
RADIATION FROM Si UNDER STRONG —FIELD CON DiTiONS

77'K and 300'K, within experimental error, in the
range of photon energies 1.0—1.4 ev. The results at
300'K are in good agreement with those of Chynoweth
and McKay. '" Taking into account that hv0=1.093 ev
at 77'K, we conclude that there is no detectable contri-
bution to the radiation at 77'K in these experiments
from an exciton decay process. If the two processes
outlined above are jointly responsible for the radiation,
that from the intraband transitions must therefore
extend to energies &1.2 ev, so that the transition from
intraband radiation to interband radiation takes place
at energies considerably in excess of the band gap. In
this connection, from an analysis of the spectral distri-
bution of avalanche breakdown radiation in germanium,
%olff25 has concluded that the transition in germanium
occurs at an energy of 1.3 ev, i.e., approximately
twice the band gap energy.

Note added irt proof Afurth. er statement on the ab-

"P.A. Wolff, J.Phys. Chem. SoHds (to be published).

sence of exciton decay contributions to the avalanche
breakdown radiation at 77'K has been privately corn-
municated by A. G. Chynoweth. The critical field for
dissociation of excitons is estimated to be of the order
of the exciton binding energy (8&&10 ' ev) divided by
its effective radius (100A), i.e., 8 kv cm . It is thus
reasonable to expect the high field in the avalanche
region to dissociate the exciton, if formed, so that no
decay radiation is observed. The greatest field strength
investigated here in p-sr-tt structures was 3.7 kv cm '

(see Fig. 5), less than half the estimated critical field
for exciton dissociation.
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The band structure near a minimum at a point of no special symmetry is examined for energies small com-
pared to all band gaps except that to the next lower band. Spin-orbit coupling is included. The theory is
specialized to points having the three possible symmetries of electrons in Bi and further simpli6cations
appropriate to Bi made. The resulting nonellipsoidal energy surfaces are studied in some detail. An experi-
ment is suggested which is capable of distinguishing between the three possibilities. Fitting the model to
existing information is not carried out in this paper.

I. INTRODUCTION

HE interpretation of the very considerable body
of information bearing on the structure of the

conduction band in bismuth has usually been on the
parabolic ellipsoidal model of Shoenberg. '' In this
model, the electrons occupy six sets of ellipsoidal energy
surfaces. ' One set of ellipsoids is given by

&(1)= ( -P'+ -P'+ **P'+2 "P.p*)/2~, (1)

where x and s are chosen along a dyad axis and the
triad axis, respectively, and the crystal momentum y

~ Permanent address.' D. Shoenberg, Proc. Roy. Soc. (London) A170, 341 (1939).
2 D. Shoenberg, Progress in Lom-Temperatlre Physics, edited by

C. J. Gorter (Interscience Publishers, Inc. , New York, 1957),
Vol. 2, Chap. 8.' G. E. Smith, Phys. Rev. 115, 1561 (1959).

is measured from the position of the nearest minimum
in the conduction band. Two other sets are obtained
by rotation of &120' around the triad axis, the re-
maining three by inversion. Because one principal axis
lies along a dyad. axis, symmetry requires that the six
energy minima lie either on the dyad axes or on the
reQection planes normal to them. Typical values of the
o.;; are those derived from a combination of de Haas-
van Alphen'' and cyclotron resonance- data' ' by
Aubrey and Chambers':

n„=202, n„„=1.67, n„=83.3, n„,=8.33, (2)

J. S. Dhillon and D. Shoenberg, Phil. Trans. Roy. Soc.
(London) A248, 1 (1955).

~ J. E. Aubrey and R. G. Chambers, J. Phys. Chem. Solids 3,
128 (1957).

J.E. Aubrey (private communication), and thesis, Cambridge
University, 1959 (unpublished).



or in the principal axis system,

ay=202, o.2=0.83, +3=84.2)

with the principal axis 3 tipped 5.8' from the triad axis.
The Fermi energy derived from the de Haas-van Alphen
effect on the basis of this model4 is 0.0177 ev at O'K.

For a parabolic relation between energy and mo-
mentum to hold at the Fermi energy, the latter must
be small compared to the vertical energy gap to the
valence band. One can estimate from the sum rule for
the eBective mass that a value of n of order 102 re-
quires a band gap of order 0.1 ev. Since the Fermi
energy is some 5 times smaller than this, the Shoenberg
parabolic-ellipsoidal model (PE model) appears con-
sistent. Lax and collaborators, however, have uncovered

by various magneto-optic experiments' ' strong indica-
tions that the effective mass of electrons in bismuth is
energy dependent in contradiction to the Shoenberg
model. Lax" concludes, in effect, that the band gap
must be smaller than 0.1 ev, and that the Fermi level
must lie in the nonparabolic region of the conduction
band. Evidence supporting this smaller value of the
band gap derives from the optical absorption edge
observed by Boyle and Rogers" at 0.06 ev, which Lax'
interprets as indicating a gap E, of 0.02 ev, and from
the studies of Bi-Sb alloys of Jain, " who suggests a
value of 0.007 ev for Eg.

