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importance, as has been suggested by Castner and
Kanzig, and ought to inRuence the construction of the
trial function, especially the nature of all the polarized
orbitals in the vicinity of the hole. The proper way of
dealing with the problem is presumably to set up a
quite general wave function in which both the positions
of the ions that determine the displaced equilibrium
configuration and the linear combinations of ground
and excited free-ion functions that determine the
polarized orbitals are left free to be determined by an
over-all variational calculation, instead of being

specified from the beginning. Such a procedure would
be very much more dificult since it would no longer be
possible to isolate terms characteristic of a hole-free
crystal, whose behavior can be calculated from the
experimental properties of the macroscopic crystal.
Furthermore, neither the excited orbitals for the K+
and Cl ions nor multicenter matrix elements involving
these orbitals are available. It will be seen that such a
calculation lies outside the scope of the present work.

In conclusion, it has been possible to show that one
can expect a valence-band hole in its ground state to be
self-trapped; however, the details of the associated
electronic and ion core configurations cannot be
predicted without additional calculation.
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The Hall current flow occurring in a normal and a superconducting metal when both a static magnetic
field (Ho} and an electromagnetic wave are applied on the metal is calculated. The entire frequency range
of the electromagnetic wave is discussed although the emphasis is on the microwave range. The nonlocal,
transverse Hall current in a normal metal is calculated by solving the Boltzmann equation. It is shown
that the microwave Kerr rotation in a circular cylindrical cavity provides a good test for the nonlocal Hall
current in a normal metal. The relation between a longitudinal and a transverse Hall current in a super-
conductor is briefly discussed. A detailed theory of the transverse Hall current in a superconductor based
on the Bardeen-Cooper-Schrieffer model and including the effect of collective excitations is presented. The
field IIO is assumed constant in space and a general result for the Hall current in Q space is derived. When
the electric field is constant in space (Q —+ 0},it is shown that the Hall current is proportional to the micro-
scopic analog of the fraction of normal electrons of a two-fluid model.

I. INTRODUCTION

~ 'HE Hall effect at audio frequencies is a well
understood phenomenon in both metals and

semiconductors. The experimental method used at these
very low frequencies is a simple measurement of the
Hall emf developed across the sample when a current
Rows in the sample and a static magnetic field is applied
perpendicular to the current Qow. The theory of this
effect yields the simple and well-known result (we
neglect any effect of band structure throughout),

*This paper is based on a thesis submitted to the University
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degree.
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ship and by the Ofhce of Ordnance Research, U. S. Army.
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where
jH. it = —&o~o'EX Ho,

oo rte'r jrtt, R-o—————(rtec) (2)

and where Ho is the static magnetic field applied and e
is the number of carriers per unit volume. We use the
convention that Rp is positive for electrons and negative
for holes.

In general a Hall current or a Hall electric field will

be produced by a microwave or an optical electric field
with a static magnetic field perpendicular to the applied
electric field. A simple measurement of a Hall emf is no
longer feasible at these high frequencies. If a plane
polarized electromagnetic wave is incident on a sample
and if there is a static magnetic field'present which is
perpendicular to the incident electric field then both the
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N+'= (1+4rrno+4rrao/iro) i (4rrni+4rrar/—ioo),

N s= (1+4rrno+4rrao/ioi)+i(4rrnr+4rrar/soo).

'
(9)

The conductivity and polarizability tensors are to be
found from a microscopic model of the solid.

The Faraday rotation in semiconductors at micro-
wave frequencies has been observed in several experi-
ments. "The sample is inserted into a circular wave-

' See, for example, Petros N. Argyres, Phys. Rev. 97, 334 (1955).' R. R. Rau and M. E. Caspari, Phys. Rev. 100, 632 (1955).
~ H. Suhl and G. L. Pearson, Phys. Rev. 92, 858 {1953).

rejected and the transmitted waves will have their
planes of polarization rotated from the incident polari-
zation and will be elliptically polarized. When we discuss
the rejected wave it is customary to call it a Kerr
(magneto) rotation whereas the transmitted wave is

referred to as a Faraday rotation. Both the Kerr and
the Faraday rotations yield information about Hall
currents and have been experimentally measured in
semiconductors, ferromagnetics and to a much smaller
extent in normal metals.

In both semiconductors and ferromagnetics a local
relation between current and electromagnetic fields is
valid. In this case one may define complex indices of
refraction for a right-handed polarized wave propagat-
ing through the sample (N+) and for a left-handed cir-
cularly polarized wave (N ). By a simple electromag-
netic argument one may show that if the incident beam
is plane polarized the reQected beam becomes elliptically
polarized with the major axes rotated by the Kerr angle
4 & and with ellipticity ez where,

Crc= —Im(N~ —N )/(N' —1), (3)

err ———Re(N+ —N )/(N' —1). (4)

The transmitted beam has a Faraday rotation |Ip
and an ellipticity ep given by,

ep ——(ood/2c) Re(N~ —N ),
for rod (N+ N)/2c«1—. (5)

op ——((od/2c) Im(N+ —N ),
for cod(N+ —N )/2c«1. (6)

Here d is the thickness of the sample.
The complex indices of refraction E+ and E may be

expressed in terms of the conductivity and polariza-
bility tensors of the solid. ' The conductivity (a) and
polarizability (n) tensors are defined by

BE BE
J=—— +n +aE. (7)

4x Bt Bt

Then if we let Hp be along the s axes,

S=e—ik, (12)
4 See, for example, H. Konig, J. Optik 3, 101 (1948); and C.

Hogan, Revs. Modern Phys. 25, 253 (1953).
o Q. Majorana, Nuovo cimento 2, 1 (1944).' S. P. Cooke, Phys. Rev. 74, 701 (1948).

guide which has two degenerate TE-i~ modes. IIp is
applied along the axis of the waveguide and perpen-
dicularly to the surface of the semiconductor. Using a
simple free electron model, Rau and Caspari deduced a
value for the Hall mobility from the measured rotation
which was in approximate agreement with other dc
experiments on the Hall mobility.

There has been a large amount of experimental work
on the Faraday and Kerr effects in ferromagnetics, both
in the microwave and optical frequency range. 4 In
general these e6ects are several orders of magnitude
larger than in normal metals; this is related to the large
Hall effect in ferromagnetics. Experiments have shown
that the Faraday, Kerr, and Hall eBects are propor-
tional to the net magnetization of the sample and not
to the external magnetic field as is the case with the
nonferromagnetic solids. Argyres has given a micro-
scopic theory of the Faraday and Kerr effects in ferro-
magnetics at optical frequencies. '

The experimental data on normal Inetals in both the
microwave and optical region are very meager up to
the present time, mainly because the Faraday and Kerr
rotations are several orders of magnitude smaller than
in ferromagnetic metals. For example the Kerr rotation
at optical frequencies is about a thousand times smaller
in Ag than in magnetized iron. ' The Kerr rotation at
optical frequencies in nonferromagnetic metals was
first observed by Majorana. ' He was able to detect
small rotations of the order of 0.01 minute per kilogauss
by the use of a sensitive photoelectric detector. In the
microwave region, the only published experiment at
present is that of Cooke. ' Cooke observed the Kerr
rotation in a circular cylindrical cavity with two de-
generate TE&~ modes. The metal sample formed the end
plate of the cavity and there was a static magnetic
field perpendicular to the sample surface and along the
axes of the cavity. Cooke was able to observe a rotation
in several metals including bismuth, iron, and nickel,
but no quantitative data on the rotation was given. He
also observed that the angle of rotation increased with
IIp. In Sec. III, we shall give a detailed theory of the
Kerr rotation in a circular cylindrical cavity such as the
one used by Cooke.

One can account for Majorana's results at optical
frequencies by the following simple theory. At optical
frequencies for good conductors we have eve))1. Use the
result of Sec. II for the Hall current when co~))1,

jH.u =&oao'&&o/(ioor)'.

Thus the conductivity and polarizability tensors are

ai = Roao'&o/&o' r', —ni ——0.
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then from (3) we get TABLE I. Optical Kerr eRect in normal metals; X~5000 A.

