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The principal purpose of this paper is to discuss the nature of the modes of vibration in a solid. The
following is found: (1) Waves in lattices are in general neither transverse nor longitudinal; in particular,
they need not be transverse or longitudinal when the propagation vector k is very small. (2) The relationship
~&/ca& ——(eo/e„)& for "longitudinal" and "transverse" modes in ionic crystals applies, if at all, in a region
of small, but nonzero, wave vector k. (3) The derivation of this relationship is based, at least implicitly,
on the use of cyclic boundary conditions. (4) The use of cyclic boundary conditions is valid in statistical
problems for crystals without long-range forces, but has never been justi6ed for systems with Coulomb
forces. (5) If cyclic boundary conditions are nonetheless used, it can be simply shown that for k =0, co~/au& = 1.

I. INTRODUCTION

HE over-all purpose of this paper is to discuss
the nature of the modes of vibration of a solid.

Ke are particularly interested in solids in which long-
range forces, which appear to complicate the situation
considerably, are important.

The problem is by no means a new one, and it has in
fact been discussed from many different, and not
necessarily mutually consistent, viewpoints. Chrono-
logically, elasticity theory came first, and introduced
into the field much of the vocabulary that is still used;
later, lattice dynamics was developed as a classical
theory involving coupled harmonic oscillators; it proved
to be valid, as far as it went, in quantum theory as
well, on account of the particularly close correspondence
that occurs between classical and quantum mechanics
for oscillators; however, the earliest, and still the most
detailed, work in lattice dynamics dealt with models
involving short-range forces only, and some of the
results of this work tended to be accepted as valid for
crystals with long-range forces, without obvious justifi-
cation. Finally, many people were led into this field by
a primary interest in optical problems —the interaction
of light with either individual atoms or with the lattice
as a whole, or perhaps with both; these are much more
involved problems essentially quantum mechanical in
nature, but with the interaction of the light with the
lattice often superimposed on it in a semiclassical way.

Specifically, the following things are done here. In
Sec. II it is pointed out that the waves in the lattice
which constitute the usual modes need be neither
transverse nor longitudinal, not even when the propa-
gation vector k is very small, and that when R=O the
very concept of transverse or longitudinal polarization
is meaningless. In Sec. III the frequently used relation-
ship a&~/co~= (es/e„)l is discussed. (Notation: co~, co& are
the frequencies, respectively, of the "longitudinal" and
"transverse" vibrations, and 6p, E- the dielectric con-
stants, respectively, for zero frequency and for high
frequencies. ) It is shown that this relationship contra, -
dicts not only the results of Sec. II (somewhat super-
ficially), but, more important, that it disagrees with a
counter-example whose validity is established under
rather general conditions. In Sec. IV reasons for this

discrepancy are examined and discussed; among the
items suspected of being responsible are the eGects of
polarizability, of retardation, of size and shape de-
pendence, of the order and method of mathematically
performing limiting processes, and of using simplified
boundary conditions. It is shown that the last of these
may be responsible, since no mathematical, or even
plausible, justification has ever been presented for the
use of cyclic boundary conditions in crystals with long-
range forces. In Sec. V the results are summarized and
discussed. In Appendix I an example, which is used
throughout the paper, is worked out in detail. Appendix
II amplifies the discussion of Sec. II.

II. POLARIZATION OF WAVES

It seems rather commonly believed that waves in
solids are either transverse or longitudinal. This belief,
even when restricted to waves whose propagation
vector is small, is not ahvays justified.

There is no simple reason for believing this for short
waves, for their properties depend in detail on the
atomic forces; but in fact it is not even true for long
waves (often called "acoustical" or "elastic" waves)
which can be described with reference to the bulk
properties of the solid only. ("Acoustic" waves are
usually defined as low-frequency waves of long wave-

length or small propagation vector. ) The question of
"acoustic" waves has been discussed by deLaunay'
who shows that even these waves in nonisotropic cubic
crystals are transverse or longitudinal only in the
(100), (110), (111)directions. An equivalent result ca,n

be straightforwardly obtained from the classical work
of Green' as expounded by Love. '

' J. deLaunay, J. Chem. Phys. 21, 1975 (1953), see p. 1997.
~ G. G-reen, Trans. Cambridge Phil. Soc. 7, 121 (1842).
3A. E. H. Love, 2 Treatise on the 3fathematica/ Theory of

X',lasticity (reprinted by Dover Publications, New York, 1944).
Relation (23) on page 299 gives the necessary condition for
transverse waves. This expression for the strain energy function
W' is found to agree with the general one for cubic crystals (last
line of Sec. 109,p. 160) when the condition c» —c»= 2c44 (isotropy)
holds, because then the corresponding coefFicients in the two
expressions are equal; and also when propagation is in the (100),
(110), or (111) directions, because then all the nonvanishing
strain components themselves become equal. I am indebted to
Dr. Jules deLaunay for calling this work to my attention.
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It should be realized that a certain amount of subtlety
is required to make any sense at all out of statements
about the polarization of waves of infinite wavelength.
A transverse (longitudinal) wave is defined as one in
which the atomic, or material, displacements are
perpendicular (parallel) to the direction of propagation
(i.e., to the propagation vector k); and if the wavelength
is infinite (propagation vector 0) then the entire concept
becomes meaningless; a vector cannot be perpendicular
(or parallel) to a vanishing vector or, physically
speaking, if a displacements are the same everywhere
in a crystal, then no direction of propagation can be
defined at all. Thus statements about elastic waves, or
even nonelastic waves of "long" wavelength such as the
above, make sense only for small propagation vector
but not in the limit of propagation vector approaching
0; if it is to make any sense there, a way of going to the
limit must be defined.

