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has been questioned since it is not clear that the
electron-phonon interaction can be calculated sepa-
rately from correlation effects. For lack of anything
better w'e will nevertheless assume that the effects of
correlation and electron-phonon interactions can be
estimated separately. Then the experimental data that
m*/m=1. 7 for the bcc phase of sodium indicates that
correlation alone increases the effective mass of the
conduction electrons (r,=3.96) about 40%. This result
is in disagreement with the calculations of Quinn and
Ferrell, "and Pines, "but is consistent with the results
of DuBois' and Fletcher and Larson. " I igure 4 shows

the theoretical calculations of DuBois as the solid line
and the experimental point w'ith approximate errors
from the results on bcc sodium. The dashed line is a pos-
sible interpolation between the results.

The large value of the effective mass of the electrons
in bcc sodium is quite surprising. Yet, it is not at
variance with the theoretical calculations of DuBois,
and Fletcher and Larson, and estimates of the effect of

electron-phonon interactions. However, it would still
be highly desirable to obtain further experimental meas-
urements on the electronic specihc heat of sodium. In
particular, a measurement on a sample in which the
transformation to the low-temperature phase has some-
how been inhibited would be of great interest.

The large change in effective mass between the bcc
and hcp phases is also surprising. The substantial
contact of the Fermi surface to the Brillouin zone "2"
face implies a fairly large energy gap at the zone face.
This disagrees with the model of Cohen and Heine"
for sodium. However, the contact explains why the
hcp phase has the lower energy at absolute zero. The
lowering of the energy levels in the vicinity of the
contact lowers the total energy of the solid.

The author is indebted to Professor M. H. Cohen
for a stimulating discussion and to Professor Ralph D.
Myers for a critical and informative discussion.

"M. H. Cohen and V. Heine, Advances in Physics, edited by
N. F. Mott (Taylor and Francis Ltd. , London, 1958), Vol. 7,
p. 395.
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A general treatment of ultrasonic attenuation of both longitudinal and transverse waves in superconduc-
tors, valid for an arbitrary mean free path, is given on the basis of the Bardeen-Cooper-Schrieffer theory. The
interaction between the ultrasonic waves and electrons is assumed to be given by a self-consistent electro-
magnetic field. Instead of the customary theory of the attenuation based on the Boltzmann equation, a
different formulation is developed using the density-matrix formalism. The ratio of the attenuations in
superconducting and normal metals for the longitudinal wave turns out to be approximately independent of
the mean free path. The attenuation of the shear wave due to electromagnetic interaction is shown to be very
small in the superconducting state.

1. INTRODUCTION

' ' ' LTRASOXIC attenuation in metals at low temper-
atures, predominantly electronic in origin, has

been an object of active researches in recent years,
yielding valuable information on the properties of nor-

mal metals as well as superconductors. ' ' Bommel and
Mackinnon' first observed the rapid fall in the attenua-
tion below the critical temperature. While it clearly re-
flected the decrease of the normal component, this steep

* Supported in part by the Office of Ordnance Research, U. S.
Army.

' For general review of the subject, see R. W. Morse, Progress
in Cryogenics, edited by K. Mendelssohn (Heywood @ Company
Ltd. , London, 1959), Vol. I, p. 220.

' Concerning the ultrasonic attenuation in superconductors, see
J. Bardeen and J. R. Schriefter, Progress in Low-Temperature
Physics, edited by C. J. Gorter, (North Holland Publishing Com-
pany, Amsterdam (to be published)g.

3H. E. Bommel, Phys. Rev. 96, 220 (1954); L. Macl~innon,
Phys. Rev. 98, 1181, 1210 (1955).

drop could not be accounted for by the simple applica-
tion of the two-fluid model and waited for the Bardeen-
Cooper-Schrieffer (BCS) theory' for its satisfactory ex-
planation. According to the latter theory the ratio,
n,/n„, of the attenuations of a longitudinal sound wave
in superconducting and in normal state varies with tern. -
perature as 2f(ep), where f is the Fermi function and ep

is the temperature-dependent energy gap. The agree-
ment between this formula and the experimental data,
obtained for pure superconductors mostly in the fre-
quency range around 50 Mc/sec, is reasonably good and
is one of the strong supports of the BCS theory. ' In fact
this is one way of obtaining an empirical value of the

' J.Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. j.08
1175 (1957).

'

5 R. W. Morse and H. V. Bohm, Phys. Rev. 108, 1094 (1957);
R. W. Morse, H. V. Bohm, and J. D. Gavenda, Bull. Am. Phys.
Soc. 3, 44 and 203 (1958).
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energy gap. The measurements of attenuation have been
performed by Morse and Bohm' also for impure super-
conductors with j/=1, where q is the wave number of
the sound and I the electron mean free path. The result
indicates that the temperature variation of the ratio
n./n depends slightly on the values of q/: for the smaller
values of ql the attenuation decreases somewhat more
rapidly than for ql)&1. Another case of interest is the
attenuation of a shear wave. The result of detailed
measurements by Morse and Bohm' ' taken in poly-
crystalline indium and tin showed an even more abrupt,
apparently discontinuous drop in attenuation at the
critical temperature. The change in the attenuation is
more than 50%% in the temperature range of 0.01'K
below T„ then followed by a gradual decrease which
seems again to be described by the BCS formula.

So far there has been no theoretical treatment of the
attenuations in superconductors with an arbitrary mean
free path except one by Kresin' for the limiting case of
q/&(1. It is the main purpose of the present work to
construct a general theory of the attenuation of both
longitudinal and shear waves on the basis of the BCS
theory, valid for an arbitrary mean free path.

The first complete theory of the attenuation by the
electron system in normal metals was proposed by
Pippard' based on the idea of a distorted local Fermi
surface. More recently, general treatments have been
given by Blount' to discuss the attenuations for arbi-
trary frequency and band structures and by Cohen,
Harrison, and Harrison" to analyze its magnetic de-
pendence. Most of these theories are based on the
Boltzmann equation for an electron distribution func-
tion, although the original treatment by Pippard did not
make an explicit use of it. While this method is no doubt
adequate for the case of normal metals, we cannot apply
it to the case of superconductors, particularly in the
present problem where an electromagnetic interaction is
involved. Therefore we are led to take a different ap-
proach, closely related to the quantum mechanical
derivation of conductivity from the density matrix
formalism, first proposed by Kubo. "This kind of treat-
ment has been used by Mattis and Bardeen" to derive
the complex conductivity for a transverse electromag-
netic field of a superconductor in the presence of scat-
tering centers. Gorkov and Abrikosov" also calculated
the conductivity by means of the Green's function
formalism. We assume that the interaction between a

' R. W. Morse and H. V. Bohm, Bull. Am. Phys. Soc. 3, 225
(1958).'B. Z. Kresin, J. Exptl. Theoret. Phys. U.S.S.R. 36, 1947
(1959), I translation: Soviet Phys. -JETP 36(9), 1385 (1959)].

