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Interaction of a Polarizable Potassium Chloride Crystal with a Valence-Band Hole*
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The interaction of a valence-band hole with a potassium chloride crystal, when crystal-hole correlations
are considered, is studied by variational means. Initially a crystal trial wave function is constructed which
allows for the ionic polarizability of the crystal by means of a correlation between the crystal configuration
and the motion of the hole. The expectation value of the Hamiltonian operator for the crystal is found by
integrating over both electronic and nuclear coordinates. The necessary matrix elements of the electronic
energy operators are taken from a previous calculation by Howland. The total energy expectation is
minimized with respect to a single parameter in the wave function that measures the hole-lattice correlation.
One finds that the valence bands obtained when the crystal lattice is treated as rigid become completely
fIat, a result which implies that the hole is self-trapped.

The modifications that are introduced by the addition of the electronic polarizability are studied by
repeating the previous calculation with a refined wave function. Only a rough treatment drawing on the
experimental electronic polarizabilities of the crystal ions is given, Information on self-trapped holes in
KCl derived from the electron-spin resonance experiments of Castner and Kanzig is briefly considered.

1. INTRODUCTION energy bands brought on by the crystal polarization,
has been anticipated by their calculations, with which
it shares a number of features.

The valence band in potassium chloride has been
selected for study because it is better suited for a tight
binding treatment than, say, a conduction electron,
and because many requisite data are available from
Howland s calculation. Also, this investigation is related
to two interesting observations: the study by Parratt
and Jossem' of the x-ray emission spectrum in Kcl
which accompanies electronic transitions from the
valence to the E band, and the study by Castner and
Kanzig' and others of electron-spin resonance spectra
in a number of alkali halides, including KCl, that can
be associated with self-trapped holes.

The main subject of this paper will be the modifica-
tions undergone by the band structure as a result of the
crystal polarizations. Two calculations are carried out:
In the erst a wave function which takes account of only
the ionic polarizability is considered. This portion of
the work can be carried out with relative precision, and
thus forms a reliable basis for the second calculation,
where the modifications to the problem introduced by
the addition of the electronic polarizability are treated
in a rough way. A brief attempt is then made to explain
the experimental endings of Castner and Kanzig within
the framework of the investigation. The relation of the
present study to the x-ray emission spectra observed
by Parratt and Jossem will be taken up in a subsequent
paper.

In the present treatment the ground state of the
crystal with the hole is sought by variational means.
The only a priori assumptions are those made when

A SLOW conduction electron or a valence-band
hole in an ionic crystal interacts strongly with

the crystal by inducing ionic and electronic polariza-
tions. Theories of the polaron are generally based on a
model in which the extra charge is treated as a free
particle with a definite effective mass interacting with a
continuous polarizable medium. ' However, Sewel12 and
Holstein' have recently explored a tight-binding
approach in which the interaction between charge'and
crystal is built into the wave function from the start.
This approach is suitable when the interaction of the
charge with the undeformed lattice is particularly
strong. 2

Making use of a suggestion by Koster' of an Ansatz
similar to that considered by Sewell, the writer studied
the behavior of a valence-band hole in potassium
chloride in an attempt to extend the careful numerical
calculation of the band structure of potassium chloride
for a nonpolarizable lattice made by Howland. ' Unlike
the investigations of Sewell and Holstein the present
study is based on an ab initio many-electron Hamil-
tonian, and is thus also able to take electronic polariza-
tion into account. Its basic result, a flattening of the
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' For a review of the polaron problem see H. Frohlich, Advances
in Physics, edited by N. F. Mott (Taylor and Francis, Ltd. ,
London, 1954), Vol. 3, p. 325. For references to very recent work,
see T. D. Schultz, Phys. Rev. 116, 526 (1959).A fuller review by
Schultz will be found in Technical Report No. 9, Solid-State and
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constructing the trial functions. ' These are allowed to
depend on the coordinates of the nuclei, treated as
regular coordinates rather than as parameters, and on
the coordinates of the valence electrons. The expectation
value of the Hamiltonian is then found by integrating
over both sets of coordinates. The energy is minimized
with respect to a single- parameter built into the crystal
trial function as a measure of the hole-lattice coupling.
The optimum crystal functions and energies are
dependent on the propagation vector k, so that the
calculation must be repeated at representative points
throughout the Brillouin zone.

In terms of a simplified system of a single electron
and 2E ion cores the tight-binding Ansatz basic to
this paper can be written as:

where w, (r) is a free-ion orbital on the ion g, which is
located in the lattice at R„k the Brooch propagation
vector, and x, (X) a function of the nuclear coordinates
only, which in some way takes cognizance of the
location of the electron at the ion g. The nature of the
electron-lattice correlation contained in Eq. (1-1) can
be understood by imagining the electron to be in the
immediate vicinity of, say, the ion h. Then, because of
the localized nature of the orbitals zv, xy, will be multi-
plied by a coeKcient far in excess of that of any of the
other x's. The point of the Ansatz (1-1) is that it
manages to display an electron-lattice correlation
w'ithout sacrificing necessary Bloch symmetry.

2. IONIC POLARIZATION

(a) Wave Function

The trial functions for the crystal with a hole are
to be based on a description of perfect ionic crystals
studied by Lowdin' and on Howland's related calcula-
tion. ' The crystal is considered to consist of the valence
electrons, and of potassium and chlorine ion cores
carrying charges of plus seven and nine, respectively,
i.e., the nuclei and their ten inner electrons are treated
as single point charges in accordance with the well-
founded approximations made by Howland. When the
crystal does not contain the hole, its charge is balanced;
thus, if there are E ion cores of each type and a total of
231 valence electrons, 1Mt =2M. The function con-
structed by Lowdin, which will be denoted as C,
represented the perfect potassium chloride crystal as an
array of K+ and Cl ions. The crystal wave functions
were built from real free-ion orbitals, which for KCl

However, the analytic treatment of certain quantities char-
acteristic of a hole-free lattice has had to be somewhat rough,
and an appeal is here made to physical intuition for additional
justiiication.' P. O. Lowdin, thesis, Uppsala, 1948 (unpublished); Advances
in Ph'ysics, edited by N. F. Mott (Taylor and Francis, Ltd. ,
London, 1956},Vol. 5, p. j..

are available from the calculations of Hartree and
Hartree. ' To build up the ions, eight orbitals, three 3p
and one 3s orbital of each spin, must be associated
w'ith each of the crystal ion cores. It is convenient to
number these orbitals m~, x», , w2,M, or to distinguish
them by capital italic subscripts, G, H -. The corre-
sponding small letters will denote the relevant crystal
ions. It is assumed that the orbitals m also contain
the spin dependence. Following Lowdin, the hole-free
electronic function 4 will be chosen as a single Slater
determinant of all the 2' free-ion orbitals zv.