D-dimensional crystals of e atoms per unit cell are
known to have nD frequencies (or "modes") for each
wave vector k. The "acoustic" or "elastic" waves
discussed by deLaunay' and others arise for small k
and are D in number. The (e—1)D other solutions that
arise are often called "optical" modes. (This is a
misleading designation since it seems to imply that they
are optically observable, which is never obvious and
usually not true. A mode can be optically observable
only if the dipole moment of each cell changes in course
of a, vibration, and then only if contributions from each
cell add, rather than cancel as they often do. We shall
discuss this matter further in Secs. IV and V.)

In the literature we have found no study from the
standpoint of lattice dynamics of a/l the modes that
arise for small k (and not just of the "acoustic" ones);
we therefore thought that this would be worth doing in
detail, if only for some special model. We therefore
proceed to do this for the simplest possible nontrivial
crystal model. Our main interest there is in the eigen-
functions themselves, rather than in the eigenvalues
(frequencies) as is usual.

In looking for a model which is nontrivial for our
purposes, we do not object to restricting ourselves to
small wave numbers (except to zero wave number);
we are primarily interested in the relationship between
propagation vector k and the atomic displacement
vector, and in the difference there between the so-called
"acoustical" waves and the "optical" waves. To exhibit
these features, our crystal must have at least two
dimensions (one dimensional crystals have only one
direction of any sort) and to get more than one mode
whose frequency does not approach 0 as k approaches
0, we choose two a,toms per unit cell. Also, we must
include interaction between nearest and next nearest
neighbors, for if the latter are omitted, then the problem
is known to degenerate into a one-dimensional one.
The simplest example to work out that is, to our pur-
poses, nontrivial is therefore the two-dimensional

CELLS LABELLED (k,m)

—X

FIG. i. The crystal model in our example.

with
(H —X)i/ =0, (2)

X= (mM) l(v'/n,

and II a 4)&4 matrix whose elements, which are
functions of the y's, or k's, are written down in Appen-
dix I. The solution to Eq. (1), valid for small k, is

obtained by perturbation theory in Appendix I.

diatomic lattice with first and second neighbor inter-
action.

The notation is explained by reference to Fig. I.
Cells are labelled by indices l, m, each cell containing
one atom of mass m whose displacements in the x and

y directions are called ul and vl, respectively, and
one atom of mass M whose displacement in the x
direction and y direction are called ml and tl . The
Hooke's law force constant for first and second neighbor
interactions are called n and P, respectively. We write
Q'=m/M, O.=P/n, and

—&ice t&i(l q I+m@2) Um —,
lm

~us t~s(l q 1+my2) Vm ——,
'

lm—
—~irat~i(leap&+m%2)P ~—

2lm-
~sg t~s(l yI+my2) g~—,

lm

for the usual normal mode transformation. U, V, 8',
and T are constants, or is the frequency, and p& and p2
can be related to the propagation vector k= (k, ,k2) by
equating t, '('~&+m~» = e'(I »+I ») and observing from
Fig. 1 that x=2la+y, y=ma so that k= (1/2a)t yi, 2p2
—

&pi7, a being the distance between nearest neighbors.
The four linear algebraic equations which result from
inserting (1) into the Newtonian equations of motion
and which define U, V, W, T can then be written
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The results are as follows. The eigenvalues are found
to be

(Q+Q-')X, =L1+2 g~ (k;+k,')+~ (k;—k;) (1+@):,

(e+e i)$2 —
L1+2o )g2(k &+k 2) —g2(k 2—k 2) (11p)k

(Q+Q-)~ =2(e+e-) -&1-(Q+e-) j
pe(k 2+k 2)+g2(k 2 k 2) (1+g2)~s (3)

(Q+e-)~ =2(e+e-) -L1-(Q+Q-).)
Xa'(k '+k ') —a'(ki2 —k2') (1+q')'*

with g=-'(Q'+Q ')$ (=4okik2/(kP —kP) and the
corresponding eigenfunctions

4 '=(Q'+ ) '*+(5)
L1 (1+(,);je,

- L1—(1+8)'3 .
Ee

A'=(Q'+1) 'c—(0) L-1p(1+p);je i

.C&+(1+8)'*3 ~

$3'——(Q'+1)-&c~(g)
L-1 (1+,),j

-—L1—(1+v')'*jQ.

A'=(e+')-'-() L1+(1+„):j
c— 2 ne-

-—L1+(1+~')'*Pe.

(4)

This means that the motion of one atom in any given
cell is always either parallel or antiparallel to that of
the other atom. By looking at the ratio U/W, or V/T,
we see that modes 1 and 2 are parallel and modes 3
and 4 are antiparallel.

Next, we ask whether the various modes are perpen-
dicular to each other. The condition for this would be,

c (()= L1+(1+@)-lj/2'P.