8 A. B.Pippard, Phil. Mag. 46, 1104 (1955).' E. I. Blount, Phys. Rev. 114, 418 (1959).
"M.H. Cohen, M. J.Harrison, and W. A. Harrison, Phys. Rev.

117, 937 (1960)."R.Kubo, Can. J. Phys. 34, 1274 (1956), J. Phys. Soc. Japan
12, 570 (1957)."D.C. Mattis and J. Bardeen, Phys. Rev. 111,412 (1958).

"A. A. Abrikosov and L. P. Gor'kov, J. Exptl. Theoret. Phys.
U.S.S.R. 35, 1558 (1958) /translation: Soviet Phys. -JETP 35(8),
1090 (1959)j.

long-wavelength sound wave and electrons in metals is
mainly electromagnetic, so that it is necessary, first of
all, to obtain the conductivities of the system for longi-
tudinal as well as transverse fields, which we shall
evaluate following the works mentioned above. In calcu-
lating the attenuation an extra complication arises from
the fact that impurities, which we assume to be the only
scattering mechanism, move with the lattice, thereby
dragging electrons. This diTiculty is dealt with by a
canonical transformation, which has been used by
Blount. '

In Sec. 2 we shall give an outline of the formulation
of the problem, which is applied first to the case of
normal metals in Sec. 3. The succeeding sections are
devoted to the calculation of the attenuation in super-
conductors and to discussions of the results obtained. In
the case of a longitudinal wave it becomes necessary to
take into account the collective excitations in supercon-
ductors in order to guarantee the invariance of the
theory against the canonical transformation mentioned
above. The proof is presented in the Appendix.

2. FORMULATION

In the problem of ultrasonic attenuation by electrons
it is convenient to consider three systems, namely, the
impressed sound wave, the electrons, and the heat reser-
voir consisting of thermal phonons. We do not discuss
the mechanism of transferring energy from the second to
the last explicitly. The attenuation will be calculated
from the amount of energy transferred to the electron
system. For simplicity we suppose in this work that
electrons are elastically scattered by impurities. Hence
the unperturbed Hamiltonian for an electron may be
written

Hp — ~"+Vs(x')+P V; (x' —R;), (2-1)
21n

where Vp(x') is the periodic potential of the lattice and
V; (x'—R;) is the potential due to the jth impurity.
%hen the lattice is deformed by a sound wave, the
perturbed potential is

Vp(x' —5R)+Vt(x', t)+P; V; (x'—5R—R;), (2-2)

where 8R(x', t) is the smoothly varying function of x'
such that at the lattice positions it is equal to the
displacements of the ions. As pointed out by Blount, '
Vp(x' —5R) —Vp(x') may be large and the Bloch theorem
no longer holds in the original coordinate system, so
that it is necessary to make a transformation into the
coordinate system, x, fixed to the moving lattice'4;

x= x'—5R(x', t).

Another reason for making this transformation is that
the scattering by impurities embedded in the lattice is

'4The use of the transformation was fjrst pointed out to the
author by Professor J. Bardeen.
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elastic not in the x' frame but in the x frame. The treat-
ment here is essentially the same as one given by Blount,
but for completeness we shall discuss it in some detail.
Let lt '(x', t) be a wave function satisfying

(2-4)

addition there is a fictitious force described by the first
part of H', which, as we shall see, can be physically
interpreted as the dragging force due to the moving
impurities.

The current density of electrons in the state P in the
new frame can be obtained by calculating the time rate
of change of the charge density —

e%t tP:

e' MR
(2-5) j(x,t) =j~(x,t)—Apf+e p

tPSC
g (x,t) = Li+ (vSR))-'y'(x'(x), t),

so that to the first order in the displacement

Since the transformation (2-3) is not in general volume
conserving, we write for the wave function in the x
frame,

(2-9)

, y'(x, t)P(x, t)dx= 1, (2-6)

we get, where as in what follows all the quantities refer
to the new coordinate,

Hp p /2m+ V(p——x)+Q tV; (x—R;),

(2-7)

if iP'(x', t) is normalized. From (2-4) and (2-2) one can
derive the wave equation for P(x,t). Since we are inter-
ested in the linear response of the system, we con-
sistently keep only the terms linear in the displacement.
Using

d 8$ 86R—p(x, t) =—vp, v'/=vs Z(v»;—)v,f,
Ch Bt Bt i

M
+ p L(v;bR)+(v», )g

25$ i
xg(vA)~4 4&(~A-)j, (2-10)

with V; being the components of &, and

j„(x,t) =— {(vf)f—f (vp)}.2' (2-11)

If there are no electromagnetic fields nor impurities,
j„(x,t) calculated to the erst order in H' is equal to

eMR/Bt p—which just cancels the third term in (2-10),
as we shall explicitly show. Since we are keeping only
terms linear in the displacement, we can drop the last
term in (2-10), so that the expression is reduced to the
customary one.

Let us describe the sound wave by a velocity field

u(x, t) = u exp[i(q x—~t)j=—ia&bR(x, t),

with the wave vector q and the frequency ~. Rewriting
(2-8) in terms of u, we get

88Eg
+V (x). (2-g)

i Bt

Note that this Hamiltonian is Hermitian. One can show
that this transformation is equivalent to a unitary trans-
formation, U=exp(iS) with S=,' P; P;,8R;]+ -We.
shall consider H' as a perturbation and take the eigen-
functions of Ho as our unperturbed states, which, if there
is no scattering by impurities, we assume to be given by
plane wave states. Since the wavelength of the im-

pressed sound is much larger than the interatomic dis-
tance, we can consider U~(x) to be given by a long-range
electromagnetic field produced by the sound wave,
neglecting possible real metal eGects.