4z
yx ———Imo, / f (n —ik) L (e—ik)' —1j}. (13)

Metal

(nec} ')&10"
v-cm/amp-

oersted
(calculated}

&OX1o"
(observed)

4'K
(theory}

min/kilo-
gauss

C'K
(Majorana
expt) min/
kilogauss

j= o pE/(1+irpr)+koE/4rr. (14)

One then finds,

We may get approximate values for e and k at optical
frequencies by neglecting any polarization current'

1. Ag
2. Au
3. Al
4. Pt
5. Bi

10.4
10.5
3.4

4.1

8.4
7.2
3.9

~2.0
1000

+0.0040
+0.0046

+0.0085
+0.0095
+0.0031
+0.013
+0.0018

e' —k'= 1 4rro p/r—pPr, 2ek = 4m o.p/tpPr'. (15)

Thus from (13) and (15)

0 pEpHp

ter (4vro p/ croP—1)i
(16)

Ea.i i = —~(JXIp), (17)

was less than one fifth of its value in the normal state.
We shall show that the result of the microscopic theory

7 See, for example, N. F. Mott and H. Jones, Theory of the
Properties of 3fetuls and Alloys (Dover Publications Inc. , New
York, 1936).'E. A. Stern and R. D. Myers, Bull. Am. Phys. Soc. 3, 416
(1958); E. A. Stern, Bull. Am. Phys. Soc. 5, 150 (1960).' M. Spiewak, Phys. Rev. 113, 1479 (1959).' H. W. Lewis, Phys. Rev. 92, 1149 (1953);and Phys. Rev. 100,
641 (1955).

The theory of Eq. (16) has been compared to the data
of Majorana in Table I. A positive rotation 4 z means a
rotation from the x to the y axes with the reQected beam
traveling along the —s axis (hays is a right-handed triad).
We see that the simple theory is able to account for both
the sign and the order of magnitude of the observed
rotation and hence conclude that the Kerr rotation
observed by Majorana at optical frequencies may be
accounted for by a Hall current given by Eq. (11).A
Kerr rotation at optical frequencies in normal metals
has also been observed recently by Stern and 3/ayers. '

We define a "transverse" Hall current to be a current
whose divergence is zero and hence there is no associated
charge density. For example a transverse Hall current
Rows in the experiment of Cooke. If the divergence of
the Hall current is nonzero we shall call it a longitudinal
Hall current and it will have an associated charge
density. An example is the experiment of Spiewak at
microwave frequencies where Hp is parallel to the
surface of the sample and the Hall current Rows per-
pendicularly to the surface of the sample and has a
nonzero divergence. '

An attempt to observe the Hall effect in supercon-
ductors at audio frequencies was made by Lewis. ' The
sample was a superconducting prolate spheroid with an
audio frequency magnetic field app)ied. The emf between
the equator and the pole was measured. A null result
was found and Lewis concluded that the Hall coefficient
E defined by,

of Sec. IV is in qualitative accord with the null result
at audio frequencies observed by Lewis.

No direct experiments have been reported as yet on
the Hall current in superconductors in the microwave
or the optical frequency range. However the Hall
current does play a somewhat indirect role in the
analysis of certain experiments on superconductors such
as the magnetic field dependence of the surface im-

pedance. For example in the experiment of Spiewak at
microwave frequencies there is a longitudinal Hall
electric field in the superconductor for that geometry
where Hp is perpendicular to the microwave electric
field. An analysis of the magnetic field dependence of
the surface impedance for such an experiment includes
effects due to a Hall current as well as magnetoresistance
effects." Both these effects give a contribution to the
magnetic field dependence of the surface impedance
which is quadratic in Hp for small Hp. A more direct
measure of the Hall current in a superconductor would

be a measurement of a Faraday or a Kerr rotation. A
measurement of a microwave Kerr rotation in a circular
cylindrical cavity with the sample forming the end
plate of the cavity and Hp along the axis of the cavity
(this is the geometry of Cooke, ' as well as the geometry
treated in Sec. II) cannot be considered for a bulk super-
conductor since the magnetic held inside the bulk
superconductor will not be perpendicular to the surfa, ce
and the sample would go into the intermediate state
were such a fieM applied. However, if the sample were

a, thin superconducting film or in general, any small
superconducting sample, the magnetic field IIp could
penetrate the sample and also be in the same direction
a,s the axis of the cavity. We shall discuss the approxi-
mate dimensions required for this purpose in Sec. IV.

In Sec. II, we derive a relation for the nonlocal,
transverse Hall current in the normal metal by solving
the Boltzrnann equation. In Sec. III, we give a detailed
a,nalysis of the microwave Kerr rotation in a circular
cylindrical cavity with the normal metal forming the
end plate of the cavity. The result for the Kerr rotation
in the cavity shows that this experiment provides a
good test for the validity of the nonlocal Hall current
in normal metals.

In Sec. IU, we give a qualitative discussion of the

I G. Dresselhaus and M. S. Dresselhaus, Phys. Rev. 118, 77
(1960).
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II. HALL CURRENT IN NORMAL METAL FROM
THE BOLTZMANN EQUATION

In this section we treat the transverse case where the
static magnetic field IIp is perpendicular to the semi-
infinite metal. In general we shall find a nonlocal relation
between the Hall current and the electric field; this is
similar to the nonlocal relation between current and
field in the theory of the anomalous skin effect. The
discussion of a nonlocal Hall current has already been
treated by several authors. A quantum theory of the
nonlocal Hall current (transverse case) was first given

by abattis. "His result was very similar to the equation
to be derived in this section, but his derivation was
somewhat incomplete due to neglect of certain terms
in the Hamiltonian and the related problem of the
choice of vector potential for Hp. In Sec. IV we present
a quantum theory for the Hall current in both normal
and superconducting metals which includes all the
terms of the Hamiltonian. The result of Sec. IV for the
normal metal is identical to the result to be obtained
in this section by solving the Boltzmann equation. A

frequency dependent Hall effect has also been discussed

by Donovan. "The Hall current has also been included
in discussions of the magnetic 6eld dependence of ultra-
sonic attenuation in metals. For example, Kjeldaas and
also Cohen, Harrison, and Harrison solved the Boltz-
mann equation and for the case of the sound wave

parallel to Hp they find a Hall conductivity, "'

dg sin'tY

&(q) =4+so o +o )t
~ p L1—z(lq cost7 —(or)$'

'~ P. W. Anderson, Phys. Rev. 114, 1002 (1959).
'3 G. Rickayzen, Phys. Rev. 115, 795 (1959).
'4 D. C. Mattis, thesis, University of Illinois, 1957 (unpublished).
's B. Donovan, Proc. Phys. Soc. (London) A68, 1026 (1955).' T. Kjeldaas, Jr. , Phys. Rev. 113, 1473 (1959).' M. H. Cohen, M. I.Harrison, and W. A. Harrison, Phys. Rev.

117, 937 (1960).

relation between a longitudinal and a transverse Hall
current in a superconductor. We then give a detailed
microscopic theory of the transverse Hall current in a
superconductor based on the Bardeen-Cooper-SchrieGer
model of the superconductor and including the effect
of collective excitations by means of the generalized
random phase approximation given by Anderson and
by Rickayzen. ""The final result for the Hall current
is expressed in Q space. For small Q this gives the simple
result that the Hall current is proportional to the
microscopic analog of the fraction of normal electrons
of a two-Quid model.

In Sec. IV, we also show that our result is in quali-
tative accord with the null result of Lewis at audio
frequencies. We also discuss the application of our
result for arbitrary Q to small superconducting samples
such as thin films.

To derive (1) one needs to assume

a),~((1, (2)

where ~, is the cyclotron frequency eHs/rtzc.
The result to be derived in this section is identical to

(1) although the derivation is carried out in a simple
manner in real space by means of a general method due
to Chambers. "Wtih the assumption that ~,7((1, one
finds for the Hall current in real space

3 Rpop' t. R
J~(r, t) =— ~"d'Z

where
XR )E(r', t—Z/vs) XHs] exp( —R/l), (3)

R= r—r', (4)

and ap is the Fermi velocity. An experimental test for
the nonlocal Hall current given by (1) or equivalently
by (3) is proposed in Sec. III on the microwave Kerr
rotation.

Chambers has given a general solution to the Boltz-
mann equation which is a convenient starting point for
the derivation of this section. "Heine has shown ex-
plicitly that Chambers solution satisfies the Boltzmann
equation. "

The Chambers solution gives for the current

where
v (r', t') = p/rtz+ (e/c) v &(Hs,

v= p/zrz,

(6)

and p designates the momentum of the electron at (r,t)

"R.G. Chambers, Proc. Phys. Soc. (London) A65, 458 (1952).
"V.Heine, Phys. Rev. 10?, 431 (1957).