In all these formulas, the signs are correct as they
stand whenever P)0 but are to be reversed when ((0.
We note that Eq. (4) resolves the ambiguity of defining
the polarization of waves as 0 wave vector is ap-
proached: it states that, and how, the polarization
depends on the direction of the approach.

As to the eigenvalues X, we may observe that for k =0,
we have A, ~=A.2, and A, 3=5,4.

As for the eigenfunctions, or atomic displacements,
we observe first of all, that for each mode, U/V= W/T.
According to Eq. (4) we have explicitly

~./V. =IV.P' = ~/L&- (1+8)'j,
U,/v, =iV,P'2= &/11+(1+@)-:1,
v,/v, = w,/T, =~/D (1+~')-:g, —
U,/V, = W,/r, =~/L1+ (1+g')~).

for modes 1 and 2,

QiQ2+ Vi'D2+ MiW2+ fi/2 =0,

or, since we have already shown that the two atoms in
any cell move always parallel or antiparallel in any
given mode, more simply u,u, +e,v, =O or, by (1)
UiU2+ViV2=0, which, by the use of (4), is found to
hold true. Thus modes 1 and 2 are mutually perpen-
dicular and similarly modes 3 and 4 can be shown to
be mutually perpendicular. On the other hand, any
low-frequency modes are perpendicular to the high-
frequency modes only if special conditions hold (o =0,
or m=M, or ki=0 or k, =O).

Finally, we ask whether and under what conditions
any mode is transverse or longitudinal. The condition
that mode j be longitudinal is

U,/V, = ki/k2.

Substituting from (4) we find

modes 1 and 3 are longitudinal if and only if k2 —+ 0,
modes 2 and 4 are longitudinal if and only if k& —+ 0,

and, since mode 1 is perpendicular to 2 and 3 perpen-
dicular to 4,

modes 2 and 4 are transverse if and only if k2 —+ 0,
modes 1 and 3 are transverse if and only if k& —+ 0.

In summary, then, we may say that the "acoustical"
modes (the ones whose frequency approaches 0 as k
approaches 0) agree with deLaunay (who started from
the standpoint of the elasticity theory) and the other
modes show behavior very similar to the acoustic ones:
for any given small k, the low-frequency modes are
perpendicular to each other, and the high-frequency
modes are perpendicular to each other, but any one
mode is longitudinal or transverse only for certain
special crystallographic directions. The two acoustic
frequencies are seen to be equal to zero at k=0, and
approach that value in a continuous way as a finite k
is permitted to approach zero; and the two other
("optical" ) frequencies are seen to be equal to each
other at k=0 and they, too, approach the value they
take on at k=0 in a continuous way as a finite k is
permitted to approach zero.

The preceding development constitutes, among other
things, a counter-example to the commonly believed
theorem that all lattice waves are either transverse or
longitudinal. The counterexample here is confined to
small k, and it might therefore still be conjectured that
the theorem may be valid when k is Not small. In fact,
it is not valid. For a counter-example applicable for all

k, turn to Appendix II.

III. ARE THE FREQUENCIES OF "TRANSVERSE" AND
"LONGITUDINAL" MODES SIMPLY RELATEDP

We are now prepared to consider the "well-known"
relation

~i/~i= (~o/~ )'.
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We shall And that serious difhculties arise when either
its quantitative assertions or its physical implications
are compared with our previous results, and with simple
but general extensions of our previous results. We shall
devote most of the rest of this paper to establishing
and then explaining these contradictions.

Relation (5) was first obtained by Lyddane, Sachs,
and Teller4 and later obtained as a consequence of a
more general phenomenological treatment of long waves
by Huang. "LST define ~& and ~& as the frequency of
"the transverse vibration" and "the longitudinal vibra-
tion, " respectively, eo as the dielectric constant for
zero frequency and e„as the dielectric constant for high
frequencies (essentially the square of the index of
refraction). Both papers make it clear that they are
considering long waves and, in particular, the ones
whose frequencies do not approach zero there; the
limit of k close to zero' is thus clearly implied. Neither
paper seems to have any doubt about the transverse
and longitudinal nature of the waves or the method of
going the limit. LST, however, are clearly talking about
propagation perpendicular or parallel to a crystal face,
in which, as we have seen from at least one example
(preceding section) waves are indeed often transverse
or longitudinal.

We shall first attempt to discuss the situation by
means of our example of Sec. II. The model, let us
repeat here, is that of a diatomic two-dimensional
lattice with interaction between 6rst and second
neighbors, and the work is valid for small k for the
"optical" as well as the acoustic modes. The two
squared frequencies in our calculation that correspond
to poP and coP in LST and BH are Xs and X4 (for X, and
X, are the "elastic" or "acoustical" modes). We note
two things:

(1) cot is equal to a&& (in the limit of k=0, and nearly
equal for small k) or &p&/co&= 1; this clearly contradicts
Eq. (5).

(2) Except for the main crystallographic directions,
the vibrations corresponding to X3 and X4 are neither
transverse nor longitudinal, neither at k=0 (where the
concept is, strictly speaking, meaningless) nor for small
k (as shown in Appendix I) nor presumably in the case
when k is not small (as shown in Appendix II). Having
established these apparent contradictions, we must of
course investigate to what extent our example is rele-
vant to the case envisaged by LST and BH.

