Spedding, S. Legvold, A. H. Daane, and L. D. Jennings,
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relationship reduces to

To (or T~) ~S'J/(J+1).
This however is not in agreement with the experiments.
The saturation value of the anomalous resistivity in
rare earths should be proportional to (g—1)'J(J+1)
according to Brout and Suhl. ' This relationship is also
verified experimentally in the elements Gd-Lu but not
in La-Sm. Hence one may conclude that in the trivalent
metals praseodymium, neodymium, and samarium the
simple theories do not apply.

These three metals have other peculiar properties as
we]l. It is known that they have strange crystal struc-
tures instead of the hexagonal closed-packed structure
of gadolinium, etc."They also have different conduction
band structures as exhibited by their Hall constants.
Pr and Nd have positive Hall constants, '~ indicating
hole conduction, and the Hall constant of Sm has a
strange dependence on temperature and magnetic
field. "These peculiar properties may have close con-
nections with the failure of the simple theories.

On the other hand, when these elements are dissolved
in lanthanum the expected result of the exchange inter-
action is observable. "Therefore, when the ions of these
elements are put in proper surroundings the interaction
Hamiltonian (20) does apply.
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