F,(r', t') e " '&'dt'. (—5)—

The independent variables are r, t, p, and t'. The de-
pendent variable r' is the position along its trajectory
that an electron which has final momentum p at (r, t)
finds itself at time t'. Clearly the equation relating r'
to the independent variables is determined by the
equation of motion of the electron in the electric and
magnetic fields present. The value of c depends on the
boundary condition at the surface of the metal. For
specular reQection c= —~ whereas for random scatter-
ing c= —~ except when the trajectory cuts the surface
in which case c is the latest time prior to t that the
trajectory cuts the surface. The Fermi function is
denoted by f&.

Consider a constant magnetic field Hp perpendicular
to the metal surface and an electric field E(r, t) parallel
to the surface. We keep terms in the current linear in
E and in the product E)&np. The equation of motion
of the electron gives
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From (5) and (6),

J(r,t) = —
~ p'dA„p, ' —+ vXHp(t —t')

h'm' ~ BE ~, . m mc

K(r', t')e &' "t'dt' (8)

0=0„,

pp= ppy MpR/2vp.

(»)
(18)

Define the s axis as along Hp. Denote the polar angles
of R by (e, pp) and of vp(t t')—p by (B„,pp„). Then from
(11)

where The first term of (16) may be written in terms of B, pp as
9

The integration over p is carried out to give

3rse'vp
I

r
' e

J(r,t) = pdA„~ py —p XHp(t —t')
4~m & "&, mc

~2~ ~cB/2vo p R R
vp' t dg sing, ~ dpp

~

dR —K—(r', t')e a~'.
p ~ —

coo R/280

(19)
Make the change of variable in (19)

~ E(r', t')e ~' "it'dt'. (10)
and use that

pp = pp+Q)gR/2vp~ (20)

All momenta appearing implicitly in (10) through the
coordinate r' are to be evaluated at the Fermi surface.
We now express the integration over momentum solid
angle dA„ in terms of the R solid angle dA. Since Then the total current in (16) reduces to

e&p

R=v,p(t t')+ —(p XH,) (t—t')2,
2m'

we have to first order in Hp that

P=— — -RXHp .
vp $—3 2mc

(12)

J(r, t) = —R.E(r', t R/vp)e ~—'d'R-3p'p t' t" R

4i». R

+""' t' t'
dAdR —R

4v-P ", R

[K(r', t—R/vp) XHpje ~" (22)

Thus,
iRi =R=vp(t t'). — (13)

—30'p
t ( R e

J(r,t) = dA„( — -RXHp
[

2mc

t R e
dR~ + -RXHp

~
E(r', t')e ~t'. (14)

2mc i
Since,

—30p
J(r, t) =

4m-hip'

dA„=dA+~~, rdA,

RR
v p' I t dA~dR — E(r', t')e-~~'—

eVp f f R—R [E(r',t') XHpje-~~'dRdA
2mc~ &,. R

eVp f PP R
dRdA K(r',t')—

2mc& ~,
~ (RXHp)e —~~' . (16)

It is clear that (11) and hence (12) is valid only if the
first term on the right-hand side of (11) is much larger
than the second term. Since the important times in the
integral are t t' r then pp, r—(&1. Thus (2) is a basic
limitation on the validity of our derivation of the Hall
current in the normal metal.

From (11), neglecting terms of order Hp',

where c' is the value of R corresponding to c.
The first term gives the well-known Chambers

formula for the anomalous skin effect; the second term
gives the nonlocal transverse Hall current in a normal
metal.

III. MICROWAVE KERR ROTATION IN CIRCULAR
CYLINDRICAL CAVITY

In this section we give a detailed theory for the
microwave Kerr rotation in a circular cylindrical cavity
which has two degenerate modes, such as the cavity
used by Cooke. ' The Kerr rotation is expressed in terms
of the microscopic, wave number dependent conduc-
tivity tensor of the sample by the use of an electro-
dynamic perturbation theorem derived by Redfield. "
The result is explicitly applied to the case of a normal
metal whose conductivity tensor has been derived in
Sec. II. It is shown that a measurement of the micro-
wave Kerr rotation in the cavity as a function of the
mean free path gives a good experimental test for the
nonlocal Hall current in a way which is very similar to
the verification of the anomalous skin effect by measure-
ments on surface impedance as a function of mean free
path. Although the cavity geometry described in this
section cannot be used to measure a transverse Hall
current in a bulk superconductor it seems that it could
be used to measure a transverse Hall current in small
superconducting samples such as very thin films.

"A. G. Red6eld, I. Appl. Phys. 25, 1021 (1954).
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where c;; is the ij component of the admittance matrix
of the microwave gyrator and E; is the field in the
gyrator when V;=1 and V;=0 whereas E, is the field
in the gyrator when V,=1, V;=0. For our purpose i
and j refer to the coupling loops A and B. We follow
the conventions of Montgomery et al."in the definition
of the admittance matrix. Using the derivation of
Redfield, one may generalize (2) to give

~ —~ = —~E (q) (q)E'(q)dq,

FIG. 1.The two degenerate TE» modes in a cylindrical cavity
of circular cross section.

The cavity is a cylindrical one of circular cross
section which has two degenerate 2"E~~ modes. The two
degenerate modes are sketched in Fig. 1. The sample
forms the end plate of the cavity and a static magnetic
field Hp is applied along the cavity axis and per-
pendicular to the metal surface. Clearly this geometry
causes a transverse Hall current Qow in the sample.
The Kerr and Faraday rotations in a generalized micro-
wave gyrator have been discussed by Redfield. " The
circular cylindrical cavity described in this section is a
special type of microwave gyrator. We define mode 1 as
the mode excited by a coupling loop (A) entering the
cavity when Ho ——0. Another coupling loop (8) enters
the cavity and can be rotated by 90' around the
cavity axis so that it is coupled with either mode 1 or
mode 2. Let Ib~ denote the current in the coupIing loop
8 when it is in position 1 and coupled completely with
mode 1 and let Ib2 denote the current in loop 8 when
it is in position 2 and completely coupled with mode 2.
Ib2 is zero unless the dc magnetic field couples the two
modes and its magnitude is proportional to the rotation
of the microwaves in the cavity. If the gyrator is a
cavity near resonance so that most of the loss occurs
inside the cavity then by use of reasonable assumptions
about the cavity coupling Redfield shows that"

—
Q

O~ = Ei(q)o'(q) E,(q)dq,
cue

(5)

where for our purpose we have put x (q) =0.
We apply (5) to the TE» mode of the cavity. Let the

cavity axis and Ho be along the s axis, then we may
separate out the s dependence in the electric fields

E„=Ei.(x,y)E(s), E2. Ep. (x,y)E(s)——,
E„=Ei„(x,y) E(s), E2„——E2„(x,y)E(s).

(6)

Also &r (q) will be a function of q, only so that (5)
reduces to

X dxdy[Ei, (x,y)E,y( —x, —y)

—E.(x,y)E.(—x, —y)7, (7)

where 0'(q) denotes the q Fourier component of the
antisymmetric part of the conductivity tensor defined as

j(q) =a(q)E(q).

Using (3) one may show the generalization of (1) is

«b2
0~ =

«bl

I (E,a'E, —i(vpoH, X H,),
)0 —iq

0)where Q is the Q of the cavity, e is the energy stored in
the cavity for fields E~, H~ in the cavity, E& and H&

are the unperturbed (Ho ——0) fields in the cavity at
resonance, and E2 and II2 differ from E& and II& by a 90'
rotation. Also 0- is the antisymmetric part of the con-
ductivity tensor and z the antisymmetric part of the
magnetic susceptibility tensor. Local conductivity and
susceptibility tensors have been assumed in (1). Also

(1) is valid only for small rotations O~((1.
Since we wish to consider nonlocal conductivity

tensors we give a slight generalization of Eq. (1). We
start with the electrodynamic perturbation theorem
derived by Redfield2P

We assume the boundary condition of specular re-
Qection at the surface of the metal. Then the semi-
infinite metal slab may be replaced by an infinite metal
medium if we take"

E(s)=E(—s), E(V*)=E(—C.) (g)

Also if the magnetic field is perpendicular to the metal
surface it must satisfy

Ho(s) =Ho( —s).
~' C. G. Montgomery, R. H. Dicke, and E.M. Purcell, Principles

of Microvvaee Circuits (McGraw-Hill Book Company, Inc. , New
York, 1948).