The problem of deriving the deviation from parabolic
behavior in the vicinity of a small band gap was solved

by Kane for InSb."I.ax' has taken over Kane's results,
modifying them slightly to apply to Bi, and proposes
the ellipsoidal but nonparabolic model

I

for the electron energy surfaces in Bi, where the o.,; are
similar in form to those of Eq. (1).I.ax has shown that
his model describes satisfactorily the observed energy
dependence of the effective mass. '

The criterion for the validity of Eq. (4) is that all

three principal components of e be large because of a
single small band gap. The values obtained by fitting
the parabolic model to experiment, Eq. (3), do not
satisfy this criterion, 0.2 being of order unity. Therefore,
the energy should be parabolic along axis 2, in con-
tradiction to Eq. (4). Accordingly, in Sec. II of this

paper we develop a treatment of the band structure
near a minimum which does not require that all com-
ponents of the effective-mass tensor be small. We use
symmetry and numerical arguments to simplify the

' R. J. Keyes et 0/. , Phys. Rev. 104, 1805 (1956).
B.Lax, Revs. Modern Phys. 30, 122 (1958).' B. Lax, Bull. Am. Phys. Soc. 5, 167 (1960).

'OW. S. Boyle and K. F. Rodgers, Phys. Rev. Letters 2, 338
(1959)."A. L. Jain, Phys. Rev. 114, 1518 (1959)."E.O. Kane, J. Phys Chem. Solids .1, 249 (1957).

results in Sec. III and propose there a nonparabolic
as well as nonellipsoidal model for the band structure
of bismuth which should describe most of the Fermi
surface to better than 5% accuracy. The details of the
energy surfaces are worked out in Sec. IV for the three
possible symmetries compatible with existing experi-
mental information. Reinterpretation of the experi-
ments in terms of the new model requires a lengthy
point-by-point analysis which will be reserved for a
subsequent paper, in which an attempt will be made to
reconcile a number of apparently divergent results for
both electrons and holes. However, in Sec. V a brief
discussion of the implications for experiment is given,
with emphasis on new experiments specifically designed
to distinguish between the present proposals and previ-
ous models. Implications for Sb and As are also
discussed.

II. BAND STRUCTURE NEAR A MINIMUM
FOR SMALL BAND GAP

Suppose there to be a minimum in the conduction
band (band index 1) of a crystal at a point ks of no
special symmetry within the Brillouin zone. To prepare
for our study of Bi, we allow the spin-orbit coupling to
be arbitrarily strong and assume the crystal to have
inversion symmetry. In that case, the conduction band
is doubly degenerate because of time-reversal symmetry.
Suppose further that the gap E, to the valence band
(band index 0, also doubly degenerate) at the minirnurn
is very small, whereas all other band gaps are large.
While the method by which we analyze this situation
is essentially that of Kane, " we shall follow more
closely the notation and procedures of Cohen and
Blount "

The model Hamiltonian we use for the band struc-
ture is

P2 x
K= +V+-'t'V'V+ I s&(~V,

2m 202$

where P is the actual momentum, V the crystal po-
tential, s the electron spin, and X the Compton wave-
length over 2x. The eigenfunctions of K are of the Bloch
form

(6)

with k the wave number, v the band index, and p=1
or 2 distinguishes the two independent eigenfunctions
degenerate by time reversal. I et us measure crystal
momentum p=-Ak relative to its value at the minimum
Akp and ask for the explicit dependence of energy E& on
crystal momentum p near the minimum.