LST and BH are concerned with real three-
dimensional ionic crystals with long- as well as short-

4 R. H. Lyddane, R. G. Sachs, and E. Teller, Phys. Rev. 59,
673 (1941); referred to as LST.

'Kun Huang, Proc. Roy. Soc. (London) A208, 352 (1951).' M. Born and K. Huang, Dyrtamsca/ Theory of Crystal Lattices
(Oxford University Press, New York, 1954), Sec. 7; referred to
as SH.

7 LST make it clear that they are speaking of small k, but not
k=O (although they do not use that language, nor make the
point that the concept of transversality or longitudinality would
be meaningless there). They specify that the wavelength must be
large, but much smaller than the dimensions of the crystal.

range interactions; our model is in every respect simpler
than theirs (two dimensions and short-range forces
only). Thus if our example contradicts a supposedly
general result, that result may be considered to have
been proven wrong; but a result specially derived from
our model will not necessarily be valid for real solids.
In other words the results of Appendix I are not to be
taken literally in a quantitative way, since they derive
from a special model, but are of importance wherever
they contradict a supposedly general theorem.

First consider statement (2), the less important one
of the two. It contradicts nothing in LST (although it
would seem to detract from the implied generality of
the treatment), but does appear to contradict the
statement that "the independent vibrational modes can
be taken as transverse and longitudinal waves of
different wave numbers and directions of propagation. "'
Be this as it may, we can certainly conclude that since
waves are neither transverse nor longitudinal in our
simple example, they wi11 in general be neither transverse
nor longitudinal in the complicated cases of real ionic
crystals.

By contrast, statement (1) would seem to be of the
kind that had little general probative value. If two
frequencies happen to be equal in some simple special
case, the "corresponding" frequencies surely need not
be equal in all cases. However, we shall now proceed
to show that statement (1) is true under circumstances
much more genera1 than implied by our example. In
fact, we show that, under fairly general conditions, all
nonacoustical vibrations have the same frequency for
k=0.

We do restrict ourselves to diatomic crystals of cubic
symmetry and of structure such that each atom is a
center of symmetry. (This includes the NaC1 and CsC1
structure but not the ZnS structure). Temporarily only,
we also restrict ourselves to two-dimensional crystals
as illustrated in Fig. 2. Let us call the two kinds of
atoms in the crystal A and B.When k=0, all A atoms
move the same way in all cells, and all the 8 atoms
move the same way in all cells. We might say that the
motion is rigid motion of the 8 sublattice relative to
the A sublattice; it will cause no confusion if we omit
phrase beginning with the word "relative" henceforth.
Consider now the forces that act on one particular A
atom. The force exerted by any other A atom vanishes,
for forces arise only from relative displacements and
these are all 0 between pairs of A atoms. The forces
exerted by the 8 atoms, on the other hand, do not
vanish, but they have the property that motion of the
8 sublattice in the x direction causes a force on the A
atom which is purely in the x direction. Physically,
this can be seen from Fig. 2: for each atom B~ located
at equilibrium position (ap, yp) there exists another
atom Bs located at equilibrium position (xp, —yp); if
the 8 sublattice moves in the x direction, both B~ and

' See reference 6, p. 87.
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FIG. 2. Forces when k =0 (two dimensions). F; is the force
exerted on particle A by particle 8;. The resultant of the F; is
in the x direction.

82 may exert forces on the A atom at the origin; the
x components of these two forces add, the y components
cancel, leaving a net force in the x direction only. In
this way all 8 atoms can be grouped into pairs, such
that each pair has a net force on the A atom at the
origin which will be in the x direction only. Any motion
of the B sublattice in the x direction will thus remain
in the x direction, and one of the modes of vibration
for k=0 can therefore be described entirely without
regard to the y direction. This is actually a complete
description of one of the nonacoustical modes with
k=0: the 8 sublattice moves in the x direction alone,
and its frequency is determined by the sum of the
restoring forces in the x direction. Since we have not
specified the details of this force, we cannot compute
the frequency here; but we do know, purely from
symmetry, that there will exist a second mode, in
which the 8 sublattice moves in the y direction alone,
that than the restoring force, now directed in the y
direction alone, on that motion will be of the same
strength as it was in the other case, and that the
frequency of these two modes will therefore be the same.

At this point it is important to realize the generality
of the argument in the preceding paragraph. Atom B~
and 82 are not necessarily nearest neighbors of atom 2;
rather, no assumption whatever has been made about
their distance from A; similarly nothing was said about
the nature of the forces (central or noncentral, velocity
dependent or independent, etc.). The resulting forces
on 3 from any pair 8& and 82 can thus be added to the
resulting forces from any other pair, and all forces that
act on A can thus be accounted for, regardless of the
nature of the force and particularly of the range of the
force; forces of infinite range (e.g., Coulomb forces)
are included.

(Formally, the force in the y direction on atom A

due to motion in the x direction of all the 8 atoms
appears in the element 3f» of the dynamical matrix M

in Eq. (A2.5). It is identically 0 there because inter-
action in that model is included only to second neigh-
bors. If, e.g., fourth neighbors had been included, a
term sinakse'~s'+2 sinakie '" 'Lcos2aks+cosakie' s'1
would appear there; in conformance with the argument
in the preceding paragraph, this term goes to 0 as k
goes to 0).