22 D. C. Mattis and G. Dresselhaus, Phys. Rev. 111,403 (1957},
a,;—a, ,= —~tE,2u E,di,

where 0'(q, ) now denotes a number and not a tensor;
(1) tha, t is
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Hp(s) = —Hp( —s). (10)
so that

The metal surface is at x=0. If the magnetic field is
parallel to the metal surface one must take pl. 841

3f=) dx xI (J,'(x))'+Ji'(x)/x'j, (22)

Then using a method outlined by Serber and also used
by Mattis and Dresselhaus" one may add a current
sheet at x=0 in Maxwell's equations and show that

E'(o)
E(q)= —

I
—

I(iri q,2+E(q.)

where E'(0) denotes dE/ds at s=0 and K(q,) is defined
by

Also define

then (14) becomes

(8)V) Q k82c2
H

&Mi gr

8=irig2M/16k i4ki.

1,841

dx Ji(x)J'i'(x),

(23)

(24)

1(q*)= &(q.)E(q.).
4xico

If we place our coordinate system at the center of the
cavity then for the TE1» mode we have

Ei,(*,y) =E»(—*,—y), E2.,(x,y) =E2, ( *, y), (13—)—
so that,

4QI E'(0)j' i" ~ (q,)
O~=

ding

I q.2+&(q.)32

164g2 1
" 0'(q ) kpc

X dq. , (25)
c' p jq,2+E (q,)P

and for a TE&11mode E=0.14 and M=0.45. The result
(25) may readily be interpreted in terms of a simple
physical picture. The Kerr rotation after ore reQection
from the sample for a plane wave of infinite extent in
the xy plane may be shown to be equal to the third
factor in Eq. (25). The mean time of damping of the
electric field of the wave is 2Q/&g. If ig is the group
velocity of the wave in the s direction the wave makes

Qvgkp/4gir

For the TE111mode,
rejections before being damped out. Also

'vg= kic /ig. (27)
Ei, (r,8) = cos'8Ji(k, r)/kir+sin'8J, '(kir),

E»(r, 8) = sin8 cos8Ji(kir)/kir —sin8 cos8Ji'(kir),

and for mode 2,

(15)

ki=1.841/a, kp=gr/C, (18)

where a is the radius and C the length of the cavity,
The electric field lines for the two degenerate modes are
shown in Fig. 1. The eigenfrequency ar is given by

~2/c2 —k 2+k 2

To evaluate (14) we use

(19)

Ei.(r,8)E2„(r,8)—E,„(r,8)E2, (r,8)
=Ji(k,r)J,'(k,r)/k, r. (20)

The energy density of one mode in the cavity is,

rdr{I Ji'(kir)]'+ Ji(kir)/(kir)').
16k1'k3 ~ P

(21)

E2, (r,8) = cos8 sin8Ji(k, r)/kir —cos8 sin8Ji'(kir),
(16)

E2„(r,8) =sin'8Ji(kir)/kir+cos'8Ji'(kir),

where Ji(x) is the Bessel function of first order and
Ji'(x) is the first derivative, and

E(s)= —(4g/k, )e '"' sink, s,
—(17)

where we have introduced polar coordinates (r,8). Also

Thus the second factor in (25) corresponds to the mean
number of reRections made by the wave in the cavity
before it is damped out.

The last factor kpc/&g arises because the value of E'(0)
at the metal surface is smaller by this factor in a
waveguide than for a plane wave of infinite extent in
the xy plane, for a given electric field strength far away
from the metal surface. Since the primary current is
proport. ional to E'(0), the Kerr rotation in a single re-
flection is reduced in the guide from its value for a plane
w'ave of infinite extent in the xy plane by the factor
kpc/&g. The first factor is a number of order unity which
depends on the mode under consideration and hence
may be referred to as a structure factor. The result of
(25) may readily be generalized to a TE»~ mode.

The preceding discussion makes clear an important
advantage of any experiment on the Kerr rotation in a
microwave resonant cavity, namely that the observed
rotation 0 is of the order of Q times the Kerr rotation
for a single reAection. Since we shall show that the
rotation for a single reflection is very small and since

Q values of order 10' are available this is an important
advantage of this type of experiment.

The real part of O~ corresponds to the angle of rotation
whereas the imaginary part of O~ corresponds to the
ellipticity of the elliptically polarized wave.

We now apply (25) to the nonlocal current in a
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oHall(rlz) o (Ilz) ~pop Hpz

E (q) =4zrzoiop/c'.

Then (25) gives

(28)

(29)

(81V~ (Qksscs) f fioi(—1+z)opHpR'p) fk3 c')

(30)
l MJ E pres J t. 2c 2 & oi )

where 6 is the classical skin depth

8 = c/(2zroiop)1. (31)

The order of magnitude of the rotation is one minute
per kilogauss for a Q of 10'.

(k) The extreme anomalous limit is valid when

norm;cl metal. The main features of the result are most
clearly brought out by considering two limiting cases.

(a) The microwave region at room temperature has
opr«1 and l«'A where )t is the penetration depth (or skin
depth). Local relations for both the Ohmic current and
the Hall current are valid. Using the result of Sec. II
for small q gives for the Hall conductivity,

and

On 9zr /27' "'
m:"zn "' fOr n'lo((1

O„~ 64&8)
(38)

—v3O+zz/O+ zz for l/p((1
O~

(39)

Both O~/8 3 and O~r/O~ r are plotted versus n' in

Fig. 2. The dotted parts of Fig. 2 have been inter-
polated. For comparison we show in Fig. 3 a plot of the
inverse of the surface resistance and the surface reac-
tance in the microwave region as derived by Reuter
and Sondheimer, plotted as a function of n'~' along the
abscissa. "The constant A is independent of n,

A = 6'*(zro&/ec') l
(zzz op/3zz) l. (4o)

Also specular reGection has been assumed. The similar
behavior of the Kerr rotation and of the surface im-
pedance are evident from a comparison of Figs. 2 and 3.
It is clear that the saturation of the Kerr rotation and
of the surface impedance for large o.'" is simply due to
the currents being limited by the skin depth rather than
the mean free path.

pop/prod))1 and l)))t.

Then from Sec. II the Hall current for large q is

(32) IV. THEORY OF HALL CURRENT IN
SUPERCONDUCTORS

and also

30p Epop Hp«.»(V*) =o (V ) =
q,'

4' zM 3710 p

It(c*)=
c' 4q, /

(33)

(34)

/8Xq iQksoc'i ( 128 pi

&0H0(~3+3)
L M) t. zrois ) ( 9&3 c

zrp zipper, (0) t'4op)tz, (0) ) ' ) Ir k c )
&&

I I Il I (35)
33IM z ~ ~ 6i )

Both (33) and (34) are independent of mean free path.
From (25)

There are several important differences between a
transverse and a longitudinal Hall current in a super-
conductor. In the longitudinal case IIp is applied parallel
to the surface of the superconductor so that a bulk
sample can be used. In this geometry the Q wavevector
of the incident microwave field is parallel to the Hall
current. In the transverse case when JIp is applied per-
pendicular to the surface of the superconductor a bulk
specimen cannot be used. This is because in any
specimen whose thickness is large compared to the
penetration depth the magnetic field lines will be very

QH/OH or OH/8

Like the surface impedance in the extreme anomalous
limit the Kerr rotation 0„is independent of mean free
path. Here Xi,'(0) is defined by 0.5

Xc'(0) = zzzc'/zze'4zr (36)

It is convenient to examine the Kerr rotation as a
function of the parameter n defined as

n =3lz/2P. (37)
I

0.5 l.o

Then if we plot the ratio O~/O~ as a function of n'l' it
will approach unity for n large compared to one whereas
for small a the rotation increases linearly with e'~' as
given by Eq. (30). Denoting the real part of 0' by O~"

and the imaginary part by O~r, we have

I/6
Q

Fro. 2. The rotation ratios Oa/O~„n and O~z/O~„r are plotted versus
the parameter nzla (n=3P/25')

~'G. E. H. Reuter and E. H. Sondheimer, Proc. Roy. Soc.
(London) A195, 336 (1948).
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A/R, A/X

.0

Fro. 3. Surface impedance in the microwave region
versus the parameter cx'Ie.

nearly parallel to the surface. Consider for example a
thin superconducting disk of radius rp and thickness d,
with an applied Geld Hp llormal to the plane of the disk.
If one assumes the current in the disk is given by the
London equation,

j= (—1/ci1r)A,

where V' A=O and A, to surface=0, then one may
readily show that the magnetic field inside the disk
will be approximately in the s direction (direction of
Ho) and approximately equal to the applied field Ho if

clro/Xi'(T) &1,

where Xi, (T) is the London penetration depth. Since
typical values of XI.(T) are of order 10 ' cm and if
d=i0 ~ cm as in the thin films of Ginsburg and
Tinkham" then the maximum value of rp is rp= 10 ' cm.
Such small superconducting disks have been used in
experiments of Androes and Knight on the Knight
shift."For thin Glms with d=10 " cm the important
values of wave vector q are g d ' or go to/d))1. In
this region a nonlocal theory is known to be valid and
the London equation (1) gives a current which is much
too large. A more accurate criterion than (2) would
allow the radius rp to be much larger, of the order of
rp 10 ' cm.