In this study it will be necessary to extend C to
describe the crystal when the ion cores assume arbitrary
configurations. Let X stand for an arbitrary assignment
of values to the Cartesian coordinates of all the ion
cores making up the crystal, and X=XO mean that the
crystal occupies its usual periodic configuration. It
will always be assumed that X does not depart too
radically from Xo. In this section one postulates that
all the free-ion orbitals follow the motion of their ion
cores without deformation; that is, if x, is the arbitrary
location of the ion g,

w g (r,X)=m g (r xg). — (2-1)

BU is the "static Hamiltonian" of the crystal; it
contains the Coulomb interactions of all the charges
making up the crystal as well as the kinetic energy of
the valence electrons. It does not, however, include the
kinetic energy of the ion cores. U(X) is to be found by
integrating over space and spin coordinates of all the
235 valence electrons in the crystal.

The next step is to expand U(X) in a Taylor series
about U(XO) up to quadratic terms in X. This expansion
can be reduced to a quadratic form by a linear trans-
formation froid nuclear Cartesian coordinates to normal
coordinates g~, ." If the 6)V Cartesian coordinates of the

' D. R. Hartree and %V. Hartree, Proc. Roy. Soc. (Londo»)
A156, 45 (1936) for Cl; A166, 450 (1938) for K+.

"M. Born and K. Huang, Dynamica/ Theory of Crystal Lattices
(Clarendon Press, Oxford, 1954), Chap. IV.

'Ihis simplidcation means that no explicit account is
being taken of the electronic polarizability. C for
arbitrary X is formed from 4(XO) by giving all the
component free-ion orbitals the X dependence of
(2-1). Accordingly,

C'(X) =
t (2M) !

~
A(X)

~ ] l det[w, (r;—«,)j;
j, g= 1, 2, , 2M, (2-2)

where ~h(X)
~

in the normalizing factor is the deter-
minant of the overlap matrix.

To arrive at a complete wave function for the hole-
free crystal, C (X) must be multiplied by an appropriate
function of the nuclear coordinates. One begins by
defining a potential energy for the entire crystal, U(X),
as

U(X) = )I 4 (X)lIU(X)C (X)dr i) ' ' '
p dT glair. (2-3)
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ion cores are written as xI„-., where h denotes an ion, i
the direction of the coordinate, and Rh; its equilibrium
value, the transformation can be written as:

studied here is

W=g„[e'" "wp'(1. 2, 2M —1 X)"p(X)] (2-7)

3 2N

Q.= 2 2 (~lh, ')(".-~.,),
s=l h=l

y = 1, 2, , 6~7, (2-4)

where the e's are the coe%cients that effect the trans-
formation. Finally one defines a nuclear function xp(X)
as the ground-state solution to the vrell-known harmon-
ic-oscillator equation":

8
LT +~(X)jxo(X) = 2 +~(Xo)

2M BQ&'

3f
+—~~'Qg' xp(X) = @xp(X), (2-5)

2

where T& is the nuclear kinetic-energy operator, the
co~'s are the natural frequencies, 3I is the reduced
core mass, and 8 the eigenvalue. The complete function
for the hole-free crystal is just 4 (X)xp(X).

The nuclear trial functions for the crystal with a
hole will be restricted to their ground state (absolute
zero of temperature). Elevated temperatures have,
however, been studied by Sewell and by Holstein.
The normal modes for a real alkali halide crystal with a
single vacant Bloch orbital are diAicult to find, "so that
it will be desirable to base the nuclear functions on the
normal modes of the hole-free crystal as just defined.

The trial function for the crystal with a valence-band
hole adopted by Howland, to be denoted as 4»(Xp),
may be obtained by first converting the determinantal
function C (Xp) into an equivalent determinant of
Bloch orbitals, "and then deleting the row correspond-
ing to the vacant Bloch orbital and the column corre-
sponding to the missing electron. %ith the help of
Eq. (2-1), +»(Xp) can be extended to arbitrary con-
figurations X. +»(X) can then be made to satisfy an
equation of the form

where the hole orbitals w,
' are the same as in Eq. (2-6).

As in Eq. (1-1),the nuclear functions x, take cognizance
of the location of the hole on the ion g. Accordingly,
Eq. (2-7) differs from Eq. (1-1) only in the replacement
of the electron orbitals w, (r) by the hole orbitals w, ',
and, consequently, displays a hole-lattice correlation.

To arrive at a definition of the nuclear trial functions
y, (X), one must first associate with each ion g of the
crystal a separate, displaced, ion-core configuration, to
be denoted as X,. Roughly speaking, X, is the configura-
tion which the hole-free crystal will assume under the
action of an extraneous, positive, point charge

l
e

l

fixed in the crystal at R„ i.e., added to the charge of
the ion-core g; (e is the electronic charge). A more
precise definition of X, will be given later. The con-
figuration X, can be specified in terms of appropriate
values, S(g,g), of the 6X normal coordinates Qq. Let
xi„'(g) be the value assumed by the nuclear Cartesian
coordinate xi„when X=X,. Then, from Eq. (2-4),

3 2N

i =1 h=l

&=1, 2, , 6)V. (2-8)

In the present study the hole-lattice correlation is to
be determined by variational means. Consequently, a
more general configuration, to be denoted as FX„will
be introduced, in which the individual Cartesian
displacements of the ions that make up the configuration
X, are all taken proportional to a single parameter F.
Equation (2-8) shows that the normal amplitudes
S(g,g) must also be multiplied by F. The nuclear
functions x, are to differ from the harmonic oscillator
function yp defined by Eq. (2-5) only in that they
describe oscillations about the displaced configurations
FX„rather than about Xo. One has the definition

4'»(X) = P e'" "wp'(1g, 2, .'. ., 2M —1, X), (2-6)
&&exp{—(M /h)p~ [Q —I'S(p,g)]'). (2-9)

where w, '(1,2, ,2M —1,X), a function of the co-
ordinates of the (2M —1) valence electrons remaining
in the crystal and of X, describes an electronic configura-
tion in which the hole is localized on the ion g. The
precise definition of the "hole orbitals" m,

' will be
given shortly.