Thus we arrive at a simple model: essentially a free
electron gas with the background of positive charges
capable of carrying the sound wave. The system is
driven by the electromagnetic field determined by the
Maxwell equations in a self-consistent manner and the
scattering of electrons is by the fixed impurities. In

H= + (A p+p A) —ey
218 2ssc

+Q V; (x R;)+Hr, (2-—12)

where

Hr==Eq (1+2q)X» (P+pq)3 —u (P+lq). (2-13)

and
j (q,a)) =o.(q,(o)R(q,co), (2-14)

jr(q, a)) =o'(q, o)) (—mu/er). (2-15)

where 7 is the relaxation time to be determined later.
This definition of 0-~ is quite arbitrary at this stage but
will turn out to be convenient. The total electronic cur-

We shall assume that the impressed wave is either purely
longitudinal or transverse. Since A(x, t) and p(x, t), to be
determined self-consistently, are already proportional to
I, we can calculate the linear responses to the fields and
to the fictitious force HI separately. They are con-
veniently described by the conductivities de6ned by
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rent will then be given by

j,=j+jr=oE .or—(mu/er). (2-16)

The attenuation constant n can be expressed in terms of
0. and 0.~. Ke follow the derivation given by Cohen
et a/. ,' with a slight generalization that r may be
diferent from a-. The electric field is given by the
Maxwell equations,

t 4ry

Eito i

3. NORMAL METALS

The problem is now reduced to calculations of the
appropriate conductivities delned by (2-14) and (2-15).
Vfe shall first treat the response of normal metals to the
longitudinal wave by the method of density matrix.
Following this example we can apply the method to the
case of superconductors in a straightforw'ard manner.

The average value of the charge density calculated by
first order perturbation theory is compactly expressed
by the formula"

)4 i y t't, q
' (o, y

'--'

&to ) &c) (c)

(2-17)

p(x, t) = i —dt' dx'((p(x, t),p(x', t') j)@(x',t'), (3-1)

where Ell, J«and EJ., J& are the electric field and the
total current components parallel and perpendicular to
q, respectively, and v, is the sound velocity. The total
current in the fixed frame is

where the angular bracket means (a)= Tr(Usa) with
Ue ——exp( —PBCe)/TrLexp( —PXp)j. Kp is the unper-
turbed Hamiltonian of the entire system. One can also
write down the response to the perturbation Hl in the
same form,J=j,+Re .u (2-18)

Combining (2-14) through (2-18), we can solve for E:
E„=(o'+iy) '(o" 1)m-N/er, —
Eg (~'+iP) '(a"—— -1)mu/—er,

where we have introduced

pt
pz (x,t) = i ' dt' d—x'(Lp(x, t), Hr (x',t') $). (3-2)

One way of calculating these quantities is to apply the
many-body Green's function formalism directly, as has
been done by Abrikosov and Gorkov. "But the subse-
quent calculations are mathematically involved in the
case of superconductors and become almost intractable
at finite temperatures. Therefore, another method will
be used here, which is similar to the one by Mattis and
gardeen 12

Let f„(x) be the eigensolutions of Hs which include
the impurity potentials:

o'= o/os, o"=o'/~s,
(2-20)

p=(oc'/(4~ost, s), y=a(v, /c)s.

0 p=lVe'r/m is the dc conductivity. We shall neglect 7
which is always very small. The power dissipated by the
sound wave per unit volume is then given by

Q=-,' ReLj,*Eg. (2-21)

Here we have neglected the correction related to the
collision drag effect, which is important only at very
high frequencies. "Substituting (2-19) into (2-21) and
using the definition of the attenuation constant,

~=()/(sp'-I &I'o.)
where p;,„is the density of the ions, we obtain

Ess ( 1—0
(2-23)

p,...„[. I

(3-3)Hoke= en'~

iP(x, t) =P exp(i3Cst)c„, exp( —iKst)it„.(x),
(3-4)

Pt(x, t) =Q exp(iRst)c .t exp( —iXst)P„.(x),

We use the second-quantized formalism and expand a
(2-22) field operator P(x,t) in terms of f„;

Pion&s~

Re'

for the longitudinal wave and

0

o.'+iP
(2-24) 5( o= Q eaca~tcon. (3-5)

where c„and c„~,are annihilation and creation operators.
Then

for the transverse wave, respectively. The expression (3-1) can be written as

p(x, t) =——',e' Q dy y(x to)e
—'l"+'»' Q Up(Z )

iaaf

&& p ((i(c„,tc„,, ( f) (g„*(x)it„.(x)p„.*(y)p„(y)+(c.c. with to), (3—-6)
1

nn'o g —gf —~—Zg

'~ The condition for neglecting it is P«1, see reference 10, Sec. II-B.
~s See for example, V. M. Galitskii and A. B. Migdal, J. Exptl. Theoret. Phys. U.S.S.R. 34, 139 (1958) Ltranslation: Soviet

Phys. -JKTP 34(7), 96 (1958)j; P. C. Martin and J. Schwinger, Phys. Rev. 115, 1342 (1959).
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where ~i) and
~ f) are the eigenstates of Xp with the eigenvalues E; and E~, respectively, and an infinitesimal

quantity q has been introduced for the adiabatic switching on of the interaction at t= —~. Since the scattering
centers are randomly distributed in space and P s are a function of their positions, the only significant quantity is
the average over this random distribution. In order to find the average it is convenient to separate out the product
of tt „sfrom other factors in (3-6) in the following way. Carrying out the calculation of the matrix elements we get

p(q, c ) = e—'y(q, cd))l dy e '«& *&)~ t dsds'$f(s) f(s—')]

X P (f~*(x)cct (x)P *(y)tt (y)8(s —s)b(s —s')). +(c.c. with —cp), (3-7)
Go Zg

where ( ), means the average over the distribution of impurities and the energy is measured from the Fermi
energy. We may rewrite this as

where

p(q cd) e 4(q cp) coeds cV (s s cp)P(q; s s ) (3-8)

~C"(s, s',~) =D'(s) —f(s')3—
cd $17 s —s—+0)+2YJ

(3-9)

r
F(q; s~s ) = dy e ' ' *'(II(x,y, y, x; s s )) (3-10)

11(x',y, y', x; s, s') = r. 4"*(x')lt-(y)4 "*(y')4- (x)~("—s)~(s- —s').
nnl

(3-11)

This is the correlation function of electron amplitudes in the presence of scattering centers. The similar quantity
was discussed by Edwards" for the case of the dc conductivity, so that we shall just sketch the derivation of the
results. In terms of the Green's function defined by