Another important difference between the transverse
and longitudinal Hall current is the charge density
associated with the longitudinal current. Let IIp be
along the s axis and define a wave-number-dependent
conductivity tensor by

Let the incident microwave electric field be along x,
then for the transverse case as in the experiment of

'4 D. M. Ginsburg and M. Tinkham, Phys. Rev. 118,990 (1960).
2~ G. M. Androes and W. D. Knight, Phys. Rev. Letters 2, 386

(1959).

Cooke we may take E'„(Q)=0. For the longitudinal case
we get from the continuity equation for current and
7 E=47rp

&w(Q)= 4 2 (Q)/~

In general one would expect that the driving term
would be similar in both the transverse and longitudinal
current except for effects arising when diffusion takes
place in the longitudinal case. The detailed microscopic
theory of this section will be carried out explicitly only
for the transverse current; however since we qualita-
tively expect the driving term o.„,(Q) in the longitudinal
case to be the same as in the transverse case we may
then apply the results of the microscopic theory in a
qualitative manner to the Lewis experiment and also
compare this theory with a two fiuid model theory
postulated by Dresselhaus and Dresselhaus for the
longitudinal case."

The detailed microscopic theory for the transverse
case makes the following basic assumptions. We let IIp
be along s and the incident microwave Geld along x so
that the Hall current will be along y only and it will be
transverse,

Bj „/By=0

Further it is assumed that Hp is uniform throughout
the sample; such an assumption would be valid for small
superconducting specimens as discussed earlier. A per-
turbation theory is used to include the effect of IIp and
the microwave Geld so that the Hall current will be
proportional to Bp. Clearly such an assumption fails in
large magnetic fields; when applied to small samples
perturbation theory will be valid when

(0~8/Vo((1&

where d is the small dimension of the sample and &, is
the cyclotron frequency eHO/mc.

We assume the BCS modei2' for the superconductor
and also include the effects of collective excitationp by
the generalized random phase approximation given by
Anderson and by Rickayzen. ""We shall show ex-
plicitly that the collective coordinates are zero in the
transverse Hall current for an appropriate choice of
gauge if the two-body interaction U(k, k') is independent
of the angle between k and k'. This shows that in the
transverse case, for the appropriate choice of gauge,
the inclusion of collective coordinates is not mandatory;
one can obtain the same result by the use of perturbation
theory assuming the BCS ground state (without col-
lective effects being included) to be the eigenstate when

the electromagnetic fields are zero. The formalism used
in this section includes the collective excitations ex-

plicitly and hence could be used to treat the longitudinal
Hall current.

The notation used in this section corresponds closely
to that of reference 13 and is brieRy summarized here.

26 J. Bardeen, L. N. Cooper, and J. R. Schrie6er, Phys. Rev.
108, 1175 (1957); hereafter called BCS.
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Since the microwave electric field is in the x direction,
a„(—Q') is along x and for the transverse case Q' is
along the s axis. A diagram of the geometry is shown in
Fig. 4. Clearly it suffices to consider one value of Q'
in (15) so tha, t we drop the sum over Q'. Also for this
gauge,

v A(r, t)=o.

The static field Bo will be represented by the vector
potential

A~o(r) =ai~, (—Q) exp( —iQ r)
+alq. (Q) exp(iQ r), (17)

where we arbitrarily choose aII, (—Q) to be in the y
direction and Q to be along x. We then take the limit
that Q —+ 0 in the final result since Ho is assumed not
to vary along the x direction. Since IIO is real,

Flo. 4. Geometry for transverse Hall current in superconductor.

The potential V(k,k') denotes the interaction respon-
sible for the superconducting transition. The operator
which creates an electron in the state of momentum h
and spin e is denoted as cI, ~. It is more convenient to
use the quasi-particle operators introduced by Bogo-
liubov and by Valatin,

a~.*(g)=a~.(-Q) (1g)

This choice of magnetic field representation has several
important advantages. We shall show explicitly that for
this choice all collective coordinates are zero; such a
result would not be valid in a more general choice. For
exanlple with the choice of magnetic field

yko = qtkckt —'vkc ki 'Ykl qtkc —kg+Pack& (7)
Aao(r) =air, (g„) exp(ig„y)i+c c. (19)

neither the charge density nor the other collective
coordinates would be zero and thus would greatly com-
plicate the formalism. (For example, the charge density
would go to zero only in the limit Q„—+0. Another
advantage of (17) is that a current proportional to
a„(—Q')uH, (—Q)e''" "~' flows in the y direction only.
For the choice of ma, gnetic field (19) there would be an
added current Row in the s direction which is propor-
tional to a„(—Q')a~ (—Q)e"" "' and which arises
from the Lorentz force exerted by the microwave rnag-
netic field on the static London current which fiows
along the direction of aIi, (—Q). However, for a small
superconducting sample (i.e., d small in Fig. 4) any
Hall current Row in the s direction would not be im-
portant physically due to the presence of the boundary
and hence can be neglected.

For our choice of gauge,

where,
Na'=-,'(1+ok/&k), qk'=-', (1—ek/&k) (g)

The energy of an electron in the normal state is ej,

measured from the Fermi surface. The energy gap is I&
and

Ek (ok'+I k') '*. —— (9)

The collective variables in the superconductor are
defined as"

p(Q) =Ek m(&, g) (yk+oo*vki*+ykpon ko)

+qt(&,g) (yki*ykpoi+yk+oo*yko), (10)

&a(Q) =Qk v(&)&)Lqt(&, g) (ykpqo'yki*+yk+qn ko)

—m(&, g)(v+ o*y +y *v )j, (11)

~k(Q) =p, v(&,k)D(k, g)(yk &,*yk,*—yk+&,yko)

+P(&,g) (yk+Oo*yko —y»*yk+Oi) j, (12)
Q a .(—Q) = Q' a„(—Q') =O,

Q' air, (—Q) =air, (—Q).a„(—Q') =0,
where, (20)

and

Also define
(21)Q a„(—Q')=g~„(—g') ~o.

Q"=Q+Q'. (22)

t(k,g) = uknk+o+iikqik+q, m(k, g) =ukek+o+ikqtkpq, '(13)
qt(k, g) = zlkqtk+o 'vk'vk+o, —p(k, g) = skqikyq 'ekBkyo. —

The microwave electromagnetic field is described
by the vector potential A(r, t) and

A(r, t)=g e*~ "~' A(r)— (14)

Here s ' will be identified with the phenomenological
relaxation time as in the work of Mattis and Dressel-
haus. "We further express A„(r) as

The field free Hamiltonian of the system is"

ao=P e,c,.'c,.+ P Vn(k, k')

A„(r)=gu a„(—Q') exp( —iQ' r).

