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The relationship between the properties of the propagator of
an unstable particle and the observation of mass and lifetime is
considered. For illustrative purposes a model of a scalar (or
pseudoscalar) particle (8) weakly coupled to two pions is treated.
The propagator is shown to have a simple pole on the second
(unphysical) Riernann sheet and it is assumed, as suggested by
Peierls, that this is generally the case. Sy analysis of a prototype
experiment in terms of wave packets, it is shown that the measured
mass and lifetime are determined by the real and imaginary parts
of the pole, respectively. Nonexponential terms occur in the life-
time curve, as is well known. These are shown to be related to the
uncertainty in the time of the production or detection event under
normal circumstances. This conclusion is similar to those of Levy

and of Schwinger, but more closely related to experimental con-
ditions. In particular it is found that the wave packets introduce
a "Inass filter" in a somewhat different manner from that sug-
gested by Schwinger.

Under special conditions a t & term may occur in the amplitude
but would be unimportant in magnitude for, say, the decay of a
strange particle. It is noted that such nonexponentia] decay curves
might occur for certain low-energy nuclear processes.

Consideration is also given to the treatment of two degenerate,
unstable particles, such as the neutral E mesons. The general
method for handling the problem leads, in the weak-coupling
limit, to the same result as the Wigner-Weisskopf method.

1. INTRODUCTION

V ARIOUS aspects of the treatment of unstable
particles in quantum Geld theory have recently

been discussed by several authors. ' ' From these dis-
cussions, several questions have emerged. Although it is
well established on the basis of the uncertainty prin-
ciple that a measurement of the mass of an unstable
particle will not lead to a unique answer, it is neverthe-
less possible to pose the problem of defining some quan-
tity, to be called the "mass" of the particle, which
locates a focus for the mass distribution. It has been
suggested by Peierls, ' by Matthews and Salam, ' and

by others that the definition of this quantity should be
related to the spectral function of Lehmann' defining
the propagator. In particular, Peierls suggested that
there is a pole in the lower half plane of the second
Riemann sheet of the propagator, and that the real and
imaginary parts of the pole serve to define the mass and
lifetime of the particle. The existence of the pole in the
case of the Lee model of an unstable particle has been
clearly demonstrated by Levy4 and we shall demonstrate
it below in perturbation theory applied to a highly
simplified model of the decay mechanism of the 8

particle.
When the form of the propagator is given, it is gen-
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erally assumed that the history of the particle may be
described in terms of the time-dependence of the pro-
pagator. This leads not only to the characteristic ex-
ponential decay of the particle, but also to certain
additional terms decreasing as inverse powers of the
time for sufficiently large times. In particular, there is
associated with the branch point in the propagator,
following from the possible decay or dissociation of the
particle, a characteristic asymptotic time dependence
proportional to t '(for S-wa=ve decay). The question of
the measurability of such behavior naturally comes to
mind and in this connection both Levy' and Schwinger'
have considered to some extent the inQuence of pro-
duction and observation mechanisms on the asymptotic
time dependence. We shall look further, and somewhat
more directly, into these matters below. It will be
shown that the distribution in time is not given directly
by the time-dependence of the propagator but, instead,
by a function incorporating the form of the wave
packets which serve to express the experimental con-
ditions. Under "normal" conditions, i.e., when the
energy spectrum of the production process is reasonably
limited, the nonexponential time behavior is governed
entirely by the time distribution of the production and
detection events. On the other hand, when the produc-
tion and detection processes encompass a wide energy
range, overlapping the branch point in the propagator,
the t & term should occur. However, in the event that
the instability of the particle is due to a weak inter-
action, the coeKcient of this term is so small that the
probability of the event corresponds to the order of
magnitude of cross sections for weak-interaction events
Lsuch as production of A+2sr by a pion-nucleon colli-
sion below the threshold for (A,E) production(. If a
strong interaction is responsible for the instability, a
measurement of the chronological behavior is not usu-
ally feasible.

For illustrative purposes, attention will be directed
to the simple model of 0 decay mentioned above al-

0
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though the results are clearly much more general. The
properties of the 0 particle are of particular interest in
this connection because a direct measurement of the
difference in masses between the two particle species,
Hi and 82, is feasible. Just how the mass difference be-
tween two unstable particles can be sharply defined is
exactly the question concerning a sharp definition of
mass that was raised above. It will be shown that the
quantity being measured is the shift in the real part of
the pole in the propagator, as expected.