The proof is easily extended from two dimensional
to three dimensional diatomic lattices as illustrated by
Fig. 3. The only difference is that the cancellation of
forces in the directions other than that of the direction
of motion occurs not pair-wise but quartet-wise. Since
there are three possible directions of motion, there are
three independent modes of the vibration, all of the
same frequency. Again there is no restriction in the
argument concerning the nature and range of the forces
in the crystal, and Coulomb forces in ionic crystals, in
particular, are included.

Our conclusion may be summarized by saying that
the diatomic three-dimensional crystals with atoms
which are centers of symmetry have six modes of
vibration for k=0: the frequency of three of these is 0
(in agreement with elasticity theory) and the fre-
quencies of the three other modes are all equal, ' " in
disagreement with relation (1).

IV. DISCUSSION

The results of the preceding section disagree not only
with relation (5), but also with some features of several
explicit calculations of lattice frequencies. ' " "It does
agree with others. " ' The results of R" agree because
they were obtained for the sodium chloride lattice es-
sentially by carrying out in detail the steps outlined in
the preceding paragraphs here; the papers referred to in
references 14—17 do not include long range forces, except
perhaps sometimes by unjustified implication. The re-
sults of references 6, 7, 11—13 do not agree among each
other. In attempting to disentangle the situation, we

consider the following matters which could, one might
think, be responsible.

(a) polarizability,

(b) electrostatics versus electrodynamics,

(c) size and shape dependence, and the order of
performing limiting processes,

(d) boundary conditions.

The limiting value of co&/co& is also discussed by H. Frohlich,
Theory of Dzelectrics {oxford University Press, New York, 1958),
p. 149 ff. Frohlich points out that the ratio is unity for crystals
small with respect to the wavelength, and size and shape-depend-
ent for larger crystals; see our discussion, particularly Sec. IV c."When the three "optical" frequencies are equal and the three
acoustical ones zero, the sum rule Z,', a&;s(k) =18a/PM, which
is valid for all k LR. Brout, Phys. Rev. 113, 43 (1958)j, gives
directly &os(0)=6a/PM for the optical ones (P=compressihility,
M =reduced mass). But it should be pointed out that the specific
form of the right-hand side of Brout's sum rule depends directly
on the assumed nature of the short-range forces (in Brout's
paper, repulsive interaction between nearest neighbors only).
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(a) BH a,ttributes 1:he discrepancy of their results
with K's to K's failure to consider the electrical polar-
izability of the ions. This disagreement is, however,
entirely quantitative; qualitatively, both papers get
two different non-0 frequencies for k=O. What K, and
also I, R, and many other authors, have ignored, and
what is also ignored in the present paper, is the so-called
"electronic" polarizability, which arises from the fact
that ions are not truly charged point masses, but are
charged objects of finite size, whose charge is therefore
subject to distortion by electromagnetic forces. The
"ionic" polarizability, which arises from the displace-
ment from equilibrium of the ions themselves, is
properly accounted for automatically in the lattice
dynamical problem in all cases. Physically, neglect of
the electronic polarizability means setting e„=1 (at
high frequencies, the dielectric constant is entirely due
to electronic motion, since the ions are too heavy to
participate in the motion); but es/I, and hence the
right-hand side of Eq. (5) will still differ from unity.

The present result —one single nonzero frequency-
can therefore not be attributed to our own refusal to
consider the electronic polarizability explicitly.

(b) The question has been raised whether for k=0
the forces can be considered as purely electrostatic
ones, or whether "retardation" must be taken into
account. Introduction of retardation would in effect
make the forces velocity-dependent. Much discussion
has been devoted to this point u, i3—i8 but it is probably
fair to say that no solution acceptable to all has been
given. However, we may cite I," who is aware of the
existence of the problem but uses only electrostatics in
this calculation, and gets two, rather than one, nonzero
frequencies for k=0. By contrast, K treats the retarda-
tion problem in detail; but he, too, gets two different
frequencies for k=O. In both cases, the value of the
frequencies for k small but not 0 do approach the k =0
values smoothly. (It is agreed that the retardation is
negligible for k not equal to 0.) Furthermore, as pointed
out in Sec. III above, velocity dependent forces are not
excluded in our argument that lead to equal optical
frequencies.

%e conclude that our failure to consider retardation

"M. Iona, Phys. Rev. 60, 822 (1941); referred to as I. This
paper treats the KCl lattice as monatomic; therefore our k=0
appears at his points (000) and (7r,s.,s)."E.W. Kellerman, Phil. Trans. Roy. Soc. 238, 513 (1940);
referred to as K."R. H. Lyddane and K. F. Herzfeld, Phys. Rev. 54, 846
(1938); referred to as LH. "'A. D. B. Woods, W. Cochran, and
B. N. Brockhouse, Phys. Rev. 119, 980 (1960).' M. Born and Th. v. Karman, Physik Z. 13, 279 (1912)."M. Born and M. G. Mayer, Handbuch der Physik, edited by
S. Flugge (Verlag Julius Springer, Berlin, 1933), Vol. 24, Part 2.

"M, Illackman, Proc. Roy. Soc. (London) A159, 416 (1937).
'~H. B. Rosenstock, J. Phys. Chem. Solids 4, 201 (1958),

referred to as R. Note particularly top, p. 203 ~ This paper treats
the NaCl lattice as 8-atomic; our k=0 therefore corresponds to
the frequencies there called co~ and au~."J.H. Thompson, Proc. Roy. Soc. (London) A149, 487 (1935).