Xck d C a+qlT c k+qqckO' &
(23)— —

where Vn(k, k') includes the unscreened Coulomb and
electron phonon interactions. For our choice of gauge
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the perturbation IJ~ is

Hl =HA (ao)+Ha»

of the form

Vk+Q" 0 Vkl y Yk+Q" 17koy Yk+Q''0 Vko~ Vkl Va+Q''1. (2g)

where The equations of motion with no driving forces are
given in the random phase approximation by"

H~(~0) = —2«lg. (—0) Qk kv/l(k, —Q)

X (Va—Qo*Vko —Val*Va—Ql)
—p(k, —0) (Vk—Qo*Vkl* —Vk-Q17ko)]+H c, (25)

H~„= —2(kg (—Q')e'"" "' pk k.[l(k, —Q')

X (vk—Q o*vao —Val*Vk —q 1)—p(k, —0')
X (Vk—q'o*711*—Va—Q'17ko)]+H c,

and n=eh/2mc. For our choice ot gauge the term
all, (—0) .a„(—Q') is zero. Also the paramagnetic
current operator is

[Hp, Vkyq o 'Vkl*]

= ~k(0")Vk+Q-0*7k(*+ (1—fa —fa+Q")

X{l' (0") (k,Q").(Q")

+l~(k, e")B (0")—lt(k, e")~.(e")} (29)

(26) [Ho,71+q 17ko)

= —~k(0")Vk+Q-17ko —(1 fa f—a+ 9"—)
Xfl' (0") (k,g") (0")

+l~(k,e")B.(0")+lt(k, e")~.(0")} (3o)

j„(Q")= (eh/2m)gk(2k+Q") [l(k,g")
X (Vkpq" o*vao —vkl'vk~q" 1)—p(k, Q")

X (Vkyq" o*Vkl* 7k+9"17ko)j+H c (27)

It is proved in Appendix A that the diamagnetic part
of the Hall current is zero for our gauge so that Eq.
(27) gives the total Hall current.

The method we use to evaluate the Hall current is
similar to a method used by Rickayzen in his treatment
of the dielectric constant of a superconductor. " The
random phase approximation is used to derive equa-
tions of motion for the py operators and including the
effect of the driving terms H& in the Hamiltonian. Only
terms which will give a contribution to the current
linear in the product all, (—0)a (—Q') are retained.
Since we assume only the Fourier components 0 and
Q' are present [namely acr, (—Q) and a (—Q') j then
the only component of current proportional to the
product akim, (—0)a„(—Q') excited is j((}").Thus we

need only consider equations of motion for p products

fa= f(Ea), (34)

where f is the Fermi function.
When we include the driving terms H& the equations

of motion are

[Ho,Vk+Q-0*Yap]

=Ek(0")V~qlko*Vao+ (fkpq" —fk)

X{—V (0")p(g") (k,g")
+-,'m(k, e")B.(0")+~p(k,e")~.(0")}. (»)

[Ho,Vkl*Vk+Q 17

E(0")7-*7 + " (f+ - f-)-
X{—l' (0")p(0")&(k,e")

+-' (k,g")B (0")—l p(k, e")~ (0")} (32)

These reduce to the equations given by Rickayzen
when T=O."In this notation,

~k(Q")=Ea+Ek+q. , Ea(Q")=Ek+q —Ek, (33)

l H, Vk+Q o*Vkl*7= »(0")7k+q-0'7»*+ (1 fk fk+Q ){l'—~(0"—)ll(k, e")p(0")+pN(k, e")Bk(Q")
—lt(k, e")~ (Q")}— .(—e){2k.t(k+O', Q)7 +Q o*v. *+2k.t(k,e)v»Q *7 +Q+Q o*

—2k„p(k+Q', 0)Vk+Q,V»*+2k„p(k,e)Vk+Q+QQVk+Qo} —n exp(i~t)a„( —Q')

X f (2k~+20)l(k+0, Q )Vk~qp Yak*+2k&i(k, e )V~q~l*Vkyqyqip
—(2k.+2Q)p(k+Q, Q') V~Q17»*+2k*p(k, e')Vk+Q+Q o*Vk+Q o} (35)

[H,Va+Q 17kol= —»(0")7k+9"17ko—(1—fk —fk+Q ){l'~(0")~(k,e")p(0")+0~(k,e")Bk(0")
+2t (k,e")~k(Q")}—«~.(—e){—2kwt(k, e)Vk+Q+Q 17k+Qo —2k'�(k+O', Q) VkoVk+Q 1

—2k„p(k,e)Vk+Q~q Vk+Q *+2k„p(k+Q', 0)Va+Q 0*710}—n(1 (—Q') exp(it )
X f —2k l(k,e')Vk+Q+Q'17k+Q'0 (2k +20)l(k+0, Q )VkpVk+ql

—2k,p(k, e')Vk+Q+Q. 17k+Q 1*+(2k,+2Q)p(k+Q, Q')Vk+qo*710} (36).
[H,v o*7 o)=E (Q")7 q o*7 +(f +Q

—f ){—V (011")p(Q") (klan, e")+'m(k, e")B—(Q")
+0p(ke")~ k(Q")}—~&~.(—0)f 2k.t(k+0', 0)Vk+Q o*Vko —2k.t(ke)Vk+Q+Q0*7»qo
—2k.p(k+O', 0) ~ ~ —2k.p(k, e) + + * + *}— -(—Q') p( )
X{(2k.+2Q) t(k+0, e )vk+Q0*7ao —2k*i(k,e')vk+Q'+Qo*v~q'0

—(2k,+2Q)p(k+Q, Q')7 7 o
—2k,p(k, Q')7 Q Q o 7 Q,*}. (37)

"T.Tsuneto, Phys. Rev. 121, 402 (1960).
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P&I,vii"vi+q" iJ= I-=—'i(()")vii"xi+ q-i (—fi+q- f—k) { V—D((?")»((?")ii(k, (?")+-'»i(k,e")Ii'i(Q")
P—(»0 )A.(0 -)}—a ( 0){ 2k i(»(?)7 "-7 + " +2k t(k+(? 0)7 '"'7--

+2k„P(k+Q', 0)'Y»~7wq o*+2k„p(k,e)yopqA'o+q+ q i}—nG (—Q') exp(itoi)

X{—2k.&(k,e')y. ,*y,q- +(2k.+20)&(k+0, e )&.,*&~q,

+(2k,+2Q)p(k+Q, 0')yoi*yiiqo*+2k„p(k, e')Yo+q oyi+q+q i}, (38)
where co=co—is.

The Eqs. (35) through (38) are equations involving operators. If we let + be the wave functional of the system
in the presence of H~ and 4'o be the wave functional when H~=O, then we need to And the expectation value

&+ li-(0") I'I &. (39)

Thus we form expectation values in Eqs. (35)—(38) with the wave functional 4. The equations from now on will
always refer to such expectation values and not to operators.

Ke also use the simple theorem

&+
I
&Va+q" o Vii"'

I +&=oi(+
I po+q" o*pai*l +&,

which is valid as long as II may be written as the sum of a static and time dependent Hamiltonian and if 4 is only
needed to first order perturbation theory with the time dependent part of the Hamiltonian being the perturbation.
The result (40) is clea, rly applicable to our case since the only time dependent part of EI is FI~„.

In Eqs. (35)—(40), we need expectation values of products which differ by momentum Q (i.e., yi+qo~y»") to
first order in a». (—0) and expectation values of products which differ by momentum Q' (i.e., y&+q o~y»~) to first
order in a„(—Q). The total equation of motion for p~qpi, quantities to first order in a&o is

0= »(0)~+qo*» *+(1—f —f +q) {Vn(0)~(»0)~(0)+l~(ke)~~(0) —-'~(»0)A~(0) }
+«~.(—0)2k"(1—f~—f~+q) p(k, e),

0= —vi, (0)y~qiyio —(1 fi, fq+—q){V—D(0)nz(k, g)p(0)+oe(k, g)Bo(0)+ol(k,g)Ai, (0)}

(41)
+ -o(—0)2k.(1—f —f +q)P(k, e),

o =&o(0)v~+qo*xi'o+ (f~+q —f') {—Vn(Q) ~(k,e)~(0)+o~(k, e)&~(0)+ lp(k, Q)A o(0)}
—«~.(—Q) 2k. (fi —f~+q)i(k, e),

0= —E,(0)~„*p,„„—(f„,—f,){—V (0)~(k,e)p(0)+—~(k,e)B (Q) ——p(k, Q)A (0)}
a~.( Q—)2k. (fi—fo+q) I(k,—e)

The commutator of y pairs with H has been set equal to zero since a~, (—Q) is static. When V(K,k) is independent
of angle a self-consistent solution of (41) is

and
.(0)=~,(e)=A.(0)=0,

~"q.*7.'= 2-a-. ( e)-k, (1 f.-f".)P-(k,e)-" (0),
-

po+qipao= 2«ss, (—Q) k„(1—fi., fo+q) p(k, Q) vo—'(Q),

v o*v o=2 o .( Q)k, (f f +—q)i(k, e)&—(Q) ',

voi*V~+qi= —2«~.(—0)kv(fo —f~q)i(k, e)»(0) '.