2. STRUCTURE OF THE PROPAGATOR

The model to be used as the basis for our discussion
of the structure of the propagator is that of a scalar (or
pseudoscalar) particle, which we call the 0 particle,
subject to a direct weak interaction of strength g con-
verting it into two pions. This is the only interaction
that will be included in the considerations of this Sec-
tion. The inhuence of a mass degeneracy, such as occurs
for the physical 0 particles, will be treated in Sec. 5.

The propagator of the bare 0 particle is

ZF(k') = lim [s—Mp'] —',
c2+ bE

where 3fp is the bare 0 mass and k is the four-momentum
with metric chosen so that k' is positive for timelike k.
The propagator corrected for the coupling to pions is
denoted by AF'(k') and

To generalize the discussion, we write

f(x&ip) =u(x) Wiv(x) (7)

and note that in the special case described by Eq. (6),

&+[I—(4m /x)]'
u(x) =g'[1—(4m'/x)]& ln («)

1—[1—(4m'/x) ]'
a11d

v (x) =v.g'[1—(4m'/x) ]b. (Sb)

The spectral function p(x) for the propagator is
dehned by'

,p(x')
F(s) = dx'

s—x'
(9)

where F(s) is given by Eq. (4) and b' is the branch
point for f(s);

(10)

in the special case. Since

F(x+ic)—F(x—ip) = —2v-ip(x), (11)

upper and lower half-planes are (x)4nz')

f(x~i.) =g [1—(4 /x)]:

1+[1—(4''/x)]-'*X» wi7r . (6)
1—[1—(4''/x) ]-'

Ap'(k') = lim [s—MpP —II*(s)]—'
Z~k2+i E

(2)
according to Eq. (9), we find by means of Eq. (4) and
Eq. (7) that p(x) is given by

where II*(k') gives, in Dyson's notation, the proper
self-energy contribution to the propagator. To lowest
order in g' (the pion bubble diagram), straightforward
calculation of II* ields

2v.ip(x)=2iv(x){[x—M' —u(x)]'+v'(x)) '. (12)

Using, for example, the expressions Eq. (8) for u(x) and
v(x), we may define p(s) for complex s. The roots sp and
op* of

[1—(4m'/k')]l+1
II*(k') =8M'+g'[1 —(4m'/k') ]' ln

[1—(4m'/k')]-' *—1
and

sp —M' —u(sp)+iv(sp) =0

sp*—M' —u(sp*) —iv (sp*) = 0

(13a)

(13b)
for k'(4m'. 6M' is a logarithmically divergent real
constant which may be incorporated into the mass re-
normalization in the usual way. If

M'= MpP+53P,

we may write Eq. (2) in the form s3pP+ u (M') iv (M')— (14)

then dehne poles in p, provided that they exist. In fact,
for small coupling constant g, I and v are small compared
to M'; hence sp=3P and the positions of the poles to
first order in g' are

where

Ap'(k') = lim F(s),
z~Ib2+iE

F(s) =[s—M' —f(s)] '

(3)

(4)

and its conjugate complex, op*.

These poles in p may also be interpreted, following
Peierls' suggestion, ' as poles on the second Riemann
sheet of the function F(s). Since

and f(s) is de6ned in the complex plane cut along the
real axis from s=4nz' to ~ by

[1—(4~ /s)]&y1
f(s) =g'[1—(4m'/s)]& ln (5)

[1—(4m'/s)]' —1

The boundary values of f(s) on the cut from the

'( )r= xF(x+ip) = [x M' u(x—)+iv—(x)] ',

the continuation of the propagator into the lower half
plane has just the pole sp given by Eq. (13).At the same
time, the distribution p(x) has the form assumed by
Matthews and Salam. ' The question of whether the
mass and lifetime as determined by experiment are
related directly to sp (Peierls) or to moments of p
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(Matthews and Salam) is concerned with the nature
of the measurements, which is taken up in Secs. 3 and 4.