To answer the question, expand the Bloch function
at k in the set of Bloch functions at ks,

np'

"M. H. Cohen and E. I. Blount, Phil. Mag. 5, 115 (1960).
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Inserting (7) into (6) leads to

I' pl
p + [C,+P p (Npl v[N'p')C„ I, =EiC„„(8)

2m) p

for the expansion coefficients, where e„ is the energy of
band n at kp and v is the velocity operator

v= P/m+ (X/2mc) s)&p' V. (9)

Since all band gaps are large except that to band 0,
only Cp, and C» are of order unity. All other coefficients
are small and need be calculated only to lowest order
in y with the result

equation:

kP—(Kp+Ki Ep)—E,

K (Ko—E.)—(I&l'+ l~l') j=o (18

The solutions of (18) are

Ei,p= ,' (Kp-+Ki —Ep)

~{I-:(E.+Ki—Kp)3'+
I

& I'+ III') ', (19)

where the positive sign goes with E1. To identify the
terms in (19), we go to the limit of small p, i.e., Ki —Kp
small relative to E, and [3['+[I[' small relative to
(E,)', and expand the root:

-p. (~&[vlo&')c„. p (~i I v[ip')c„.-c.,=g
P

Comparing (20) with

(20)

Kp= p ' (01 [
v

I 01)

P' (01[v[Np)(esp[v[01)+ +p 2'
2m np

p' (11
I
v

I nP) (na I
v [ 11)

+p P' ~ p
2m np

~=1 (oilvlii),

u=p (Oi[v[12),

Eg = 61 60.

(12)

The first term in Kp gives the slope of band 0 at kp,
which need not vanish as it does in band 1; the remain-
ing terms give the contribution of all bands other than
1 to the inverse effective mass at kp for band 0, and
similarly for E1. In this way we arrive at

Eo—Eg
~P (16)

I

0 t I
Xp—Eg —I* t*

E;1 0
t 0 X1

for K' after setting the zero of energy at the minimum
in the conduction band.

It can readily be verified that 3C' satisfies

(K')' —(KpyKi —Ep) SC

+LKi(Kp —Ep) —([&['+
I
m[') j1=0, (17)

where I is the unit matrix. Equation (17) is immediately
diagonalized; that is E1 and Ep satisfy the same

Substitution of (10) into (8) enables us to express Ei
as the eigenvalue of an effective Hamiltonian 3.", a
four-by-four matrix operating on C', a four-component
wave function with components Ct)o, Cp1, C1p, C11 in
that order. The form of K' can be simplified by use of
time-reversal symmetry as in Eqs. (38) and (39)
of reference 13, and its writing facilitated by the
abbreviations

1
Ei= (p ~.p),

2m

which also holds at the bottom of the band, we see that
the second term in (20) gives the contribution of band 0
to the sum rule for the inverse effective mass at the
bottom of band 1. Passing to larger p where I/I'+ [I['
becomes comparable to E„we can obtain the model of
Lax only if we suppose that Kpand Kp+Ki 'remain
smaller than E,. Equation (4) then follows directly
from Eq. (18). However, we shall show in the next
section that for certain directions of p, —Ep and E1
are comparable to Ep and hence possibly to E, in Bi.
Consequently Lax's model does not apply, and we must
work directly with the more complete Eqs. (18) and
(19)

III. A MODEL FOR BISMUTH

The experiments of Shoenberg' ' and of many others
have demonstrated clearly that the Fermi surface of
the electrons in Bi has either reflection symmetry in
planes perpendicular to the binary axes and/or twofold
rotation symmetry around the binary axes whatever
model is used to interpret them. Such rotation or re-
flection symmetry of the Fermi surface can result if
the minima of the conduction band lie at, on, or in any
symmetry point, line, or plane in the Bi structure
except the trigonal axis."All the symmetry points of
the Bi Brillouin zone are shown in Fig. 1 and listed in
Table I together with their locations, symmetry ele-
ments, multiplicity of distinct minima which might be
associated with them, and vanishing components of A

Lsee Eq. (21)7 required by symmetry. All those above
the line have the twofold rotation and/or reflection
symmetry required for the conduction band minima.
The points Z, K, Q, W, 5, V, and V have twofold rota-
tion symmetry and a multiplicity of 6. The points o., M,
U, and X have reflection symmetry and a multiplicity

'4 An erroneous limitation of the possible locations of minima
was made in reference 13.



TABLE I. Symmetry points in the brillouin zone of the bismuth structure.

Point

Z
E
Q8'

M
V
E
I.
SI
V
F

r
A
T

Location

Binary axis (BA)
Centers of edges not parallel trigonal plane
Projection of BA in trigonal face
Corners
ReQection plane (RP)
Intersection of RP and trigonal face
RP, edge center
Intersection of RP and hexagonal face
Center, hexagonal face
Intersection of RP and rectangular face
Center, rectangular face
Projection of BA on rectangular face
Projection of BA on hexagonal face

Center of zone
Trigonal axis
Center, trigonal face

Symmetry elements

Cg
C2
C2
C2
IC2
IC2
IC2
IC2
C2, I) IC2
C2
C2) I, IC2
C2
C2

2C3) 3Cg) I, 2IC3) 3IC2
2C3, 3C2
2C3, 3C2, I) 2IC3) 3IC2

Multiplicity

6
6
6
6
6
6
6
6
3
6
3
6
6

1
2
1

A2, A3=0
A2, A3=0
A2, A3=0
A2, A3=0
A1 ——0
A1 ——0
A1 ——0
A1=0
A=O
A1=0
A=O
A2, A3=0
A2, A3=0

A=O
A1, A2 ——0
A=O

of 6. The points I and X have both rotation and re-
Qection symmetry and a multiplicity of 3.