(42)

(43)

In the same manner one finds the expectation values of p products which differ by 0' to be

and,
.(e') =A.(e') =~.(0') =o,

vo+q o*v»"'i=2k*a-( —0') exp(i~~)p(k, e')(1—f~—f~+q)L~ —vo(Q') j ',

v+ n'o=2k*a-( —0') e p(i~ )P(ke')(1 —f —f+ )L + (0')3 ',

y,+q,*y,= —2k a„(—Q') exp(iso~)l(k, e')(fi fo+q)P& Eo(Q'—)j ', —
V,~y +q, ———2k,a„(—Q') exp(i/o~)l(k, g')(fo —fk+q')Loi+&o(0')] '

(44)

(45)

To derive (45) we have replaced the commutator by oily because there is an exp(itoi) time dependence in P~„.
The final equations of motion are derived from (35)—(38) using the expectation values given by (43) and (45).
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We also use (40) to replace the commutators in (35)—(38) by ~yy. Thus one finds

v+a ~ "v "= (0")v~q *v '+(1 f—f—+Q-){V (Q") (k,g")p(0")+l (k,g")& (Q")—l~(k,g")~ (Q")}
—4n'a~. (—Q)u. (—0') exp(i~~) k„{&(k+O',Q)k.P (k,Q') (1—fa —f~q )L

—»(0') j-'
—~(»Q)(k*+0)p(k+0 0')(1—

f&+Q f&+Q")L~ v&+Q(0)3 k*P(k+Q 0)~(k 0)
x(f —f +a)L +E (0')3 '—(k*+0)p(k,g)~(k+0, 0')(f'"-f~')2--E~q(0')3 '
—(k +Q)l(k+0, Q')P(k, Q)(1 fp —fi~—q)vi, '(0)+k.l(k,g')P(k+O', Q)(1 fi+—q fi+—Q")

x»+q '(0)—(k.+0)p(k+0, 0')i(k, g)(f~ —f~+Q)E~(0) '

+k.p(»Q )~(k+0 Q)(f ' f~+ ")E ' (0)} (46)

y~+q" yi o= —i (0")yi+q"ni o
—(1—f —fiwq ){Vii(0")m(k, g")p(0")+-,'n (k,g")&s(0")

+l«k 0")~ (0")}—4 '~"(—0)~-(—0') e p(~~ )k {—~(k 0)(k+0)p(k+0 0')
x(1—f Q

—f+ -)I: + + (0')j '+~(k+O' 0)k.P(k,Q')(1 —f —f )L + (Q')j '

—P(k, Q) (k*+Q)~(k+0, Q') (f~+q f~+Q")—L~+E~+Q(Q') j ' P(k+Q—', Q)k.~(k,g') (f~—f~+Q )
xL--E.(0')j- -k.~(k,g')p(k+0', 0)(1-f...-f )",'- (0)
+ (k.+Q)~(k+0, 0')P(k, Q) (1—f~ —f~+Q)» '(0)—k*p(k, g')~(k+O', 0)

x (f. f' ")E— (Q) '+(k.+0)p(k+Q, 0')&(kg)(f.—f- )E (0) '}. (4&)

-~"'.'v. =E.(0")~"' *..+(f',' -f.){-V.(0").(0").(k,g")+-: (k,g")~.(0")+~P(k,g")V.(0")}
—4 '~"(—0)a-(—0') exp(~& )k.{—~(k+0', 0)k*~(k,g')(f —f +Q ) L

—E (0')3 '

+~(»0)~(k+0, Q') (f~q f +Q-) (k—.+Q) L E+Q(Q'—)j ' P(k+Q'—, Q)P(k, Q') k.(1 f f +—Q )—
xL~+»(0') j ' —P(k,g)(k*+0)P(k+0, 0')(1—f~+Q —f~+q")L~—»+Q(0')3 '

+ (k,+0)l(k+0, 0')l(k, g) (fi., —fi+q)Ei, '(Q) —l(k, g') k,l(k+O', Q) (fiiq fi~q")Ei+—q '(Q)
—(k*+Q)P(k+0, Q')P(k, g)(1—f~—f~+q)» '(0)+P(k, g')k.P(k+O', Q)

X(1 f~q f~—q-)v~—q '(Q)} (4g)

-»,*»„,= E,(0")~„,"~„,-—, (f~q" f,){—v—(g")p(0—")~(k,g")+-',~(k,g")&&(0")

-~p(kg")~, (0")}-4-"..(-0) .(-0') p( ~)k.{~(k,g)(k.+0)~(k+0, Q')(f+ f+ )—
xL +E".(0')j- -~(k+0', 0)k.~(k,g') (f,-f"')C-+E.(0')j- -P(k+0', 0)p(k, g')

x(1—f.-—f~+q)k-L~ —»(0')3 '—p(k, Q)(k.+0)p(k+0, 0')(1—f~+Q —fi+Q )

XL + .(0')]-'+k.l(k, g')t(k+O', Q)(f. Q f +q )E~q —'(Q) (k.+0-)l(k+—0, 0')l(k, g)
x (fx—fr~a)E&(0)-'+(k.+0)P(k+0, 0')P(k, g) (1—fs—f~q) v~-'(0)

—P(k,g')P(k+O', 0)k.(1—f~+q —f~q-) v~q '(0)} (49)

Equations (46)—(49) are the basic equations of motion for the Hall current with driving terms proportional to
-.(-I -(-0).

A self-consistent solution of (46)—(49) together with the equations defining the collective variables is gotten
simply for the case that V(k,k') is independent of angle which we assume throughout.

p.(0")=~.(0")=~.(0")=0. (50)

The solution (50) is easily seen to be self-consistent since the driving terms in the equations of the collective
variables are proportional to an odd function of k„and hence yield zero upon symmation over k.

Using (46)—(50), the current may be simplified to give

i-(0").= j-(0")*=o,

j„(0")v———Sn'(eA/es)aIIO( —0)a„(—Q') exp(icut) Q& kv'k. M(ei„e~q, ci,„q"). (52)
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where

le (~»~&+q'i~&i+q")

—P(»Q")~(k+O' Q)P(»Q')(1 f—f~—q ) P(»Q")P(k+O' Q)~(»Q') (f —f +q )+
M —

Plr, GO
—Py L~+&~(Q') jI: —»(Q")3

P(k,e")~(»Q')P(k+O', Q) (1 f~+—q fk+—q") P(k,Q")P(k,Q')1(k+O', Q) (f~+q f~+—q")

L
—"(Q")j"+ (Q) I

—"(Q")j&+ (Q)

~(k,e")~(k,e')~(k+e', e)(f.-f"') ~(k,e")P(k+O', e)P(k,e')(1-f.-f")+ „,— +
L~+&~(Q")jL~+&~(Q') l [~+&~(e")3L~—»(Q') j

~(k,e")f(k,e')~(k+O', Q) (f~+q —f~+q-) ~(k,e")P(k,Q')P(k+O', Q) (1 fk+q —f~+q-—)—-+ 0) ~ —
GO

I:~+&~(Q")j&~+q (Q) L~+&~(Q")j»+q (Q)
(53)

Also,
IlI(&»&i+q'i&i+q") ~(&»&&+q"i&&+q').

form by an integration by parts over the polar angle 0
(54) between k and Q'. This gives

A2 BM
+—k,Q

m 86y+g»
(~»~~+q i ~~+q") + . (55)

- Q=O

The first term in (55) gives zero upon summation
over k. Using (54), one can show that

835

86I+g«
(~~,~~+q, "+q-)

1 BM
(~i,a+q', e+q ).

0 2 86k+q~
(56)

The partial derivative on the right of (56) means eq

is to be kept constant. Thus the current is

The case of physical interest is the limit Q —& 0 since
this gives a magnetic field which is uniform in the x
direction. Thus using a series expansion in powers .of Q,
we find

~(~&i&&+q'i~t+q") =~(~i i~&+q'i~&+q')

(O'Q/2m) Q k,'k„' (ei, ei,+q, ei,+q )

so that,
=Q/2Q Z ~ kii'k~~('i i'i+q'i'~+q') i (59)

f(~') —f(~) 8f(')
3II(e,e', e') = +

(M+6 6 ) 86 co+6 c

Se
~„(e')=—4~ ~II,~„(—Q') exp(i~~) I

O'j-

XQg k„'k,M(ei„ei,+q, ei,+q ). (60)

As a special case of (60) we first consider the normal
state and prove that the quantum theory for the
transverse Hall current given by (60) is identical to the
result from the Boltzmann equation given in Sec. Il.
The matrix element for the normal state is

As

i.(Q') =—4~'~~~. (—O)~-(—Q') exp(~~&)
tn2

BM
X2 k*'kw' (&ii&i+q'i&i+q ) i (57)

where

Thus,

—(~ ~ -~) (61)

(62)

where

~(&»&ayq, ~a+q )

P'(k, e') (1—f~—f~+q ) P'(»O') 8f(&')

I:~—»(Q')3' ~—»(Q')

f'(k, e') (f~—f~q ) ~'(k,e') 8f(&')

I ~+K(Q')]' ~+&i(Q')

—((o —& —co). (58)

Since iearl, ( Q) = IZ—o, the current is propor—tional
to B(). The current may be put into a more convenient

X
CV 6—6 GO

e'(2 ) ~.
de sin'0 cos0

8f (c') 1 1
X dkk' — +

8e -9+6—e ~—c+e—

d8 sin'8 cos8, dk k'I f(e') —f(e)]
e'(2-) ~.