The trial function for a crystal with a hole to be

'2 L. I. Schiff, Qnantlm Mechanics (McGraw-Hill Book Com-
pany, New York, 1949},Chap. IV.

'3 E. W. Montroll and R. B. Potts, Phys. Rev. 102, '?2 (1956}.
'4 F. Seitz, Modern Theory of Solids (McGraw-Hill Book

Company, New York, 1940}.

It is to be noted that the functions g, for all ions g in
the crystal depend on the same variable F, which is to
be a variational parameter of the over-all calculation.
An important property of the crystal function 8' is that

W ~%'»(X)xp(X) as F —& 0. (2-10)

Remaining to be treated is the definition of the hole
orbitals m, '. It was found more convenient to work
directly with the nonorthogonal ionic orbitals, rather
than first combining the ionic orbitals into Bloch
functions. In consequence of Eq. (2-6) the definition
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of m,
' in terms of free-ion orbitals is matrix defined by the relation

wg'(1, 2, , 2iV 1, X—) =
-L(2M-1) ~l~ll-:

Ask '=1 (2-13)

XP«) P ( 1)r—+'A. ger gvrr(I
l
2M). (2-11)

0 ?=1

Tr)(Il2M) is obtained from the Determinant (2-2) by
removing the normalizing constant in front of the
determinant and deleting the Ith row and 2' th
column. erg is the overlap element f7r)r(ri x,)—
Xwg(ri —x,)dri. Since the integration is to imply a
summation over spins as well, 6~0 vanishes unless I
and G correspond to the same spin. lhl is again the
determinant of the overlap matrix. Pg«) means a
summation over the eight orbitals belonging to the ion

g. The variational problem eventually reduces to secular
equations with 2M eigenfunctions n, there being for a
given spin and a given vector k eight independent
solutions. For a particular o. the wave function is
determined by the eigenvector A g. There is a separate
complex coefficient A 6 for each of the eight orbitals
of a given spin in a crystal cell.

If I and t" correspond to orbitals on separate ions,
A&t.- is small compared to unity. ' Thus, to erst order

is, as one might expect, a linear combination of
determinantal functions w(G'l 2M), where G' is one of
the orbitals on the ion g. Equations (2-7), (2-9), and
(2-11) define the desired trial function.

where 4 is the overlap matrix and 1 the unity matrix.
The Hamiltonian for the crystal, II, is given by

2M—1 $ 2M—12M—1

H=Trr+C(X)+ Q H,+ Q—Q —. (2-14)
2 ~~~' ~'=1 t';,

Here T~ is again the nuclear kinetic energy operator,
C(X) the Coulomb interaction energy between the
ion cores, H, a single-e]ectron Hamiltonian consisting
of a kinetic energy and a Coulomb interaction with the
ion cores, and is g, ~r

' P; i'~ ' (e'/r, ;) is the
Coulomb interaction between the valence electrons.

The nuclear kinetic energy is conveniently split into
two terms:

W TrgWdri, , drsr)r idX
r

W+ Q ere RgWg'(1~ 2) . . . , 2M —1~ X)

XT~)«(X)+ (T~)„(2-15)
this defines a new term (Trr)r).

It is also helpful to define a quantity e|.-» as follows:

(b) The Integration

The expectation value of the energy is to be found by
integrating over the spin and space coordinates of the
(2M —1) valence electrons as well as over the coor-
dinates of the 2$ ion cores. The integration over
electronic coordinates requires the calculation of
matrix elements between determinantal functions of
nonorthogonal orbitals. I owdin has given a number of
relationships for carrying through such calculations. "
Since the reductions are straightforward, the 6nal
results will be given directly.

First one needs an expression for U(X), the potential
energy of the hole-free crystal defined by Eq. (2-3).
Integration over electronic coordinates only yields

e2

U(X) =G(X)+ Z (H.)-~--+ 2
IJ IE.JI- 2r12 IEJJ.

X(&sr '&rz ' —&re '~rr '), (2-12)

where (Hi)rr= J i()r(1)mr(1)dr), and

t. I. wr(1)r))h(2)wr(1)wr, (2)
dT]47 2 ~

eJ

AJI ' is an element in the inverse overlap matrix 4 ', a

'g P. O. Lowdin, Phys. Rev. 97, 1474 (1955).

ega=(H))ga+ 2 rhri '

(2-16)

With the help of Eqs. (2-12), (2-14), and (2-15) one
obtains the 6nal result:

r
E(&,a) = W*HWdri, ~ ~ ~, drsr(r idX= (Trr)r)—

+Q eik (Rg—Rh) Q(g) Q(h) A
g, h g H J

Xf &gH/U(X)+Ter] egrr}xgdX, (—2-17)

where E(F,o) is the total energy of the crystal. Equation
(2-17) can be viewed as an extension of Koopman's
theorem, " the terms Pg(g) Qrr(") A gA rr egrr being
analogs of the Fourier coefficients of the Hartree-Fock
energy parameter.