F4

=X
Bp

FIG. 3. Forces when k=0 (three dimensions). P; is the force
exerted on particle A by particle 8;. The resultant of the Ii; is
in the x direction.

explicitly cannot account for our obtaining only one
single nonzero frequency at k=0.

(c) IH" have noticed that results for lattice fre-
quencies are dependent on the size and shape assumed
for the crystal. This is a consequence of the long-range
nature of the Coulomb forces which makes the sum-
mation processes only conditionally convergent. There
are, as has been observed, several quantities in such a
calculation that must be computed by some process of
approaching infinity: the three space coordinates (and
the order and method used here might make a differ-
ence) and in addition the wavelength. s' It should be
said however that the wavelength does not "approach
infinity" in the usual sense of mathematical analysis:
the basic quantity is the wave vector k, to whose
reciprocal the wavelength is proportional, and which
does not "approach" zero in a continuous way, but in
finite and well-defined steps. There should therefore be
no difficulty in letting the wavelength approach infinity;
rather, there is nothing wrong with settjeg k equal to
zero.

In our case no explicit assumption at all has been
made about the crystal size and shape, but it is im-
portant to realize that implicitly such assumptions are
contained in our tacit assumption that the modes for
which k=0 actually exist. More will be said about this
matter in (d) below; at this point let us merely empha-
size that the existence of modes with k =0 is not obvious.

(d) All explicit calculations concerning ionic crystal
frequencies, except one recent one-dimensional one, "
have used the assumption of cyclic boundary condi-

"See reference 13, p. 354.
20 See reference 12, p. 598.
2' H. B.Rosenstock, J. Phys. Chem. Solids 15, 50 (1960).



HERBE V~ T B. ROSE NSTOCK

tions, This problem of boundary conditions has been
discussed for many years. ""It is generally believed
that the validity of cyclic boundary conditions is
established at least for statistical problems —i.e., for
problems in which only the total number of frequencies
in a finite, though arbitrarily small, frequency interval
is of interest, but not necessarily for problems in which
one is interested in individual modes. At this point we
wish to make two points:

First, that the above restriction is an important one
for the present case, and

Second, that proofs that have been given for the
validity of cyclic boundary conditions are invalid for
crystals with long range forces.

The first statement is perhaps most clearly justified
by asserting that the modes for which k=o do not
exist in the absence of cyclic boundary conditions
(strictly speaking, they might exist in certain special
cases, such as when certain crystal parameters take on
special values, but the probability of such an occurrence
is zero). This is shown aKrmatively for one-dimensional
ionic crystals in reference 21 and follows a fortiori for
three-dimensional ones. Yet the modes for which k
equals zero are the ones which are generally alleged"
to be the only ones that give rise to optical phenomena
(see, however, reference 17). In a negative sense we
point out that the existing justification for cyclic
boundary conditions (Lederman'4 and Peierls") concern
themselves only with the numbers of eigenvalues in a
range but not with the changes caused in individual
eigenvalues by changing boundary conditions, and
certainly not at all with the detailed nature of any
eigenfunctions. "

The second statement, which asserts that no rigorous
justification for the correctness of cyclic boundary
condition exist at all for crystals with long-range forces,
has, as far as we know, not been made recently, and in
fact the opposite seems to be generally assumed. "
Ledermann's'4 original proof for this is rather clear
about the matter, however. He essentially establishes
the theorem that the correct frequency distribution g
is related to the distribution g, obtained from cyclic
boundary conditions by

g())=g (~)LI+0(&/('+&))j,

where b is the number of boundary particles and i the

'2 For a comparatively recent discussion, see H. B. Rosenstock,
J. Chem. Phys. 23, 2415 (1955).

"BH (reference 6), Appendix IV.
"W. Lederman, Proc. Roy. Soc. (London) A182, 362 (1944)."R.E. Peierls, Proc. Natl. Inst. Sci. (India) 20, 121 (1954);

or reference 23.
'6 The nature of the modes in the absence of cyclic boundary

conditions are examined in one simple case (short-range forces of
a special kind) in H. S. Rosenstock, J. Chem. Phys. 27, 1194
(1957). In that case, the usual modes are still sine or cosine
waves, diGering from their form in the case of cyclic boundary
conditions only in their phases. This particularly simple result is
a consequence of the simple model there used and should not be
expected to remain if long range forces are included. See also
reference 22.

number of interior particles. I. carefully defines (lie
boundary particles as particles which have one or more
"active" neighbors missing, and as "active neighbors"
of a particle those particles that exert a force on it. If
interaction is short range, "active neighbors" and the
word "neighbors" in the ordinary sense are synomous
and 0(b/(i+b)) =0(1/cV), with N' the number of atoms
in the crystal. This is the usual interpretation of 1.'s
theorem. If, however the forces are of infinite range,
then all particles in the lattice are "active neighbors"
of any particle, all particles become, by definition
boundary particles, 0(b/(i+b)) =0(1),and the theorem
derived is devoid of useful content. Similarly, Peierls
proof is dependent on the assumption that "a disturb-
ance starting from a point a distance d from the nearest
surface will propagate in the same manner as in an
infinite crystal for a time less than d/c, where c is the
maximum velocity of sound. "This statement is correct
only when the interactions are of short range; for long-
range interaction, infinity, or more precisely the velocity
of light, would have to be substituted for the velocity
of sound. Thus this proof also fails to establish a rela-
tionship between the behavior of the finite lattice and
the lattice with cyclic boundary conditions when long-
range forces occur.