If the breakdown of the parabolic-ellipsoidal model
does not invalidate Smith's conclusion that there are
6 minima, ' we may be able to rule out the points I.and
X as possible locations. However, the differing be-
havior of

A= &01I vI01), (21)

for the three sets of points permits assigning the
minima to one of the three sets by an independent ex-
periment, as we shall show. In particular, A~ vanishes
for points having reQection symmetry, A2 and A3
vanish for rotation symmetry, and A vanishes for
points having both symmetries. These results for A
follow from the symmetry properties of the Bloch func-
tions at such a point ko, as studied in reference 13.
Additional consequences of the symmetry properties
are that Er, I ItI'+ IuI']/F,

&
and the effective-mass

terms in Eo all have the form given in. the right side of
(1) with principal axis x or 1 along the binary a,xis.

Symmetry arguments like the above can carry us no

further towards simplification and sharper specification
of the model. We now proceed along a direction sug-
gested by the actual numerical values obtained by
fitting the parameters of the parabolic-ellipsoidal model
to experiment. The small value of n2 in Eq. (3) suggests
that E varies very much more slowly with p in the
direction of principal axis 2 than along 1 or 3. This
implies that in the principal axis system of ItI'+ IuI'
the coe%cient of pp in It I'+

I
uI' either vanishes or is

of order 1% of the coefficient of pr2 or p32, which cannot
be explained by a symmetry argument. " Thus, while
the terms ItI'+ IuI' dominate the dependence of 8 on
pr2 and pp, the quadratic terms in Eo and Er dominate
the dependence of Er on p2. For

I p, I
and

I p&l small,
therefore, ItI'+ IuI' may be neglected in (19) giving
a parabolic dependence,

A', =E„ IprI and Ip, I
small, (22)

of energy on crystal momentum quite distinct from
that predicted by Kq. (4).

I.et us indicate all velocity matrix elements entering
our expressions which are of ordinary, i.e., atomic,
magnitude schematically by v. The extreme values of

I
vpr I

and
I up~ I

are of order E~, so that the contribu-
tions of Eo and Er are of order E)&&8)/hE where hE
is a typical band gap and of order 1 ev. Because E& is
of order a few hundredths of an ev, the pr and p3 de-
pendence of E& and of the quadratic term in Eo may
be neglected. As a further simplification, we ignore the
pm dependence of

I
t,

I

'+
I
u

I
'; we estimate the error to

be at most, 10% in the energy and probably less.
Our conclusions are summarized by the following

equations:

E p
—(p2'/2)))2')+A p,

——

Er p2'/2nt, ,
——

(23)

FIG. 1. Brillouin zone and symmetry points for the
bismuth structure.
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which are estimated to reproduce the linear dimensions
of the Fermi surface in Ir space to 5%, but may lead
to a 10% error in the Fermi energy. Insertion of Eqs.
(23)—(25) into (18) and (19) gives the dependence of E,
on p which makes up our model of the band structure
of Bi. For all locations of minima listed in Table I and
shown in Fig. 1, the cross sections of the constant en-

ergy surfaces perpendicular to axis 2 are ellipsoids with
axes along directions l and 3, but with centers shifted
away from the minima by an amount which may vary
with p&. The detailed properties of the energy surfaces
are derived from the equations of the model in the
next section separately for the three types of symmetry
under consideration (rotation, reflection, and rotation
plus reflection).

IV. CONSTANT ENERGY SURFACES

A. Rotation Plus ReQection Symmetry;
A Vanishes

I n. 2. Sketches
of E vs p curves for
the case of rotation
symmetry (case 8)
(a) E vs P1, (b) E vs
P2, (c) E vs P3.