The integration over nuclear coordinates indicated
in Eq. (2-17) may be carried out by expressing the
integrand in terms of the normal mode amplitudes Q@.
In view of (2-5) and (2-9) it is only necessary to expand
e6» in a Taylor series about Xo in the normal coor-
dinates. The expansion is again terminated at the
quadratic terms. Ag~ may be taken independent of



INTERACTION OF POLARIZABLE KC1 CRYSTAL 429

X. The result is:

E(F,n) = U(X )+Q -', Ares+ (T )

+P&ik (Rg—Rai V & P(g) xiii A
g, h G H

sensitive to the crystal deformation (X—Xs). If a
displaced crystal ion is thought of as an electric dipole
superimposed on the undisplaced ion, then Vg~(X) can
be envisaged as an interaction of the charge distribution
with the electric field of those crystal dipoles that are
implied by the configuration X. It is convenient to
split t/'GH off from 6GH leaving a remainder hgH. One
has:

eglr(X) = Vga(X)+hgrr(X). (2-21)

where egIr=LegIr(FX, )+egin(FX&) j/2 and

I gh XgXhdX
J

= exp{—(M/45)Q cosI'LS Q,g) —'$(g, h) $'). (2-19)

eglr(FX, ) is the value which ega(X) assumes in the
crystal configuration FX,. The normalizing condition
becomes

W*WdrdX=Q e'~'Rg R"'Vgs,
g, h

XQ"' Q'"' A gA rr*hgrr =1. (2-20)
G H

Of the terms appearing on the right of (2-18),
U(Xs) will be recognized as the cohesive energy of the
hole-free undeformed crystal, essentially as calculated
by Howland, and P& (A/2)re@ as the zero-point vibra-
tional energy of the lattice. A negligible correction to
the zero-point vibrational energy stemming from the
Taylor expansion of ega(X) has been omitted. "Such a
term arises because the normal modes were selected so
as to diagonalize only U(X).

The term (T~)ir arises from the dependence of the
electronic parts of the wave function on nuclear
coordinates. A similar small contribution to the
nuclear kinetic energy T', would be encountered if
the crystal were described by the simpler adiabatic
function +rI(X)xs(X).i4 It is possible to show that the
difference ((T~)ir T') is negligibl—e." In other words,
(T~)ri is an additive constant in the energy expectation,
virtually independent of t|' and of F, which a wave
function derived from the adiabatic approximation is
bound to introduce.

(c) Evaluation of Terms

A large portion of egin, defined in (2-16), is the
Coulomb interaction of the charge distribution
—

f
e

f
wg (1)wrI(1)dpi with all the crystal ions considered

as single positive and negative point charges. Let
Vg~(X) be the portion of this interaction which is

"For more details see Technical Report 146, Laboratory for
Insulation Research, Massachusetts Institute of Technology
(unpublished). The writer's thesis 61ed with the Library at M.I.T.
contains a complete account of the work.

Equation (2-21) is helpful because Vg& contains the
greater part of the X dependence of egH. It will be
noticed that hgII still contains the Madelung energy. "

The easiest terms in the fourth term on the right-hand
side of Eq. (2-18) to understand intuitively are those
for which g and h correspond to the same ion. From
(2-19) one sees that if g=h, V, i, is unity. As a con-
sequence of the symmetry of the free ion orbitals and
of the fact that the configurations will be chosen
spherically symmetric, the matrix elements hg&(FX, ),
t/ GH, AGH vanish for g=h, unless also 6=II. Further-
more, the symmetry of the ionic orbitals leads to the
result that Vgg(I'X, ), to be abbreviated as V(I'X,), is
just equal to the interaction of a negative point charge
e located at R, with the crystal polarization. That is,

V(FX,)=Q'e&( —1) — (2 22)
fR,—x (g)f fR,—R;f

where xj'(g) is the location of the ion jwhen X=FX„
the even indices j belong to the negative ions, and the
prime indicates that the term j=g has been omitted
from the summation. Since it turns out that the matrix
elements hgg are essentially independent of (X—Xs)
for all G, one sees that the energy difference LrsM P& I'
Xa&q'5'(it, g) —V(I"X,)j virtually contains the X de-
pendence of the diagonal terms. This observation
leads one to define the displaced equilibrium con6gura-
tion associated with the ion g for F equal to unity,
(X=X,), as that configuration for which

assumes its minimum value.
The Expansion (2-3) for U(X) shows

to be the stored elastic energy fU(X,)—U(Xs)j. The
minus sign that accompanies V(X,) occurs because one
is dealing with a hole as opposed to an electron. Thus,
the exact definition of X, is compatible with the
previous less formal statement that X, is the conhgura-
tion assumed by the crystal under the action of a
positive point charge

f
e

f
fixed at R,. It will be seen that

in essence one erst solves the problem of a self-trapped
charge as posed in classical physics. This solution
corresponds to a value of unity for F; F is then adjusted

» C. Kittel, Introdlctioe to Solid State Physics (John Wiley 8z
Sons, New York, 19S6), 2nd ed.
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so as to compensate for whatever additional effects
are introduced by the quantum-mechanical formulation.

To determine the configuration X, one must know
how to evaluate U(X) for arbitrary conFigurations X.
Because direct substitution into the analytic Eq.
(2-12) is very involved, one constructs a mode of the
hole-free crystal that has an internal energy which
coincides sufFiciently well with U(X) for all X. It
turns out that the final conclusions of the calculation
of the band-structure remain unaffected by changes of
the order of 25% in the quantities to be calculated on
the basis of the crystal model, so that some latitude
is permitted in its construction.

If C (X) is a good description of the hole-free crystal,
then it appears that V(X), the associated energy
expectation, will be rendered suKciently faithfully by
a model such as was postulated in the rather successful
classical treatments of the alkali halides. '' In the
model to be used here the ions are replaced by point
charges with consequent long-range Coulomb interac-
tions. In addition, each ion is considered to be under
the action of the central, independent (two-body) forces
of its six nearest neighbors. Repulsive forces of more
distant ions are omitted. If the crystal is assumed
elastic, then a knowledge of the compressibility and
lattice constant is sufficient to determine the repulsive
forces."Such a model has, for example, been used by
Kellermann" to study the vibrational spectrum of
sodium chloride. It will be noticed that, in harmony
with the crystal function C(X), the model takes no
account of the electronic polarizability. Use of the model
can be justified further by showing that it leads to
results that agree asymptotically with the analytic
Eq. (2-21), providing that theoretical values are used
for the lattice constant and compressibility. "That is,
for a given crystal configuration the model yields
approximately the same result as (2-18) for the elastic
energy stored in that part of the crystal, not in the
immediate vicinity of the deforming charge, where a
slowly' varying polar deformation can be assumed.