(63)



HALL EFFECT IN NORMAL AN D SUP ERCON DUCTI N G M ETALS 449

The integration yields

(Q'j t gq k„sk,M(e, e', e')

sin'Od81 Stcamkg', (64)
(2~)' fP ~ o L~+kttog' cos8$'

so that
i

j„(Q')= ,'Rso s'-Hp —-a„(—Q') exp(idiot) co

c

Using

8 2

, (k,Q')

BM
(e~e )e )

goal

(k,Q') =0,
- E=E

2 d'f(E)
)

co—is dE

One finds that the current is

(75)

n'ek'iH0

�

de sin'0
j„(Q')= — sin'8 cos'8d8

(1 i (l—g' cos8—(ur) ]' ~'nz'((u —is) p

where we have taken the phenomenological relaxation
time s ' to be equal to 7-. Since

Use

«'f(E)
k'dk — . (76)

E dE'

i
E(—g') =—-a„(—Q') exp(i~t) ~,

c

k'= kJ,"(1+-s,e/Ep), (77)

the result (66) gives the same Hall conductivity as
derived by the Boltzmann equation treatment of Sec.
II. When expressed in real space (65) gives the same
result as Eq. (3) of Sec. II.

We now return to the case of the superconductor
given by (60). The general result may be written as a
double integral over energy e and over angle 0 as

j,(Q') = — iHpa„( —Q') exp(iat)
2~'kg'

c d'f(E) m p" e d'f(E)
k'dk — =—~' de kp'—

E dE' O'" „EdE'

(trt~ ' t" "d'f(E)
+5~ —

~

k~' «—,(78)
( it' &

and integrating by parts

e d'f(E) (m)' t" df(E)

J
dk k'— =5l —

I
k&' —2

I

dE' (k'3 ~s dE

X~~ d8 sin'8 cos8~I de k'M(e, e'&e'), (67)
0 —00

where in general,

e = tits ks/2~ '= A'(k'+2kQ' cos8+Q")/2m. (68)

An important special case of (67) is for small Q',
namely

and either
Avpg'«I,

nog'&(~ or n~g'&(r '.

(69)

(70)

Then we may expand in a power series in Q':

E'=E+—kQ' cos8—+ Q"+
m E

(71)

M(e)e )e ) =M(clef e)+
BM

(eie ~e )
- E'=E

Qq k„k,M(e, e, e) =0. (73)

X (I"-' I")+-Q"+ " (72)—
The first term does not contribute to the current since

=5 (mPi')'k, '{1—A/A, }, (79)

where (1—A/Ar) corresponds to the microscopic analog
of the fraction of normal electrons p„/p of a two Quid
model "Thus)

~0170 Ho P)~j (Q)= . — ( ')a (—Q)e p( t)
(1+i(ur)' p. c

(80)

where we have again identified the phenomenologicaP'
relaxation time s ' with r. Since the last factor is
E(—Q'), the Hall conductivity for long wavelengths
(small Q') is the first factor of Eq. (80).

At T= T„ this gives the usual Hall conductivity for
the normal state in the long-wavelength limit. The
result (80) may be interpreted in a qualitative manner
from a two-Quid model viewpoint. The normal com-
ponent of the primary current Qow is proportional to
p„/p in a two-fluid model [primary current denotes the
current proportional to E(—Q') j. If we make the addi-
tional assumption that only the normal component and

ss J. Bardeen, Phys. Rev. Letters 1, 399 (1938).
"The identification of s ' with r may not be completely valid

in the superconducting case since the relaxation time of quasi
particles depends on their excitation energy. However no such
question arises in the important special case of l —+ ~.
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not the supercurrent is acted on by the magnetic field,
then we expect a Hall conductivity proportional to p„/p.
We note that in order to get the constant of propor-
tionality in (80) from a two-fluid model, we must make
a specific assumption about the conductivity of the
normal electrons in the two-quid model; in the absence
of a detailed theory such an assumption is little more
than guesswork. "To get the same constant of propor-
tionality as in (80), one must take for the conductivity
of the normal electrons,

00 Pnj-
1+icor p

APPENDIX A. DIAMAGNETIC HALL CURRENT

The general diamagnetic current operator is

e2

JD(r) = Q ck+.q,,*ck,e 'o '$A,ao(r)+A„(r)], (1)
mCA. &,a,~

where A is the volume. Since

J(Q) = (2ir) ' J(r) exp(iQ r)d'r, (2)

A(Q) =(2ir) " A(r) exp( —iQ r)d'r, (3)

"D. Shoenberg, 5Npercondlctivity (Cambridge University
Press, New York, 1960).

An important application of the general result (67)
is to small superconducting specimens such as thin
films. Let d be the thickness of the film or more generally
d is the small dimension of the superconducting speci-
men. Then for very thin films such as those used by
Ginsberg and Tinkham, we have that'4

l))d, d/go«1, doi«oo. (82)

The electric field is uniform inside such a film and Ho
normal to the film surface will also be uniform inside
the film under the appropriate conditions on the sample
dimensions discussed earlier. We assume that random
scattering takes place at the surface of the specimen;
then the important Q' in the film are of order d ' so that
Q'Po))1 and one needs to evaluate the integral of Eq.
(67) in the extreme anomalous limit.

Since both the Lewis experiment and the Spiewak
experiment give longitudinal Hall currents, we may only
make a qualitative comparison with Eq. (80).' "

then,

JD(q') = 2 ck+, .*ck,.
wc' I,~ ~

or in terms of quasi-particle operators

Jg) (q') = —(e'/rncA) Q m(k, q)
k, q

X (»+qu»1 +»+ql»o)+io(~qq)

X (»+oi*»i+»~oo*yko)

XLa+.(q
—q')+a. (q—q') j. (5)

Since we only have cia. (—Q) and a„(—Q') present
the only component of current excited in JD(Q")

g2

JD(&")= f 2 L~(&,Q') (»+q o*V»*+»+q»ko)
@scan

+ri(&,Q') (»+q i*vki+»pq o*vko)]aii. (—Q)

+pm(&, Q) (pkyqo*pki*+Vk+qipko)

+io(&,Q) (»+qi*vki+»+qo*vko)]a~( Q') }.
(6)

We need the expectation values to first order in
aao( —Q) of operators which differ by momentum Q
(i.e., yk+qo*ski*) and to first order in g„(—Q') of
operators which differ by momentum Q' (i.e., yk+q i*&»*).
These results are given in Sec. IV by Eqs. (43) and (45).
These equations show that p&+qo*p»* is proportional
to an odd power of 0, and hence the sum over k in Eq.
(6) clearly yields zero for our choice of gauge,

Jz (Q")=0.

ACKNOWLEDGMENTS

It is a pleasure to thank Professor John Bardeen for
his helpful instruction and valuable suggestions
throughout the course of this work. Thanks are also
given to T. Tsuneto for much valuable criticism
throughout this work and to A. G. Redfield for pointing
out the electrodynamic perturbation theorem with
application to nonreciprocal systems which was used
in Section III. Helpful discussions with D. M. Ginsberg,
D. C. Mattis, G. Rickayzen, J. Kirsch, K. T. Rogers,
J. R. Schrieffer, and C. P. Slichter are gratefully
acknowledged.