G (y, x,l) = —ig(t)P. P„(y)tt'„'(x)e*'"',

G+(y, x,&) =~n(&)Z- k-(x)0.*(y)e *'"',

where ri(f) = 1 for 1)0 and =0 otherwise, one can write

(3-12)

Hence

2 4.(y)4-*(x)&(s—s.) =— «&e ""G-(y,x,~)
—e'"G+(x,y, l)) =—(G-(y, x,s) —G+(x,y, s))

2x ~ 2~
(3-13)

(II(x,y', s,s')),„=— (/G (y, x, s) —G~(x', y, s)](G (x,y, s') —G~(y, x,s')]), .
(2pr)'

(3-14)

The average of the one-particle Green s function is approximately calculated by summing over the series of per-
turbations represented by diagrams shown in Fig. 1:

(3-15)
where

(3-16)

is the relaxation time, e the average number density of impurities, and

dp
(G+(»x,s))-= ~ (G~(u, s))-e '"' *'

(2pr)s
(3-17)

with s~= p'/2m —ss. In deriving (3-15) it has been assumed tha, t: the average separation between the scattering

"S.F.Edwards, Phil. Mag. 3, 1020 (1958).See also P. R. Weiss and E. Ahrahams, Phys. Rev. 111, 722 (1958).
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centers is large compared to the interatomic distance. Next, the interference of the two propagators can be found
approximately by summing the series represented in Fig. 2, which results in an integral equation,

dp
'(pi s'ps s')). =(G+(pi s)). (G—(ps s')) I+ —

l
~ (p —p) l

(II' '(pi e,ps'e')).
(2x) s

for the Fourier transform defined by

dp
dye 's'r "'(G+(x,y, e)G (x,y, e')), = (II '(yi, e,ps, s')). ,

(3-18)

(3-19)

p(q 0) = 2e 1' (0)4'(q 0).
(11'+ '(pi, s,p»e ))«=(G+(p4e))~v(G —(»)e ))« Thus

where pi ——y+q/2 and ys
——p —q/2. The Eq. (3-18) can Because of the completeness and of the relation

be readily solved; with the help of (3-15) we find, as-
suming that q is much smaller than the Fermi mo- Q„(lcm (x)lan, (x))ave(es c) E(0)&
mentum ps, we get

(3-25)

(3-26)

where

1+ T( —', q), (3-2()) p(q, ) ——2 '1)t(0

2AT

X 1+
~

)I'dcde'$f(e) f(c')—j
8m+

1
——1

T(x,q) =s(x,q) 1— s(x,q)
2%7'

x/cr —I+i/err
s(x,q) = i ln-

/nx+ 1+s/nr

(3-»)

(3-22)

2
X Mt+i(s, s',re)—

XLT(e'—s, q)+c.c.7 . (3-27)

and cr=qvs. In (3-20) we have assumed isotropic scat-

Fro. 1.Diagrams of impurity scattering included in (G(p, s)), .

1V(0)
F(q, e, e') = (T(e'—s, q)+c.c.},4' (3-23)

where N(0) =mps/2m' is the density of states at the
Fermi surface.

Let us first calculate (3-8) for re=0. For this purpose
it is easier to go back to (3-7). Since f(c)—f(c')
=(df/de)(e —s') for important values of s and e',

tering although more general cases can be treated. The
important point is that while for the case of the static
conductivity or the one for a transverse field this inter-
ference effect vanishes unless the scattering is aniso-
t opi, h th t (1/pp') J'd&

~
U; (p —p')

~

'(p y') 40, it
is finite in the case of the response to the longitudinal
wave of finite wavelength. Since (G~(pi, e)), (G+(ys, e)),
vanish upon integrating over p, we get

The integral can be done by contour integrations if one
introduces the convergence factor a'/(e'+e"+a') and
then take the limit as a ~ (x) ." Closing the contours
such that the argument of T(x,q) has no negative imagi-
nary part, we finally get the expression for the longi-
tudinal conductivity;

21V(0)e'co

a (q cu) = —i
2

Zh)

1+—T (ce,q) (3-28)
2A

This is identical to the result which has been obtained
by the semiclassical method based on the Boltzmann
equation and which includes the diffusion current due to
the local variation of the electron density. "It is inter-
esting to note that the effect of the interference of the
two propagators shown in Fig. 2 is closely related to the
diffusion current: if we had not taken this into account
we would have gotten, simply S(co,q) instead of T(M, q)
in (3-28).

The response to the perturbation H~ can be calcu-
lated in the same manner from (3-2) and may be written

r' df
p(q0)= 2e'p dye—'«r *' d»—g

dg nn'
Fro. 2. Ladder-type diagrams included in the vertex corrections.

"J.L. Warren and R. A. Ferrell, Phys. Rev. 117, 1253 (1960).
X(lt *(x)p (y)f„*(y)p„(x))«8(es s), (3-24) See also reference 10.



T. TSUNETO

in the form,

where

pi(q, (v) =e " dede'$3EH &(e,v',a)Fi(q, e,e')+iV~ ~(e,e',(v)F2(q, e, v') j,

F,(q, v, e')=,I dy e-'i &&-*)(1Imfq (p'„—~„)]Ln (~„.—~„)jil(x, y, y', x; e,e')). ,
48$cO x ~x

(3-29)

(3-30)

z

P2(q e 6 ) — dy e ""*'(»m Lu (V, —V„)]ii(x,y, y', x; e 6 ))
2 3' ~X

(3-31)

As before we first evaluate pr putting cd=0 in M&+'(e, e', co). The second term in (3-29) gives zero because of the
symmetry, so that we get from the first term,

2eu
p df

d —Z (4-*( ) (il. &)V-( ))-&( —-)=-
skag" de "

2eE(0)pp'q g= ——Eel
CO

(3-32)

which cancels the "gauge current, "
1Veu, in (2-10). One can calculate the correlation functions Fi and F2 by the

same method; the only difference is to insert in (3-18) the verticies, (q p) (u y) and (u p), respectively. The results
are"

Fl(q)E)e ) =Pl ('q)e)v )+ P2(q)E)v ))' (3-33)

Fi'(q, e, e') =— 2qupo' ' i(e)—e)
1+ T(e' —v, q) +c.c. ,

(2~)'m von'r, GO

(3-34)

upo
P2(q, e, v') = — (e' e)/T(e' —e, q)+c—.c.j.