In view of Eq. (2-22) for V(FX,), the configurations

X, are just the equilibrium configurations of the
model under the action of a virtual charge ~e~. Two
distinct configurations are needed, corresponding to
the location of the charge at positive and negative ions,
respectively. One begins by assuming that ions outside
of the central four shells have radial displacements
satisfying the appropriate asymptotic inverse-square
law. "Individual equilibrium conditions in the form of
four simultaneous equations are then set up for the
displacements of the inner shells. The electrostatic
forces on the inner ions are obtained from a calculation
by Mott and Littleton, ' who found for an alkali
halide crystal, likewise polarized by a point charge, the

I E. W. Kellermann, Phil. Trans. Roy. Soc. (London) A238,
513 (1940).

"N. F. Mott and M. J. Littleton, Trans. Faraday Soc. 34, 485
(1938).

dipole forces exerted on any one ion in the first four
shells by the first twenty-three shells of the crystal.
The largest of the displacements obtained in this way
amount to about 20% of the equilibrium interionic
distance.

Once the equilibrium configurations are determined,
the potentials V(I'X,), the matrix elements Vgg, and
the stored energy isM gq oi&'5'Q, g) are easily approxi-
mated. In accordance with the treatment of Howland, '
the only two center matrix elements that are retained
are those between all nearest neighbors, and those
between next nearest halogen ions. Consequently, onjy
two energies siM g~ &u&'5(p, g)5(p, h), where g and h
correspond to different ions, are required. They are
are found by first determining energies

which, since the transformation from normal to
Cartesian coordinates is linear, are just the energies
stored in the crystal when X=X,—XI„and then
substituting the known values of the diagonal terms,
i.e., of —,'M Qq nil'5'(y, E+), etc.

The two required overlap integrals Y,q, defined in
(2-19), are replaced by approximate overlap integrals,

M'
F', i,

' = exp — I"'—P nil'

Here co, , is the largest vibrational frequency of the
crystal, estimated by Iona' to be 4.73&(10" sec '.
The validity of these replacements will be explained
when the results are discussed. Their point is that the
I',&,

' can be determined without carrying through
explicit normal mode analysis of the configurations I„
since the numerator in the exponent of (2-23) is one of
the energies stored in the configurations (X,—Xi,).
Results for the various quantities calculated with the
help of the crystal model are listed in Table I. The
matrix elements hgir, " defined by (2-21), are deduced
from Howland's calculation. 5 Scrutiny of his results
shows that if H and 6 correspond to different ions,
about 95% of each matrix element hgii(Xs) stems from
contributions involving only orbitals centered on the
ions g and h. hgg(X) is, accordingly, taken to depend
only on the displacement of the ion g relative to h.
In this way hg»(I'X, ) can be found as a function of I'
from Howland's analytic expressions for the variation
of the elements hg~ with the lattice constant. It turns
out to be a good approximation to take the diagonal
elements ht.-g for all 6 independent of X. Thus all
the terms on the right of Eq. (2-18) can be found
without undue difficulty.

"M. Iona, Phys. Rev. 60, 822 (1941).
2' The elements hgJI(xo) are identical with elements designated

by Howland as H(nsR~a).
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YAm, x I. Quantities calculated using the crystal model.

ilf
Z —&2r'S'(@,C& ) 2.83r' ev &ci-(&Xci-) 5.83r ev

5.36r' ev VK+ (1 XI~+) 7.597+$.23r~ ev

M
Z —(ug'F'S(y, K+)5(y, C1 )

2
2.00r' ev I cl Ik exp (—671 2)

1.40r' ev I CI CI
'

e~p( —46r )

(d) The Secular Equations and Their Solutions

It is necessary to consider the determination of
eigenvectors A 6 that make the contribution to the
crystal energy given by the fourth term of (2-18) a
minimum. The nondiagonal terms in (2-18) depend only
on the relative positions of the ions in the lattice, so
that the identicated summation over all ions g and
h can be readily carried out. ' It will be recalled that
only matrix elements between nearest neighbors and
between next-nearest Cl neighbors are to be retained.
Since there is no mixing between ionic orbitals of
opposite spin, one is left with a quadratic form in eight
coefFicients A 6, there being one coefficient for each
orbital of a given spin in the crystal cell. Minimization
with respect to these coefficients, subject to the normal-
izing Eq. (2-20), gives rise to a secular equation. The
resulting eigenvalues, E'(I',n), of which there are eight.
for fixed values of Ir and I' are the desired energies.

Secular equations were set up and solved at represen-
tative points within the central Brillouin zone. For
ready comparison these points were chosen to coincide
with the first twenty-two points indicated in Howland s
calculation. The energy eigenvalues were obtained as
functions of I' by setting up at each of the points in
the Brillouin zone secular equations for a series of
sixteen values of I' chosen to span the range I'=0 to
I'=1.1. An electronic computer was used to solve the
resulting 352 secular equations. At F=O the results
coincided with the eigenvalues determined by Howland.

The results of the calculation can best be understood
by defining energies Ez(I',n) and hc(I', n) by the
relations:

=Ec(1', ) P lA gl', (2-24A)

P P&" lA l'h (I'X,)=h (I', ) P lA l'. (2-243)

When the energies Eg and hg are subtracted out from
the second line of the energy Eq. (2-18), one is left,

in view of the normalizing Relation (2-20), with only
off-diagonal terms, g/h, which are very sensitive to I'

by virtue of the factors I;&. It is these remnant terms
that are responsible for the band structure. h~, which it
will be recalled contains the Madeiung energy, is
relatively insensitive to I'. In view of its definition, E&
can be thought of as the "classical energy" involved in
the hole-crystal interaction.