We have thus established that cyclic boundary
conditions have been used in all earlier calculations of
lattice frequencies, either explicitly or by implication
(this includes both the papers devoted to the calculation
of frequency spectra and general papers such as LST),
and also that no justification for this exists in crystals
in which Coulomb forces exist. It is perhaps to the
point to add that this Raw is likely to be an important
one because lattice sums, whose values are strongly
dependent on small systematic changes in the positions
of all particles, appear (either explicitly or by impli-
cation) in all these works. We can therefore conclude
that the incorrect treatment of boundaries may well be
responsible for the contradictory results that have been
found.

(Parenthetically, let us reiterate what we hinted in
point (c) above: that our own calculation in Sec. III
is also based on cyclic boundary conditions. It follows
that the result obtained there —viz. , three equal
"optical" frequencies —cannot be applied to ionic
crystals either. But we should point out clearly that
Sec. III does provide a general proof of the equality of
"optical" frequencies for all cases in which cyclic
boundary conditions are valid).

V. SUMMARY

The situation may, then, be summarized as follows.
The vibrational modes for any given k are, in general,
neither transverse nor longitudinal. In particular, k
being very small is not a sufficient condition for trans-
versality or longitudinality, neither for the low-
frequency ("acoustic" or "elastic") waves nor for the
high-frequency ("optical" ) ones; even when k is very
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small, waves will be transverse or longitudinal only in
special directions or if the crystal is isotropic, or for
special models. For 4=0 the concept of transverse or
longitudinal waves becomes, strictly speaking, mean-
ingless.

However, if one con6nes oneself to certain special
crystallographic directions (e.g. , the (110) direction in
cubic crystals), modes may be correctly called trans-
verse and longitudinal. Doing so, Lyddane, Sachs, and
Teller have derived the relationship (5), o)i/oo&= (oo/o„)'*,
for the two "optical" frequencies at a value of k which
is implied to be small, but not specifically defined. In
contrast, we have shown that for k=0, the three
"optical" frequencies of an ionic crystal of alkali halide
structure are all equal. Our calculation is straight-
forward and independent of the force model assumed,
provided only that the harmonic approximation is
retained, and includes, in particular, forces of infinite
range (Coulomb). The discrepancy is resolved by
pointing out that both the present calculation and the
earlier calculations of LST and most other writers are
predicated upon cyclic boundary conditions. It is pointed
out that no justification has ever been adduced for the
use of cyclic boundary conditions in crystals with forces
of infinite range, and that what use cyclic boundary
conditions have (which is considerable) is restricted to
short range force models. It follows that a mode for
which k=O (i.e., in which, at any one time, each cell in
the crystal looks exactly like any other cell) need not
even exist, and that although the motion of the ions
will still be describable in terms of normal modes
(provided only that the harmonic approximation is
retained) these need not be of the form sin(k x) or
cos(k x); the very de6nition of the propagation vector
k is based on this form of the normal modes. ' ' We
must thus conclude that Eq. (5), based, as it is by
implication, upon the use of cyclic boundary conditions
and restricted in its validity as it is to a range of k
which is small but not precisely defined, cannot be
considered quantitatively established; and that if it
could be shown that cyclic boundary conditions are
valid for ionic crystals (which has never been done),
then relation (5) would be in complete disagreement
with a simple calculation which shows that for k=0,
co~ and cog are equal.

The situation is particularly complicated in connec-
tion with optical problems, because the mode with k=0
is generally believed to be the only one that interacts
with light. Recent work in which boundary conditions
were taken into account correctly has shown, to be
sure, that this belief is not exactly correct; but accepting
this belief would, besides being incorrect, seem to be
inconsistent with adoption of Eq. (5) (which refers to
a region of k in which k is small, but certainly not 0).
It is, in other words, not. clear just what the values of
the frequency are in those ranges of k that may be
important for optical phenomena, and to what approxi-
mation, if any, relation (5) may apply there.
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APPENDIX I. COMPUTATIONS FOR SECTION II

The matrix II in Eq. (1) can be written

with

pQ

rQ
0

—og'Q

—~g'Q '
0

rQ
—1

0

g,'g, (A1)

rQ

r=2+o (2 f), —
f=cosp2+cos(yi —y2), g =coso)2 —cos(y2 —yi),

p = 1+q'~~ q
= gism+ r&(%1 %2)

(A2)

We are to solve (1) for small y. There it becomes, by
expanding and keeping terms up through y',

with
(IIo+II' —X))P=0,

II'=4 iIIims. '+~+~&,
Q' —1 0 0

IIo=2
0 0 Q

' —1
0 0 —1 Q.