(a)

(b)

(c)
E

Pp

When A vanishes, as is the case for minima at L or
X, Eq. (18) may be put into the simple form

Pl' Ps' 1 ( Ps'l ( Ps' &

II E+E,+ I
. (26)

2ml 2ms E, ( 2ms) ( 2ms' 3

The energy surfaces are ellipsoidal only for E signi6-
cantly less than E,. Otherwise the surface is such that
its sections normal to axis 2 are ellipses with axes along
directions 1 and 3. Its extrema along 2 are at & (2msE) '

as for the ellipsoidal case. However, the areas of these
normal sections vary differently with ps than in the
ellipsoidal case. The area of the central section (ps

——0)
may even be a local minimum, i.e, , the areas of the
normal sections increase with ps near ps

——0, provided
that

where
(30)Pl Pl++Pl

mlAl ( Ps
~Pl=

E, E 2m~
(31)

—,'mlA ls -'((01
I
t l I

01))'

I(» I~ I11)I'
(32)

The energy surfaces again have elliptical sections nor-
mal to direction 2 with axes along 1 and 3 and extreme
values of ps of &(2msE)&. The centers of the ellipses,
however, are shifted along 1 by APl, Eq. (31), the shift
vanishing a,t the extrema of ps and increasing quad-
ratically with decreasing lpsl.

The area of these sections normal to 2 is simply

y) 1 and E)E,/(y 1), —(27)
where

(27a)y =ms/ms'.

2s. (mlm, )l ( ps' )
2m &

x
I
E+ +E, I+plI E- I, (33)

( ps' l ( ps' l
2ms' J E 2ms)

Such a necking in of the Fermi surface in the vicinity
of the central section wouM give rise to a large period
in 1/H in the de Haas-van Alphen oscillations which
would be quite easy to observe. Inasmuch as no doubling
of the periods appears to have been observed in Bi for
H near axis 2, we should require that

y&1 or Er &E,/(y 1), —(28)

if we are to apply this model to electrons in Bi.

a formula which holds for the valence as well as the
conduction band. The sections exist for those values of
E and ps which give a positive (R when substituted into
(33). If pl is less than y, then 0', is positive for E positive
(conduction band) and Pss/2ms less than E. For E
negative (valence band), 8, is positive if ps /2ms is
such that

22

(1+a)& IEI,Es+ —Pl
2ms' 2m'.

B. Rotation Symmetry; A2 and A3 Vanish

%hen A2 and A ~ vanish but not A ~, as is the case for
rotation symmetry (points Z, E, Q, W, 8, V, and F),
Eq. (18) may be put into the form

(p')' p' 1 ( p'&+
2m, 2m, E, l 2m, &

x I E+ +E, I+pl E I, (29)—( p& 'I ( ps' 'i

2m, I, 2m, ).'
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p&=0

E vs p curves are sketched in Fig. 2. Note that the
maximum in the valence band is displaced from the
minimum in the conduction band by

ps =mt~ t/(1+4), (37)

(b)

(c)

pp

p)=0

and that the gap in energy between the bottom of the
conduction and top of the valence band is

E~=E./(1+&t) (38)

Principal sections of the energy surfaces are sketched
ergy surfaces for the

p) caseofrotationsym- in Fig. 3. Note the possibility of a lens-shaped Fermi
metry (case 8). (a) surface indicated by the section in the 1, 2 plane I Fig.

3(b)]. The de Haas-van Alphen effect, cyclotron reso-
Pl

nance, and geometric resonance experiments already
performed on Bi would not reveal such a distortion of
the Fermi surface from an ellipsoid.

C. ReQection Symmetry; A& Vanishes

When A~ vanishes but not A2 and Ae, as is the case
for reflection symmetry (points 0, 3E, U, and X), Eq.
(17) may be put into the form

Thus, the energy surfaces have maximum values of

Ipsl, i.e., are closed, in both valence and conduction
bands when y exceeds Pt. This remains true for the
conduction band when Pt&y but not for the valence
band, where, for both positive and negative E, 0, is
positive only as long as

ps'
I E,+ (1+Pt)E]

2m, '
(Pt/y —1)

Thus when Pt exceeds y the energy surfaces in the
valence band are not closed, and there is a saddle point
and not a maximum in the valence band, a situation
unlike that in Bi.

From Eq. (33) for 0', one can see that necking of the
central section (ps=0) will occur in the conduction
band if

y) 1+2Pt and E)Eg/I y —(1+2Pt)].

Thus, to apply our model to Bi, we must require that

pp ps 1 f ps+
2mt 2m, Eg ( 2ms)

ps' l ( ps' &
X I E+Eg+ —~sps I+Psl E— —

I
(39)

2ms' ) ( 2ms3

where ps', »s, and ps are given by Eqs. (30)-(32) with
the index 1 replaced by 3. The energy surfaces once
again have elliptical sections normal to direction 2 with
axes along 1 and 3; the centers of the ellipses are now
shifted along 3 by»s, see Eq. (31); but the extreme
values of ps need not be &(2msE)* for the conduction
band, as we shall show.