Ec, which roughly equals (3I"—61') ev (see Table I),
reaches its minimum value in the vicinity of F= 1,
as expected. However, for some values of k, the band-
structure terms lower the total energy. Their sum,
though, decays rapidly as I' is raised from zero in
conjunction with the behavior of I'«. There is, thus,
a conflict between two mechanisms for lowering the
energy: a polarization of the crystal about the hole, and
a spreading of the hole charge in the crystal. The
resulting variation of the total energy for the highest-
lying 3p Cl eigenvalue at the point k, =k,=k.=m./2a
is illustrated in Fig. 1. This curve is typical for 3p Cl
eigenvalues that lie near the top of the band. Lower-
lying 3p Cl eigenvalues and the eigenvalues making up
all the other bands decrease monotonically as 1 is
raised from zero to unity. All the energy minima thus
occur in the vicinity of unity.

The dependence on F of the over-all bandwidths,
except that of the K+ 3s band, is illustrated in Fig. 2,
where the maximum and minimum energies of each band
at. the specified value of I' are plot, ted. At I'=1 the
overlaps I',z are, respectively, less than e " and e ".
The off-diagonal terms, therefore, essentially vanish,
the secular determinants factor, and the energy bands
are Rat, as can be seen from Fig. 2. It is now evident
that the replacement of the true overlaps I',& by their
upper limits I',g was permissible. The studies of Sewell
and Holstein' suggest that the overlaps I",~ decrease as
the temperature is raised, so that similar results can be
expected even at elevated temperatures.

In general, for a given value of I' the effective mass
will be a very involved function of k. Nevertheless,
since the k-dependent portion of the energy is propor-
tional to the overlaps I',I„ the effective mass, A'/
(O'E/dk '), say, will be roughly proportional to Y,z ',
so that it will have a I' dependence of the form exp(eI'),
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where e 60. The physical meaning of the narrow
bands will be touched on again later.

3. ELECTRONIC AND IONIC POLARIZATION

The hole-crystal interaction described in the previous
section must be regarded as suggestive rather than
conclusive, since no account is taken of the electronic
polarizability. Modifications introduced by the elec-
tronic polarizability will now be explored by retracing
the earlier calculation with a refined trial wave function
that allows for both polarizabilities. Since the calcula-
tion involves polarized ionic orbitals, it is not feasible
to match the accuracy of the previous section. Only a
rough treatment drawing on the experimental dielectric
constants and the known behavior of the free-ion
orbitals will be undertaken. As the work is in parallel
with the first calculation, it will be presented in less
detail. "

The modified trial function for the crystal with a
hole continues to satisfy Eq. (2-7). However, the hole
orbitals m, are now built from polarized ionic orbitals
wr(r, X), in essentially the same way as they were

previously built from free-ion orbitals w&(r —x,).
wr(r, X)„I=1, 2, , 23II, is defined as the free-ion
eigenfunction wr(r —x~) modified to take into account a
perturbation of its free-ion Hartree-Fock potential by
the electric field of a positive point charge

~
e~ located

at the ion g, i.e., at R,. The orbitals wr(r, X), are
understood to depend on the crystal configuration X, in
that the perturbing field is as given by classical electro-
statics when due account is taken of the crystal polariza-
tion set up by the deformation (X—Xo) of the polar
crystal. This definition is sufhcient)y complete for the
present treatment of the problem. The result is that,
instead of dealing with a single family of free-ion
orbitals wr(r —x;), one must work with an entire set

of families of polarized orbitals, there being a separate
2M-fold family of polarized orbitals w&(r, X), for every
ion g in the crystal. With the new crystal function one
finds that if the hole is localized at a particular ion,
each of the surrounding ions w'ill not only shift its
equilibrium position but will acquire an appropriate
electronic dipole moment as well.

The integration over electronic and nuclear coor-
dinates that yields the expectation value of the Hamil-
tonian proceeds in much the same way as in the previous
section. The result is an expression for the energy which
is indeed similar to Eq. (2-18), but which does di8er
from the earlier expression in a number of interesting
respects.

As a result of the interaction of different families of
polarized orbitals, the matrix elements eg~ and Ag~
are replaced when (and only when) G and H correspond
to different ions by relatively complicated combinations
of elements ez II and Ag II, respectively, G', II'=1, 2,~, 2'. The combination coe%cients depend on
increments in overlap elements between ionic orbitals
arising from polarization of the orbitals, for example on

wg (r,I"X,)gener (r, I'X,)„dr,

—
) w g(r, I'Xg)gwine(r, I'X,),dr, .

To calculate these increments one replaces the polarized
ionic orbitals by unpolarized free-ion orbitals shifted
without deformation through appropriate displace-
ments. The displacements of the orbitals wr(r), on an
ion i are those which, if undergone by all the valence
electrons on the ion, would give rise to an electronic
dipole moment prescribed by experiment for the ion i
when under the action of a charge

~
e~ at R,. Data given

by Howland on the variation of electronic matrix
elements with lattice constant then allow one to find
the increments. In this way it is possible to estimate
upper limits on the modifications of the elements &gII
and QgII arising from the electronic polarization. One
finds that in themselves these modifications are capable
of at most doubling the 3p Cl bandwidth as obtained
when ajl polarization effects are omitted, and are
capable of broadening the other bandwidths by at
most half their original widths.