(2v)'von'
(3-35)

Substituting these into (3-29) one finds

q (mu ) 2e'1V(0) i(o
pr (q,~) =——Ãeu —i

i ~
1+—T(~,q),

Eev) q 2n
(3-36)

mn~j.(q~)=~(q~)l E-
E ev)

(3-38)

LSee Eq. (2-40) of reference 10j. One can see that the
inclusion of Bl takes care of the fact that electrons relax
onto the displaced Fermi distribution after colliding
with moving impurities.

If we keep terms of the lowest order in &v/n= v,/vo, we

get Pippard's result for the attenuation constant;

mNvo 1 (ql)' tan '(ql)
A n -1

p;,„v,li3 ql —tan '(ql)

where l= ~e0 is the mean free path.

(3-39)

"In performing the integral over p it is su%cient to consider
only the contributions from the poles of (G), . This may be
justified by subtracting the corresponding quantity with r ~ ~,
which can be evaluated by the ordinary method.

the terms involving Ii2 having cancelled each other.
When v —+ 00, it reduces to —(q/~)Eeu. Hence

or(q, (u) =iT(q,a))

The total electronic current is, therefore,

4. CONDUCTIVITIES OF SUPERCONDUCTORS

In place of a real superconductor we shall take the
simplified model of the BCS theory, supplemented by a
suitable consideration of the collective excitations when
it is necessary. As the perturbation Hamiltonian we
assume that the same expression (2-12) is still adequate.
Actually this is an approximation. In the BCS model we
have an attractive interaction between electrons via
phonons, responsible for the superconducting transition.
This interaction would also be modified by the deforma-
tion due to the impressed wave, so that there should
appear an additional term in (2-12), which would bring
about the local variation of the energy gap. We assume
that this effect is small. Then the response of a super-
conductor may be obtained by simply extending the
method developed in the previous section.

The pairing of the states in the presence of scattering
is known to be (uf, —e$) if we define )p „(x)—= )p *(x).
Let us introduce the quasi-particle operators,

pn0 +nCnt 'VnC n4 ~ pn1 Q~C ~$ ~DnCnt
(4-1)u„=-,'(1+a„/E )i, v„=-,'(1—e„/E„)'*,
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7.=e-e"", ~=II (1+~-) (4-3)

l0) is the BCS ground state, y 10)=0, and the m's

here include the indices 1 and 0.
&p=C 'Q Q 'A r .X,y rt y;tl0)

(a) Longitudinal Wave

One can evaluate the first order response in just the
(4-2) same way as for normal metals:

j=0 mI& ~ ~ (m7'

X(0ly t

where E„=(e„+ep')&. The statistical operator for a where
superconductor is given by20

f(&) f(e )—
p(q, co) = —e'P(q, or) ~

'

dede' L& &(e,e',or) —2 F(q, e, e') 2e'—N(0)P(q, or), (4 4)

where L( & is the matrix element involving the coherence factors:

ee'W ep') t' 1 1
L' '(pe', ~)=-'I 1+, ILf(E)—f(~')7l, . +

EE' ) r E—E'—or —ig E E'+p—r+iri&

Jc ee %ep 1 1

, lL1-f(~)-f(E')7l, . +, . l. (4-5)
EE' j &E+E' or iver

—E+—E'+or+i@ &

21V(0)e'or 1
i+ E(q,or),

4po
(4-6)o (q,or) =—

where
p ep

I(q,or) = dEL1 —2f(E+or)7{t gr(E)+17T(e&—
e&) q)+fgr(E) —17T(er+ep) q) }

&0—(a

dEL1 —2f(E+or)7{Lgr(E)+17T(ep—er, q)+Lgr(E) —17T(—er —e,, q)}

Making use of the symmetry in e and e of the above expression, we get the following expression for the con-
ductivity:

+ I dEL1 —2f(E)7{Lgr(E)+17T(ep—er, q)+Lgr(E) —17T(er+ep) q)}. (4-7)
J,o

YVe defined

61= (E ep )'r ep=((E+o—r) ep 7*

gl(E) (E +Eor ep )/elep)
(4-8)

where for a negative argument we take (—x) i=ix&. In
the limit 60~0 this expression reduces to the value
given in (3-28).

In evaluating 0-I for the longitudinal wave we en-
counter the same kind of difficulty as in the problem of
the gauge invariance of the BCS theory. This is natu-
rally to be expected from the expression (2-13), which
involves a term identical in form to a longitudinal
vector potential. Since what we did to get III is merely
a coordinate transformation, the theory should be in the
absence of impurities invariant against this transforma-
tion. To ensure this invariance it is necessary to consider

not only the quasi-particle excitations but also the
collective excitations, just as in the case of the gauge
invariance. In the Appendix we shall give a proof with
the aid of the random phase approximation generalized
to finite temperatures that the theory is indeed invariant
against the canonical transformation when there are no
scattering centers.

In terms of the correlation functions (3-33)—(3-35),
the response to III is equal to

pz(q&or) =—e l dede {I (e&ie &or)Fr(q, c,c )

+Lp'(c, e',or)Fp(q, e,e')}——cVem, (4-9)

where L'=L—2{Lf(e)—f(e')7/(c —e')} and Lp is a new

type of matrix element given by

1 E'c+Ee' 1 1

, Lf(E)—f(E')7l
2 EE' &E E' or i' E E—'+or—+ir—l&—

1 E'~—E6' ( 1 1
L1—f(E)—f(E')7l, . —, . l

(4-1o)
2 EE' E E+E' or iv E+E—'+—or+irr )

'P J. G. Valatin, Nuovo cirnento 7, 843 (1958).
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The appearance of I.o for Ii 2 in contrast to L(—' for F~ may be understood from the fact that the first and second
term of Hr contains an even and odd power of momentum operators, respectively. With the help of (3-33), the
above expression may be rewritten as

pr(q, (o) =—e dade' L'& &(e,e',co) —1.0'(e, e',a&) F2(q, e,e')
M

g—e)") dade' L" &(e,e', (o)Fg'(q, e, e') ——cVeN. (4-11)