The area of the sections normal to 2 is

2w(mtms)l ( pss q

E, & 2m&

t' ps' l
&&

I
E+E.+ —~Ps I+&sl E— — I, (40)

2ms' ) ( 2m, )
y&Pt,

y &1+2P t or E&(E,/ Ly (1+2P,)]. —

(34)
for both valence and conduction bands. The condition

(3$) following from (40) that there be a maximum and not
a saddle point in the valence band is now

One more restriction upon the possible values of the
parameters derives from the requirement that the shift
of the centers of the sections normal to axis 2 must not
be so large that the section in the 1, 2 plane becomes
sausage shaped, a geometric feature which would readily
have been detected by the de Haas-van Alphen effect
but was not. This restriction on y,

Ps&y (41)

f(p )=p~'/2m (43)

A more perspicuous form for 6, is

O', = 2~(1+Ps) (mtms)'*E, 'LE—f(P2)]LE g(Ps)], (42)

where

y+ (2Pty) l(1 or EI.(A" /Ly+ (2P)y)i —1] (36)

is more severe than (35).

y-~ (p.+».)'
g(p) =«

1+Ps 2m)
(44)



ENERGY BAN DS I N Bi. I. NONELLIPSOI DAL MODEL 393

p.-(y-p)
Eg=Eg

'(1+p.)(y-p.)'

ps = 2tlssA-s'/Eg,

op, =—~,A,/(y —p,).

(45)

(46)

(47)

6, is positive in those ranges of ps for which the factors
(E f) a—nd (E g) are—both positive or both negative,
which are the ranges of ps spanning the constant-energy
surfaces. Four cases may be distinguished on the basis
of first the maximum value of g, E& of Eq. (45), and
second the associated value of Ap&, Eq. (47), the posi-
tion of the maximum. For energies both positive and
greater than Ef,, the energy surface consists of a single
piece enclosing electrons with Ps in the range & (2msE)'
for all four cases. As this appears to occur in Bi, we
must require that

bands. For energies between 0 and E& ()0), the energy
surfaces consist of a piece containing electrons in the
conduction band and a piece containing holes in the
valence band. The shape of each piece is like that
already discussed. For Bi-Sb alloys having a concentra-
tion greater than 5%, the electrical resistivity becomes
temperature independent below 25'K." Such behavior
would occur for a band structure like that discussed
here with Ep&E&. This case may also be of interest for
Sb, where the electrons and holes both appear to have
reflection and/or twofold rotation symmetry. "

(c) If condition (50) is violated but

(APs)'/2nzs) E„ (51)

then the maximum of g falls outside of f, the situation
depicted in Fig. 4(c). More explicitly, (51) is equiva-
lent to

or
E&&0, i.e., P&& (y—Ps) (Case a) (48a)

y&1+2p d p & (y —p )'/Ly —(1+2p )3.
E,~o, i.e., p, p(y —p,) and E»E„(48b)

if we are to apply Eq. (39) to Bi. The differences be-
tween the four cases, though not relevant to Bi per se,
may be important for Bi-Sb alloys and Sb. First, how-
ever, we discuss the properties of the energy surfaces
common to all four cases when E)0, E&.

tA"e note first that the energy surfaces consist of a
single piece but that the central section (ps=0) is no
longer an extreme section. For small y, p&, and p&, the
displaced extreme section remains a maximum. As
these parameters increase, the maximum can change
over to a minimum. The exact relation among the
parameters for the occurrence of this necking is compli-
cated and unprofitable to write down here. Secondly,
we note that a sausage-shaped Fermi surface" can
occur for large values of y, P&, and P& because of the
shift of the centers of the ellipses by Ape along axis 3.
Once again the criterion for this is too complicated to
write down. In Bi, presumably neither the neck nor
the sausage shape occurs.

Now we return to the differences between the four
cases:

(a) The condition

In this case, for energies between 0 and E& the energy
surfaces once again consist of an electron piece and a
hole piece. H E, and Es (E,&Es) are the common
values of f and g at their intersection, then for E&E,
and Et, (E&E& the energy surfaces are like those of
case (b). The electron surface lies between &(2nzsE)'*
along axis 2, and the hole surface is similarly bounded

by the two values of Ps for which g=E. There is a
point of contact between the valence and conduction
band at the energy E, and the point ps= —(2nzsE, )'*

Xsgn(APs), and a second point of contact at Es and

Ps ———(2nzsEs)& sgn(Ape). For E,&E&Es the electron
surface is bounded at one extreme by f=E and at the
other extreme by g=E, and similarly for the hole
surface, changing the geometry of the energy surfaces
somewhat from that of case (b).