0 1 0 0~
—1 0 0 0

0 0 0
0 0 —1 0

0 y)2/2 0 0
trio/2 0 0 0

0 0 0 h '

0 0 h 0

hg ' 0 gg
—' 0

0 hg 0 —
gQ—gQ' 0 hg' 0

0 —gg 0 Ig.
h=g+o ', g=lv (o —2 )

+imag

(A3)

(A3) is approached by first; solving it for y=0, viz. ,

(Ho —l~o)go =0, (A4)

and then proceeding by perturbation theory. The
eigenvalues of (A4) are obtained by solving the deter-
minantal equation

(
IIo Xo

(

—0.
the solutions are

Xio=X2o=O, Xoo=X4o=2(Q+Q '). (A5)

The eigenvectors are then found by substituting these
values for V back into (A4). We find that the ones
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APPENDIK II. ORTHOGONALITY, TRANSVERSALITY,
AND LONGITUDINALITY FOR ALL 0

We first show that, for any given k, the modes are
always orthogonal or, in a certain sense, perpendicular
to each other. (This has nothing directly to do with
whether any one mode is transverse or longitudinal or
neither, i.e., with whether any one mode is perpendicular
or parallel to k or neither. ) In every lattice dynamical
problem with harmonic forces one obtains, after elimi-
nating time dependence and performing the partially
diagonalizing transformation suggested by translational
symmetry, an eigenvalue equation of the form (2),
which we now write as

(H—X''&)P&' =0. (A7)

II, called the dynamical matrix, is a Hermitian eD)&eD
matrix if we are dealing with a D-dimensional crystal
with n atoms per unit cell, and it&" and Xt'& are its
eigenvectors and eigenvalues, respectively (s= 1, 2,
mD). Ea,ch element in iP describes the displacement of
one of the e atoms in one of the D directions in space.
It can then be shown" that the eigenvectors are

27 E. U. Condon and G. H. Shortley, Theory of Atomic Spectra
(Cambridge University Press, New York, 1953), Secs. 8, 9.' Replace i by j in (A7), take the Hermitian conjugate, and
postmultiply by P('); from this subtract the equation that results
from premultiplying (A7) by p(7'). The result is () (7') —X('))lit &7)*p(')
=0 as was to be demonstrated. In connection with the behavior of
lattice waves, this standard theorem of matrix theory has been
discussed by J. deLaunay, Gordon Research Conference on
Physics and Chemistry of Metals, 1959 (unpublished).

corresponding to X'=0 can be written

0

4'= (Q'+1) (), lt s'= (Q'+1) 0

.0. 1J
and the ones corresponding to )t'=2(Q+Q ') as

1 0

its'=(Q'+1), lt4'=(Q'+1) (A6)

0. ~
Any linear combination of its and its', and of ltss and
$4e would be equally satisfactory for describing the
solutions to the zero-order problem, and the next task
in the perturbation theoretic treatment is to find the
"correct" linear combinations lt; of zero-order eigen-
functions —i.e., that linear combination to which the
perturbed problem reduces if the perturbation is
permitted to disappear (y —& 0). The general formulas
for the P,', as well as the other formulas needed for
the degenerate perturbation theory, are collected bv
Condon and Shortley, '" for example. On account of
the matrix H; „' we must carry the calculation to
second order if we desire accuracy to p'. The eigenvalues
a.re found to be as given by Eq. (2) and the corre-
sponding "correct" linear combinations of eigen-
functions by (3).

where we have written

(fJ t'&~
yi'&=

) ( ai & —Pt'&/Pi &

V& '&)

and
Z= (8—A)/2C.

Solving (A9) for Z gives

Z = (a'"' —1)/2a'".

(i=1, 2)

(A11)

(A12)

Now, for concreteness, specify that forces exist between
first and second neighbors and that their ratio is o.
Then (A11) becomes"

Z= (cosk, —cosks)/2o sinki sinks,

and combining this with (A12) gives

(at' &' —1)/2a "&= (coski —cosks)/2o. sinki sinks. (A13)

The condition that mode 1 be longitudinal is that the
ratio ks/kt be equal to the ratio Vt"/U&'&=a"' which
requires, from (A13), that

(at' &'—1)/2ai'&

= (coski —cosa&'&kt)/2o sinki sinai'&ki. (A14)

Hut this cannot be generally true; for if (A14) should
hold for some specific k& and 0-, it will certainly not
hold if either of these parameters is changed slightly.
Mode 1 is therefore not longitudinal (except possibly
at isolated points in k space for certain special values
of the force constants), and the same can be shown for
mode 2 in the same way; and the orthogonality relation
(AS) then implies that neither mode 2 nor mode 1 can
be transverse, either (subject to the same accidental
exceptions). Having shown that modes are, in general,
neither transverse nor longitudinal in case of one very
simple model, the same follows a fortiori for more
complicated crystals.

s' E. W. Montroll, I. Chem. Phys. 15, 575 (1947).

orthogonal,
p(i') sp(o =0 (AS)

unless the corresponding eigenvalues are equal, A. (')
=X&'&. If the lattice is monatomic, n=1, (AS) simply
implies that for any given k the displacement vectors
of two different modes are perpendicular to each other;
but when e&1, this simple interpretation cannot be
made.

To show now that the modes are in general neither
transverse nor longitudinal, we chose the example of
the monatomic two-dimensional square lattice. "With-
out even specifying the forces, we can write

c~a=] ~ i
in (A7); upon solving the resulting secular equation
for X&'& and substituting these back into (A7) we find

a(t) =Z+ (Zs+ 1)1 (A9)
a&s& =Z —(Z'+1) **, (A10)