Of greater significance is that in the energy Expression
(2-18) the nuclear overlap integrals V, i, are everywhere
multiplied by many-electron overlap integrals Z«,
between functions describing the hole-free crystal
polarized by virtual charges at different locations.
That is, if C, and Cq are determinantal wave functions
of order 2' constructed from polarized orbita, ls wr(r),
and wr(r)i„respectively, in the same manner as C was
constructed from the free-ion orbitals wr(r), then Z, ~

is defined as fC,Cidri, , dr2ir. The factors Z, i„
which are taken to be independent of X, are estimated
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by again representing the polarized orbitals as free-ion
orbitals appropriately shifted relative to their ionic
cores. It is then necessary to transform the ionic orbitals
into sets of localized orthogonal orbitals of the type
suggested by I andshoff. " In the end one finds that
Z,~ 0.1 when g and h are nearest neighbors, and Z,~

0.06 when g and h are next-nearest Cl neighbors.
The behavior of the energy bands when only the

electronic polarizability is active, i.e., when I'=0, is
of special interest. For this case an indication of the
bandwidths can be obtained from the experimental
emission spectra that accompany electronic transitions
from the 3p bands to the Is state. ' The experimental
bands are found to be much narrower than those
predicted by Howland's calculation, where the elec-
tronic polarizability is not considered. ' Since the factors
Z, & have the effect of drastically reducing bandwidths,
they may be expected to shed some light on the dis-
crepancy between theory and experiment. This matter
is still undergoing study.

One would again like to know the behavior of the
total energy as I' is raised from zero to unity. The
shielding action of the electronic polarization scales
down the ionic displacements characteristic of the
configurations X,. This has the effect of raising the
nuclear overlap integrals I', I„. By drawing on the
dielectric constants one can estimate that Ygi-~i-' is
increased from exp( —461') to exp( —121'), and
Yci-K+' is increased from exp( —67P) to exp( —181").
The numerical values of the exponents for the true
nuclear overlaps, I', I„, will again be appreciably larger.

The last important modification introduced by the
electronic polarizability concerns the new classical
energy Ez', which can again be separated out. The
approximate behavior of E& can be inferred by identify-
ing it with the classical electrostatic volume integral
——',j'P Ddv, where P is the polarization and D the
displacement induced by a point charge ~ei in the
crystal, considered as a continuum. This allows one to
estimate the values assumed by E&' at F equal to zero
and unity, respectively, in terms of Ec(I'=1), the
classical energy calculated in the previous section to be
roughly 3 ev, as follows:

E '(I'=0) = (I—e ')(1—e
—')—'E (I'= I)

= —2.1 ev, (3-1)

E '(I'=1)—(1—es ')(1—e ') 'E (I'=1)
= —3.1 ev. (3-2)

Here e and eq are the experimental optical and static
dielectric constants of a KC1 crystal. e~, (=4.16), is
the effective dielectric constant for the crystal model of
Sec. 2.

It will be seen that as 1 is raised from zero to unity,
Ez' decreases by an increment of only 1 ev as compared
o the corresponding decrease of 3 ev in E~ observed in
he earlier treatment. Nevertheless, estimates indicate
hat, because the band-dependent terms are so greatly
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reduced by the overlaps Z,&, the total energy minima
will again coincide with the minima of the classical
energy everywhere in the Brillouin zone; i.e., the
minima will lie in the vicinity of I'=1, where the I'«
are so small as to lead to essentially Rat bands, or
very large effective masses.

4. EXPERIMENTAL MODEL FOR TRAPPED HOLE

Castner and Kanzig, in their study of a number of
the alkali halides including KCl, obtained electron-spin
resonance data which they were able to associate with
self-trapped holes. ' The experiments of Delbecq,
Smaller, and Yuster" further confirm that the trapped
holes are not associated with either ion vacancies or
impurities. The last two sections help to understand
how valence-band holes in the alkali-halides come to be
"self-trapped. "A hole localized at a particular ion can
be described by a wave packet of crystal functions W(k)
corresponding to all the vectors k in the first Brillouin
zone. Since the valence bands are so narrow, the
difference in the energies associated with a localized
hole and a Bloch state W(k), respectively, will be
minute ( 10 " ev). Consequently, any small non-
periodic electric fieMs in the crystal, such as those
associated with even distant crystal imperfections, will

22 C. J. Delbecq, B. Smaller, and P. H. Yuster, Phys. Rev. 111,
1235 (1958).
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cause the holes to become localized at optimum lattice
sites.

A second point is that Castner and Kanzig's data
show the hole to be localized on two adjacent halogen
ions rather than on a single ion, as has been assumed.
An attempt has been made to evaluate, within the
framework of the previous calculation, the energy
associated with this mode of trapping. Since the hole
is to be localized on two adjacent ions, a transformation
is carried out which converts the determinant of free-ion
orbitals (2-2) into an equivalent determinant in which
the ionic orbitals on halogen ions are replaced by
molecular orbitals. The hole orbitals, m, ', are con-
structed in the same way as before from determinantal
functions which, however, are missing one molecular
rather than one atomic orbital. In addition, with a
vacant molecular orbital one associates a displaced
crystal configuration that is allowed to depart from
spherical symmetry. The previous restriction of crystal
deformations to spherical symmetry led to a threefold
degeneracy among the states corresponding to a vacant
2p orbital localized on a given ion. Since according to a
theorem proved by Jahn and Teller" the ground state
of a molecular system does not have an orbital electronic
degeneracy, the earlier crystal functions suffered from
a lack of generality, a lack which is now removed in part.

It has already been established that the lowest energy
state of a KCl crystal with a hole is one in which the
crystal polarizations induced by the hole assume their
full classical value. Consequently, the assumption is
here made from the beginning that in the crystal
function the parameter F, which was a measure of the
ionic polarization, can be set equal to unity. Since this
has the result that terms in the wave function corre-

sponding to separate trapping configurations have
negligible interactions, it becomes permissible to
construct a function in which the hole is confined to a
particular region of the crystal.

Accordingly, the crystal wave function is written:

JV= (2' 1) !
(
A

)
'*xp Q —(—1)'+'Ar gw (I j 2M). (4-1)

The meaning of the symbols is the same as in Sec. 2.
However, the component orbitals are now polarized
molecular orbitals rather than free-ion orbitals. The
"vacant" orbital w~ is taken to be the odd molecular
orbital wiz +wpz, where wig and w, g are polarized
ionic orbitals centered, respectively, on the two trapping
centers, ions (1) and (2), and directed along the line

joining the centers. In accordance with the earlier
treatment, the single displaced equilibrium configura-
tion X„associated with the orbital mg, is taken to be
the configuration assumed by the crystal under the
action of two-point virtual charges j e

~
/2, located,

"H. A. Jahn and E. Teller, Proc. Roy. Soc. (London) A161,
220 (1937).

respectively, on the ions (1) and (2). The component
molecular orbitals are similarly assumed to be polarized
by these virtual charges.