(a)

ps &y ps— (49)

ps &1+y, (50)

so that f and g do not intersect LFig. 4(b)j.There is a
simple overlap between the valence and conduction

'5 We mean by a "sausage-shaped" Fermi surface one which is
concave-convex in the p2-p3 plane because of a large hp3.

holds, when the top of the valence band occurs at a
Qnite energy —E~ below the bottom of the conduction
band as for the other two kinds of symmetry LFig. 4(a) j.
In this case all the energy surfaces in both conduction
and valence band have the characteristics discussed
in the previous paragraph.

(b) Condition (49) is violated but

Fzo. 4. ps-dependence of f and g, the functions entering the
area of sections normal to p2. (a) Gap between valence and con-
duction bands. (b) Overlap. (c) Overlap with two points of
contact between the electron and hole energy surfaces. (d) One
point of contact occurs between the maximum in the valence band
and a local minimum in the conduction band.

'6 H. Juretschke and S. Friedman (to be published).
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(d) Because of the way we set up the model, the
minimum of f cannot occur within the curve for g (see
the Appendix), but, if condition (51) is violated, the
maximum of g at ps= —DPs lies within f, Fig. 4(d). Up
to energies somewhat greater than E, the energy sur-
faces are much like those of case (c). However, the
electron surface does not contact the hole surface again
at the energy E&. Instead, the hole surface vanishes and
a second electron surface appears at the energy E&.
Thus, although the conduction and valence bands come
into contact at the energy Eb and ps ———(2msEb)'
Xsgn(hps), the contact is between a maximum in the
valence band and a minimum in the conduction band
and not between two extended surfaces as at E . The
two separate pieces of electron surface coalesce at
p, = —hp& for energies equal to or greater than E,, but
a neck remains for a range of energies above E~.

V. SUMMARY AND CONCLUSIONS

In Secs. II, III, and IV we have set up and discussed
what we regard as the simplest model of the band
structure of Bi capable of accurately portraying de-
partures from the parabolic-ellipsoidal (PE) model.
In doing so, we have used only the observed symmetry
of the electron Fermi surface and the numerical values
of the parameters of the PK model.

The extent of the departures from the PK model de-
pends strongly on the ratio E&/E, . As discussed in the
introduction, the existing information about the value
of EF/E, is scarce at best. Since knowledge of EF/E,
is crucial, direct measurement of the absorptivity of Bi
in the infrared near where Boyle and Rodgers found the
decrease in transmission at 0.060 ev would be of very
great interest.

The existing experimental information does not dis-
tinguish between three possible kinds of symmetry for
the electron energy surfaces, twofold rotation and/or
reQection symmetry. The deviations from the PE model
are quite different in the three different cases, and ex-
periments set up to look for these deviations could thus
further restrict the symmetry of the Fermi surface.
One such experiment is the "tilt effect" in the ultrasonic
attenuation, ' "which permits direct measurement of
the Fermi velocity. The Fermi velocity so measured
will show inversion symmetry in case A, rotation sym-
metry in case 8, and reQection symmetry in case C, all
readily distinguishable by studying the tilt effect as a
function of orientation of magnetic field and direction
of propagation. In contrast, it would be very dificult
to infer these differences in symmetry from de Haas-
van Alphen, "' cyclotron-resonance, ' ' geometric-reso-
nance, '~ or anomalous-skin-effect' data. The anornalous-
skin-effect data, when interpreted on the PE model, do
strongly support 6 ellipsoids. Until we have explored
the effect of departures from the PE model on the

'7 D. Reneker, Phys. Rev. 115, 303 (1959).
"H. Spector, Phys. Rev. 120, 1261 (2960).

anomalous skin effect, however, it would be wise not to
rule out the rotation and reQection symmetry of case A
on this basis.

An overlap between the valence and conduction
bands and even points of contact between them can
occur if the conduction band minima have reQection
symmetry. Although such features of the band struc-
ture could have been observed in the de Haas-van
Alphen effect in Bi and were not, they may possibly
provide the explanation for the low-temperature be-
havior of the resistivity of Bi-Sb alloys. "This in turn
would suggest that the energy surfaces in Bi may have
reQection symmetry, case C, with Ep&E&. Case C may
also apply to Sb, where the electrons and holes both
appear to have one principal axis along the dyad axis."

The models do have a large number of parameters:
Ep, E„m~, m2, nz2', m3, and the angle of tilt, i.e., 7, in
case A, plus A~ or 8 in case 8, or plus A2 and A3 or 9 in
case C. Nevertheless, the amount of experimental in-
formation is considerable. Reinterpretation of existing
data together with the tilt effect and the infrared ab-
sorptivity should suffice to distinguish between the
possible symmetries and to give numerical values to the
parameters. The task of working out the theory of the
various experiments for the new model will be tackled in
a separate paper.