As was remarked above, in the absence of impurities the
first term would vanish if we had used the correct
matrix elements instead of the one given by the quasi-
particle excitations. Ke assume that this is the case even
in the presence of impurities. For a more rigorous treat-
ment one has to set up the theory of the collective ex-
citations in superconductors in the presence of scat-
tering, which is beyond the scope of the present work.
However, it is thought that the error which might result

from this unsubstantiated assumption would be of the
same order of magnitude as the direct contribution of
the collective excitations to the absorption of the
longitudinal sound wave, which was estimated by
Rickayzen to be negligible at least for relatively low

requencies m

Carrying out the e' integral in the remaining ex-

pression, we finally get for 0-,

where

e'$(0)~ (2 1

I
-~~+—~2 l~

(co 2(x )
60 00

d&L1 —2f(&+~)7g~(&)+2)~ dFLf (&+~) f(F)7gi—(F),
e0—co &0

(4-12)

(4-13)

e0 (F+~ F. ~ )F.+&a
dFD 2f(F+~)7—I +—IT(~~—

&2 q)+ I

—12'(~~+~2, q)
&0—co C2 6y) C2 613

i F.+co F ) (F.+a&
+

I
dFE1 2f(F+~)7 —

I +—12"(~~—~~ q)+ I

——I&(—~i —~2, q)
60 62 .tl ) El ~

(F.+co Z ) (8+co
2f«)7 I

+—IT(~2—~~, q)
—

I
—17'(~~+~2, q) . (4-14)

eo ft, )

In deriving (4-12)—(4-14) we have made use of (3-34) and the relations

(Q g+~ q

Lg (&)+17( — )=
I

—+

(F. F.+(u )
Le(&)—17(~2+~~) =~I—

C2 )

(4-15)

The above expression reduces to the correct normal value in the limit of 6O ~ 0.

(b) Transverse Wave

In the present method the conductivity for the transverse 6eld can be calculated from the expression

g2j (q, &u) = A (q,cv)) )' dade'L'~+&(e, e',(u)F3(q, e, e'),
m'c

(4-16)

F3(q, e, e') = I dy e '«r *&( lim (V*„—V* ')(V& —V~J„')II(x',y,y', x; e,e')), ,x' —+x
(4-17)

"G. Rickayzen, Phys. Rev. 115, 795 (1959),
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for the component parallel to A (A (1=0) which we take in the direction of the x axis. As remarked before, if the
scattering is isotropic the interference, or vertex correction vanishes in this case. Then,

1 p dy
E (0 ') = P-'L(&-(1) )). {G+(& '))-+(G+(& ))-(G-(e ")).j

(22r)' ~ (22r)'

1 3xmX
LS(e—e', I7)+C.C.j, (4-18)

(22r)' 4n
where

2 1
5(x,(I) = —(—1 ix—r)+s(x, (I) 1+ (1—i')2,

67 Oi272

where
ptp

2f(E+(o)j(Lg2(E)+1)5(&1 &2y (7)+Lg2(E) 1jS(&1+&2y I7)}1(o(a~)=
8Q

dEI 1—2f(E+(o)](Lg2(E)+1)5(e2—pi, q)+I g2(E) —175(—p2 —e,, q) }

with 5(x,I7) defined in (3-23). The final result is

o (,) (q, (o) = —(3cVe2/8mn(o)I(g) ((7,(o),

(4-19)

(4-20)

+ t dEI 1—2f(E)j(l g2(E)+1)5(e2—ei) I7)+Lgp(E) —1)S(e2+ei) I7)}) (4-21)
~,p

o b((g) (q, (o) = (3e'E/4mn)5((o, I7). (4-22)

Let us proceed to the evaluation of O-I. The second term of B~ is identical in form with the electromagnetic
interaction, so that this part, together with the "gauge current, " ÃeN, gives the following contribution to the
response current;

3xeXN p p dade'
L'(+) (p p Go)ttS(e p' q)+C.C.].

4n & ~ (22r)2
(4-23)j b'(v, ~) =

From the irst term of H~ we 6nd the contribution

with g2(E) = (E2+E(o+pp2)/pip2. This result can also be gotten simply by taking the Fourier transform of the Eqs.
(3-3)—(3-5) of Mattis-Bardeen's article. The above expression reduces to the correct value for normal state in the
limit of eo —+0:

3m BAN P I dade

jo (I7,(o) =i —
I L (p& ppp))

—LS(e p, I7) c.c.j 'L(p p )t 5(p p q g)+c.c.j
4(on ~ " (22r)2 r

Because of the identity

(4-24)

(p—p )Lp(p, p, )=(o(oL(~) (p, p, (o), (4-25)

the proof of which is given at the end of the Appendix, the second term of (4-24) exactly cancels jbr, so that we are
left with the term which vanishes for r —+ ~, as it should be. Lp'(p, p', (o) may be written under the integrals as

p'+p —p(o/E p'+ p+ p(o/E
L.=L1-2f(En (4-26)

E" (E (o i2))' E"— (—E—+(o+i21)'—
Thus we finally obtain

where
(7(,)1(I7,(o) = (3Ee2/8(onm) J(g) (q,(o), (4-27)

CQ (E+(o E ) pE+po E )~()4 ~) = dEL1 2f(E+~)3 I

—+—5(pi —p2, V)+I ——IS(pi+e2 V)
ep—co

(L'+(o E ) fE+(o E )+ ' dEL1 —2f(E+(o)j
I

+—IS(&2—&1 V)+I
e, ) 62 &l

t'E+(o L' i (E+(o E )
dEI 1—2f(E)j I +—IS(e2—pi, (t) —I

——IS(pi+p2, I7) (4-28)
Pi )

ln the limit of eo —+ 0, one can show that 0.
~&) ~ 0.~(~~.
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5. ATTENUATIONS IN SUPERCONDUCTORS

Since the 6nal integration in these expressions ob-
tained for 0 and o.l cannot be carried out analytically,
further discussions have to specialize in various limiting
cases. We first note that the frequencies of ultrasonic
waves available are much smaller than the gap fre-
quency except at T very close to the critical tempera-
ture. (The gap frequency is, say for tin at T=O.ST„
1.2)&10" cps whereas the highest frequency so far at-
tained is of the order of 10"cps. ) Unlike the problem of
the surface- impedance, we have a definite dispersion
relation in our problem, namely, co= Ip, which, together
with the fact that v,/vo 10 '&(1, simplifies our analysis
considerably.