While the first three terms of the Expression for the
energy, (2-18), remain unchanged, the fourth term
now becomes more simply:

8'= U(X,)—U(Xp) —V(Xp) h,g g. — (4-2)

This result is to be compared with a corresponding
value of —3.1 ev for a one-center Cl trap. The differ-
ence between these results can be understood by again
identifying Eg" with —zr J P Ddv, where P and D are
fields induced in the crystal imagined as a continuum.
This integral will be numerically smaller when the fields
are induced by two charges ~e~/2 spread apart some-
what (it will be just half when they are infinitely fa,r
apart) than when the fields are induced by a single
point charge

~

e
~
. To find the hole interaction kg g

one again approximates polarized orbitals by free-ion
orbitals appropriately shifted without deformation. The
odd molecular orbitals turn out to be somewhat more
stable than a 3p Cl free-ion oribtal (hgg is numerically
smaller), leading to an energy for the two-center trap
0.7 ev higher than that associated with a single-center
trap.

It is thought that this contradiction between theory
and experiment may well originate with the arbitrariness
of the trial function. The experiments furnish an
indication of the electronic configuration of the hole.
If, in accordance with Castner and Kanzig, one assumes
that the orbital corresponding in essence to the unpaired
electron is a 3p odd molecular orbital mixed with a 4s
orbital, the magnitude of the 4s admixture can be
inferred from the resonance frequencies. This admixture
is found to be many times greater than that assumed
in the present trial function, where, as in Sec. 3, the
free-ion orbitals are being polarized by the virtual
charges to an extent compatible with the experimental
electronic polarizabilities.

The trial functions were chosen on the basis of the
expected behavior of a hole-free crystal under the
action of virtual charges that simulate the charge
distribution of the hole. It was this arbitrariness in the
function that allowed one to evaluate the energy of the
crystal in a relatively simple way. For the present
aspect of the problem, however, the strength of the
quasi-molecular bond between two trapping centers,
measured by the element hgg, assumes considerable

The meaning of the symbols again corresponds to
that of Sec. 2.

The stored energy (U(X,)—U(Xp)$ and V(X,) are
first found by the methods of Sec. 2; the electronic
polarization is then allowed for by corrections of the
same sort as those shown in Eqs. (3-1) and (3-2). One
finds for the "classical energy, "Ez", that

Eg" U(X,) —U——(Xp) —V(X,) = —2.0 ev. (4-3)
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importance, as has been suggested by Castner and
Kanzig, and ought to inRuence the construction of the
trial function, especially the nature of all the polarized
orbitals in the vicinity of the hole. The proper way of
dealing with the problem is presumably to set up a
quite general wave function in which both the positions
of the ions that determine the displaced equilibrium
configuration and the linear combinations of ground
and excited free-ion functions that determine the
polarized orbitals are left free to be determined by an
over-all variational calculation, instead of being

specified from the beginning. Such a procedure would
be very much more dificult since it would no longer be
possible to isolate terms characteristic of a hole-free
crystal, whose behavior can be calculated from the
experimental properties of the macroscopic crystal.
Furthermore, neither the excited orbitals for the K+
and Cl ions nor multicenter matrix elements involving
these orbitals are available. It will be seen that such a
calculation lies outside the scope of the present work.

In conclusion, it has been possible to show that one
can expect a valence-band hole in its ground state to be
self-trapped; however, the details of the associated
electronic and ion core configurations cannot be
predicted without additional calculation.
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The Hall current flow occurring in a normal and a superconducting metal when both a static magnetic
field (Ho} and an electromagnetic wave are applied on the metal is calculated. The entire frequency range
of the electromagnetic wave is discussed although the emphasis is on the microwave range. The nonlocal,
transverse Hall current in a normal metal is calculated by solving the Boltzmann equation. It is shown
that the microwave Kerr rotation in a circular cylindrical cavity provides a good test for the nonlocal Hall
current in a normal metal. The relation between a longitudinal and a transverse Hall current in a super-
conductor is briefly discussed. A detailed theory of the transverse Hall current in a superconductor based
on the Bardeen-Cooper-Schrieffer model and including the effect of collective excitations is presented. The
field IIO is assumed constant in space and a general result for the Hall current in Q space is derived. When
the electric field is constant in space (Q —+ 0},it is shown that the Hall current is proportional to the micro-
scopic analog of the fraction of normal electrons of a two-fluid model.

I. INTRODUCTION

~ 'HE Hall effect at audio frequencies is a well
understood phenomenon in both metals and

semiconductors. The experimental method used at these
very low frequencies is a simple measurement of the
Hall emf developed across the sample when a current
Rows in the sample and a static magnetic field is applied
perpendicular to the current Qow. The theory of this
effect yields the simple and well-known result (we
neglect any effect of band structure throughout),

*This paper is based on a thesis submitted to the University
of Illinois in partial fulfillment of the requirements for the Ph.D.
degree.

f This work was supported by a Raytheon Corporation Fellow-
ship and by the Ofhce of Ordnance Research, U. S. Army.

)Now at I.B.M. Research Center, Yorktown Heights, New
York.

where
jH. it = —&o~o'EX Ho,

oo rte'r jrtt, R-o—————(rtec) (2)

and where Ho is the static magnetic field applied and e
is the number of carriers per unit volume. We use the
convention that Rp is positive for electrons and negative
for holes.

In general a Hall current or a Hall electric field will

be produced by a microwave or an optical electric field
with a static magnetic field perpendicular to the applied
electric field. A simple measurement of a Hall emf is no
longer feasible at these high frequencies. If a plane
polarized electromagnetic wave is incident on a sample
and if there is a static magnetic field'present which is
perpendicular to the incident electric field then both the