Finally, the model presents a single analytic expres-
sion for the constant-energy surfaces which permits one
to illustrate in a clear and simple way a variety of
general features of band structure, e.g., points of con-
tact, to name but one.
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ADDED NOTE

After the above was written, the author received a
preprint of a paper by Wolff" in which was developed
independently the two-band model of Kq. (4) proposed
also by Lax.' Wolff has made a detailed study of this
model and infers from the de Haas-van Alphen, cyclo-
tron resonance, and optical data that Ep=0.022 ev and
E,=0.042 ev in Bi. As emphasized in Sec. III of this
paper, the two-band model of Eq. (4) cannot be applied
directly to Bi because the effective mass is large along
axis 2. Nevertheless, our own independent analysis of
the experimental data had shown that the departures
from (4) discussed in Sec. IV do not signficantly affect
the magnetic energy levels for the specific orientation
of magnetic field used in obtaining the data analyzed
by WoIG, particularly for case A. Wolff's values for E&'I;

and E, should therefore remain unaffected by the
refinements introduced in the present paper.

"P.A. WolB (to be published).
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Support for Wolff's values derives from new inter-
band magnetoreRection experiments by Brown, 3&Iav-

roides, Dresselhaus, and Lax," who infer a value of
0.047~0.003 ev for E„ in excellent agreement with
that of Wol8.

The new magnetoreAection experiments demonstrate
that the departure from a parabolic E vs p relationship
is significantly less than is implied by Eq. (4) with these
values of Ep and E,. Less departure from a parabolic
E vs p relationship is implied by Eqs. (26), (29), or (39)
than by Eq. (4) so that the experimental results are in
accord with our present considerations.

Dresselhaus" has interpreted the transitions observed
in the magnetoreAection experiments as indicating that
case A hoMs, i.e., rotation plus reRection symmetry and
only 3 ellipsoids. The tilt effect would provide a valu-
able check on this assignment.

Supposing that case A holds, the observation by
Brown e] al."of equality of corresponding valence and
conduction band cyclotron masses to within 10% for
H along the binary and bisectrix axes would suggest
that nzs' and m& do not differ by more than 20%%uo.

Finally, Wol6's demonstration that models like these
are adequate to explain the value of 100 reported for
the dielectric constant by Hoyle" lends general justi6ca-
tion to such detailed studies as the present one.

The author is grateful to Dr. Wol6 for a prepublica-
tion copy of his paper.

APPENDIX

The model as set up presupposes the existence of an
ellipsoidal minimum in the conduction band at ks. This
need not be the case; energy surfaces which are roughly
ellipsoidal around ks at energies near the Fermi energy
are all that are required to fit the experimental data on
Bi. Only a very minor modification of Eq. (38) suKces
to introduce a point of contact with the valence band
as the minimum of the conduction band, viz. ,

"R.N. Brown, J.G. Mavroides, M. S. Dresselhaus, and B.Lax,
International Conference on the Fermi Surfaces of Metals,
Cooperstovrn, 1960 (unpublished).

"G. F. Dresselhaus, International Conference on the Fermi
Surfaces of Metals, Cooperstown, 1960 (unpublished).

FxG. 5. p2-depend-
ence of f and g when
no ellipsoidal mini-
mum occurs in the
conduction band (see
Appendix). (a) One
contact is between
maximum and mini-
mum. (b) Both con-
tacts are between
maximum and mini-
mum. (b)

E()s(Ape)'/2nzs, (58)

holds, the minimum of f occurs within g as illustrated
in Figs. 5 (a) and (b). In either of these cases, the energy
surfaces can have two hole pieces for E&E„one hole
plus one electron piece for E &E&E~, one hole plus
one electron LFig. 5(a)] or two electrons LFig. 5(b)]
for E~&E(E~, and one electron for E&E&.

Et

g

Pi' (Ps')' &+Ps
+

2m' 2m3 Eg

p, '=p, +d,p„d p, = (m,A,/E, ) (E f), (53)—
Ps =-,'msAs'/Eg

=-„'((oil~,lol))s/l(ol l~, Ill) ~s, (5&)

f(p ) =p '/2~, (55)

g(p, ) =E,—s(ps+Aps)'/2ms, s)0, (56)

«=EgV/(~+Ps) (57)

We now regard the parameter y as disposable inde-
pendently of hps, which was not so in case C(d) dis-
cussed previously. Thus, if