(a) Longitudinal Wave: oo«oo(T)

I.et us first look at the imaginary part of 0- given by
(4-6) and (4-7). In order to estimate the first integral of
(4-7) we put the arguments of the T functions equal to
o~. This is actually not permissible unless qvo&)(2«oi)~,
but presently we are interested in the order of magni-
tude. Then, this term can be expressed in terms of
elliptic integrals and its contribution to a- turns out to be
approximately equal to

7reoE(0) ohio

[1—2f(«)].

approximations as above yield

6
cr2'I = ——— eo,

q/ (vo)

and oi' is proportional to (v,/vo)'. Substituting (5-1)—
(5-3) into (2-22) we get

ioolVvo 1 (ql)' tan '(q/) —1 2f(«).
p;. v, l 3 ql —tan —'(ql)

(5-4)

Therefore, the ratio is,

n, /u 2=f(«),

just as in a pure superconductor.

(5-5)

(b) Longitudinal Wave: oo) 2«(T);
g«(T), goo&(l; l = ~

In view of the recent progress in generating high fre-
quency sound waves, it may be of interest to study the
attenuation in the region of temperature just below Tz,
where co exceeds the gap frequency. For simplicity we

put l= oo. Further, since in this case qvo/«&)1 we may
set T(x,q) =or as in the extreme anomalous limit. Be-
cause co&2&0, a real part appears in the first integral of
(4-7), which corresponds to the direct excitation of
quasi-particles across the gap. It is approximated by

Therefore, compared to the first term in (4-6), which is
the Thomas-Fermi screening factor, it is at least smaller f p, ~
by v,/vo and is negligible. The remaining two integrals
are approximated by

~E[f(E+") f(E)]T(oo oii q)
e0

oi ( M

) Z (k) , (5-6)
oo E 2«)

since gi(E) approaches 1 very rapidly as E departs from
~0, an increase by a few co is enough to make g&

—1
negligibly small. Noting that «—oi& (2«M) l/a and
approaches oi as E increases, we may replace T(oo—oi)
again by T(oo). Thus, the real part of o is given by

where E and E are the complete elliptic integrals and
&=

( (oo/oo) —2]/[ (+/«)+2). We have expanded. f(E)
in terms of pE. The remaining real part of (4-7) may be
evaluated by the following approximations:

~E[f(E)-f(E+ )]g.(E)
1

Oi'—=o i/~o=3( —
) T(oo,q)f(«)—

Evo J q/

(v, y' 1 tan '(ql)
=6i —

I
— f(«) (5-1)

&vo ) ql 1—tan —
'(ql)/q/

6 e0

~00

dE E(E' ~o')'[f(E)-f(E+~)]

The imaginary part is equal to

o.,'= o o/o o———(3/q/) (v,/vo) . (5-2) X(exp[(yo+p'ooo) &]+1)-'=—2«p„(T)/p, (5-7)

In evaluating 0-~ we take advantage of the fact that cr-I'~

and 0.2' appear in the expression for the attenuation
constant (2-23) each multiplied by gi' and o,', re-
spectively. Hence 0-2' is more important. The similar

where p„ is the density of the normal component,

p (T)/p—:1—p (0)/it (T).4 We emphasize that this ex-

pression is valid only when o~&)oo(T) and Poo(T)))1.
Thus the ratio to the normal value, o.i„——orE(0)e'oP/q'vo
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is equal to

0'i ( or

=-;P., i
1+ iE(u)

tri|t ( 2ep)

—
I 1+

~
It(&) +I.(&)/I, (5-8)

ep & 2ep&

which is ot,/ot„ in this case. The first term represents the
extra absorption due to breaking up of the ground
pairs. An estimate of (5-8) for o)/ep(0) =1/10 seems to
give a peak just below Tz, but its height exceeds 1 by
only a few percent. For higher frequencies this effect
would become more noticeable.

where

3Ee'
a(t) —— (I.+Ip)S(or, q),

4QSSco
(5-9)

ttt ep

I,= dEL1 —2f(E+o))jgs(E),
~

CQ
—G)

dEt f(E) f(E+~)j-g (E)J,p

(5-10)

Similarly from (4-27) and (4-28) we get

3Ee'
tr(t) — S(or (t) tr)p'(t) ~

40.nS
(5-11)

Using the expression for the ratio

A& o~

Az o (~)

tr 1(t)/trN (trodi(rp) (tr 1(t) tr 1(t) + 2( tt)r2( it)r)
X (5-12)

1—(re/trp

and neglecting tr, /(rp, we get

A~ 0~ Ib op

A~ o(g) ~, co

GX 2
2

(5-13)

where o-' is the value of a pure superconductor at the
extreme anomalous limit. This ratio is clearly much
smaller than unity.

In the opposite case of Ipp((ep the mean free path
enters into the conductivities in a very complicated
manner, so that we have not been able to see whether
the discontinuous drop becomes small as gl —+ 0.

(c) Transverse Wave: o)(2ep(T)«qvp

If these conditions are satisfied, one can take the
extreme anomalous limit, replacing 5 factors by a con-
stant S(or, (7) in (4-21). Then we have

which leads to

o-g o.2 40, A—=1
0 ~ o~ 3''G) A.y

Because A/A& rapidly approaches unity below Tc,
a,/n„again drops to a negligible value.

5. CONCLUDING REMARKS

I et us first discuss the attenuation of longitudinal
waves. Most of the measurements have been performed
in the frequency range 30—100 Mc/sec, so that our con-
dition or«ep of Sec. 5 (a) is amply satis6ed. Our result is
then independent of q/ and fails to explain the observed
fact that (r,/a„decreases slightly more steeply with de-
creasing temperature, the smaller the value of q/. ' ' The
error due to the approximation (gi= 1) seems to be too
small to affect this conclusion. Two other assumptions
have been made in our calculation: the effect of de-
formation on the attractive electron-electron interaction
is ignored and the use is made of the result obtained
from the theory of collective excitation in the absence of
scattering. In these respects further improvement of the
theory would be necessary. It seems, however, that
speaking only of the theoretical side, there are other
factors that need to be taken into account before ex-
pecting any better agreement, such as the anisotropic
energy gap" and the scattering of quasi-particle excita-
tions by phonons.

An attenuation measurement at a microwave fre-
quency would be of considerable interest, because it
may be possible to observe the absorption due to the
excitations across the gap LSec. 5(b)$ as well as to study
the effect of the collective excitations.

In the case of a transverse wave our analysis has
shown that the attenuation due to the electromagnetic
interaction drops abruptly to a negligible value at Tz
owing to the appearance of the large value of o2. This
con6rms the qualitative explanation that the discon-
tinuous drop is due to the strong screening of the
transverse field by the Meissner effect. ' ' As pointed out
by Morse, ' the subsequent gradual decrease of 0., ob-
served seems to indicate two distinct processes for

2' I. M. Khalatnikov and A. A. Abrikosov, Advances in, Ph ysics,
edited by N. F. Mott (Taylor and Francis, Ltd. , London, 1959l,
Vol. 8, p. 45.

"R. %. Morse, T. Olsen, and J. D. Gavenda, Phys. Rev.
Letters 3, 15 (1959);4, 193 (Erratum) (1959).P. O. Bezuglyi, A.
A. Galkin, and A. P. Karolyuk, J. Exptl. Theoret. Phys. U.S.S.R.
36, 1951 (1959) I translation: Soviet Phys. -JETP 36(9), 1388
(1959l].

(d) Transverse Wave: qtrp«ep(T) f= ~

The conductivity o. in this case lias been given by
Khalatnikov and Abrikosov":
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attenuating the transverse wave, one electromagnetic,
discussed here, and the other due to some real metal
effects which may be described by a deformation po-
tential. If one assumes a phenomenological potential, as
in the work by Blount, this latter effect may be
calculated by a quantum mechanical treatment similar
to the present one.
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APPENDIX

For the purpose of proving the invariance of the
theory in the absence of scattering centers against the

canonical transformation leading to (2-13), it is more
convenient to resort to a formalism slightly diferent
from the one used in the text, which was developed by
Anderson" and Rickayzen" on the basis of the set of
linear equations of motion. We shall use the form given
by Rickayzen: for the detail of the derivations of the
basic equations and for the notation used, the reference
should be Inade to his article. Since only the case of zero
temperature was treated in the latter article we first
generalize the theory of random phase approximation to
finite temperature. The procedure is simple; one line-
arizes the equations of motion for the pairs of quasi-
particle operators by replacing e~ =c~ +c~, bl, =c ~peat

and b&+ by their average values at finite temperatures
instead of their expectation values in the BCS ground
state. One expects this approximation would become
worse as temperature increases. The resulting equations
of motion are as follows.

Lays, p+7)&+j= (Es+Ep,)y~,pcs,++(1—fp
—fp, )(Vg)(q)m(k, q)p(q)+ ,'e(kq)&-s(q) ,'l(k, q)—A—s(q)},

L&»+ j=—(E+E+) + o
—(1 f f+)fV () (») ()+' (»)& ()+ l(»)A ()}

L&,v + o'v o7=(E+. E)v +—.o'v o+(f +. f )( V— (q) —(k,q) (q)+l (k, q)& (q)+lP(k, q)A (q)},
[&,V»+v~+, ) ((= (E~p

—E.)v»+—V.+.r (f~. —fp)( V—~(q)~s—(k,q) p(q)+s~(k, q)&~(q) sP(»q)A s—(q)}.

Here VD(q) is the direct interaction between electrons, hence predominantly the Coulomb interaction. When we
calculate the effect of the perturbation Hl, we can drop terms with the direct interactions, since we shall use the
screened potential.

The second term of Hr, (2-13) is identical in form to a longitudinal vector potential coupling, so that invoking
the gauge invariance already proved we may replace it by an equivalent scalar potential ep =vs(duq '. Hence,
electively we have

where

Hr Qs h(k, q)(p(, '+ p——k'}*—ey'p(q),

1 ( (1P ( (li mN
h(»q)= —

& (
&+-

I
n

I
&+-

I

=—
2) E 2) . q~

(A-2)

Adding this to the Hamiltonian we can derive the equations of motion for the pairs of quasi-particle operators with
the driving terms and from them the equations determining the collective variables p(q), A (, (q), and B&(q) to the
6rst order in Hr. The driving terms in the equation for A ~(q) can be transformed as follows:

2PEQ 28$Q—m(k, q) fh(k, q)
—(('jS(+)——— (e),+,—e p)p(k, q)+ l(k, q) epS( ),

&(»q)Lh(»q) 4''jS(+)'=
2mQ 2mu

(e~+.—e~)l(k, q)
—P(»q) epS(-)'

where

S(~)= (Ep~,+Ep+o)+i))) 'a (Ep+,+Es o—) ir))——
S(~)'——(Ep~, Ep+(p+irl) 'a (E(p, —Es (d iri)— — —— (A-4)

We have used the following identities:

m(k, q) (E(~,+E),) = —p(k, q) (ps+, —e p)+2epl(k, q),

n(k, q) (Ek+,—EI)= l(k, q) (ep+, —e p)+2epp(k, q).

"P.W. Anderson, Phys. Rev. 112, 1900 (1959).

(A-5)
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In this way we can reduce the equations for the collective variables:

25$Q 4mB
p(q) =P (1 f(—, f)—+q) — (e)+, e—),)p(k, q)+r'I &),(q)+ Il(k, q)S( ) m(k, q)

I(: cvq q )

+(f),p, f)—,)—2m' 4mQ60 )
(e), ,—e),)l(k, q) —P A), (q)+ ~ p(k, q)S( )' e(k,q), (A-6)

q )
2ml / 4meeo)

m(k, q)+-,'i AI, (q)+ il(k, q)S(+) l(k, q)
q q

2mu ( 4mueo)
+(f),+, fI,) ——N(k q) —p A p(q)+ ~ p(k, q)S(~)' p(k, q), (A-7)

q
' '&

q

where we have omitted Ba(q), which is negligible because of the symmetry around the Fermi surface. In the last
equation the driving term for A &(q) can be shown to be equal to —4mueoq '. Therefore, if we take A &(q) to be

45SQ6og, we are left with

27sQ
P(q) = r,—((1—f —f +.)m(k q) p(k q)+(f +.—f )&(k,q)~(k, q)) (~ +.— )

G)g

=—
geo EQ. (A-8)

This completes our proof of the invariance.
For the transverse case, u q=0, it can be readily seen that the collective excitations are not important unless

U(K, k) is anisotropic. The invariance is maintained even if we limit our consideration to the quasi-particle excita-
tions. The proof rests on the relation (4-26) which may be shown to be true if one notes that in the present notation

and the identities
~ (&)& y(t)) =p(kyq)m(ktq) (1 f& fk+9)S( )~(k~q)+—(klq) (f& f&+Q)S( )~—

(k,q)( +.— )= —p(k, q)(&~.+& ),
&(k,q) (~~a —«) =~(k,q)%~+.—&~)

(A-9)
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