3. ANALYSIS OF THE PROTOTYPE EXPERIMENT

The prototype experiment for measuring the. mass
and lifetime of an unstable particle can be described as
follows: Two particles such as the pion and proton
collide to produce the unstable particle (8), possibly in
association with another (such as a hyperon which is
taken to be stable for the purpose of this discussion).
The 0 either decays or interacts with an additional in-
cident particle after some time has elapsed. The corre-
sponding Feynman diagram is indicated in Fig. 1. We
take all particles to be scalar particles for the sake of
simplicity. The only essential feature of this diagram
is that there are two vertices connected by a single
internal line which describes the virtual 8 particle. We
denote by p, the total 4-momentum of the external lines
coming into the right-hand vertex and by p, the total
emitted 4-momentum. Similarly p,

' and p, ' refer to the
external lines at the left-hand vertex. Note that the
fourth component of p,;, say, includes the internal
energy of the particles incident upon the one vertex.
All other internal variables are denoted collectively by
q;, q„q, and q, ', respectively.

The result to be expected from an observation of the
above type may be obtained from the corresponding
element of the 5 matrix. However under normal condi-
tions the incoming and outgoing particles are not in
plane wave states but in wave packets; hence we wish
to determine the 5-matrix element between states
described by appropriate packets. The amplitude of the
packet describing the collection of external lines enter-
ing the right-hand vertex will be denoted by P, , and the
amplitudes associated with the other sets of external
lines will be tP„g,', and P.', respectively. The packet iP;

must describe, at early times, localized fields which are
progressing toward a common meeting point r. Let us
assume that, in the absence of interaction, the packets
would meet at this point at time t. Then the 4-vector
x= (r,t) denotes the space-time location of the center
of mass of the incoming system at the instant of colli-
sion. We denote the Fourier amplitude of the packet
at this instant by 1t,(P,,&,) exp( —ip,"r). At an arbi-
trary time T, the Fourier amplitude of the noninteract-
ing packet would be |t,(p;,rt;) expLip,"(X—x)j, where
X= (O,T). In a similar fashion, we may write P, (p„it,)

XexpLip, (X—x)j for the packet of outgoing waves
which extrapolates back to the same space-time point
x of the initial collision. Finally, if x is the space-time
point of decay or final collision, the packets at the
left-hand vertex have the amplitudes' f,'(p, ',it )
XexpLip, ' (X—x')] and 1t,'(p, ', it, ') exppip. ' (X—x')].

The 5-matrix element between the states described
by the packets is

S=) dp' dit d'k f,'*Q,*I"b(p,' p,' —k)—
J

X6p'(k')6 (p; p, k—)I'iP,—Q,
'

expL —i (p,'—p, ')

(X—*')—i(p.—P') (X—~)j (15)
with

dp =d4p, 'd4p, 'd'p, d4p,

The vertex functions F' and 1 may be taken to be
constant since the vertex interactions take place over a
region which is extremely small compared to the dis-
tance traveled by the unstable particle.

The essential features of the packets are described by
the function

(k', k) =I"I' ~d ~d'p, 'p, '*(p,', ,')p (p, ' k, )—
X~ d'P' 4'.*(P' k, n.)4'(P*—n') (16)

In terms of p, Eq. (15) becomes

with

S=)t d'k y(k' k)6 '(k') e"& (17)

(18)
We shall write

(p, r), —

where

S=~I d'k exp(ik p)I(k, r), (20)

and note that v- is positive since we intend that the
process progress from right to left in the diagram of
Fig. 1.

We separate the space and time dependence of 5 by
writing

I(k, ) = ~dko q (k', k) 2 & (k')e—"o'. (21)

The significant question now concerns the behavior of
S as a function of $ or, more specifically, the behavior
of I as a function of r. The probability for an event in

I'zo. 1. Protype of production and detection events. The dashed
line represents the unstable (8) particle.

When dealing with a decay process having no particles incident
on this vertex, we simply set P =B(p ).
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we may now rewrite Eq. (21) as

M2,2+~&

«(.+ks)—:t(z,k)F (.)
2 MI2+ j~

Xexp/ —i (z+k') ir), (24)

where F(z) is the function appearing in the expression
Eq. (3) for z),s'(k'). The branch point of F(z) occurs at
b' and we must distinguish the case for which b' lies
between M~' and M2' from the more usual situation in
which M~' and 3f2' lie close together and well above b'.
Unless otherwise specified, it is assumed that M~'
&Redo(~2'.

For the usual case the path of integration is that
shown as I', between M~' and M2', in Fig. 2. It is as-
sumed that the upper limit, 3f&', on the wave packet
spectrum lies below any other branch points occurring
in F(s). Otherwise the physical mode of dissociation
characterizing these branch points would also occur in
the reaction. The path of integration is now deformed
as indicated in Fig. 2.

The continuation of F(z) to the next Riemann sheet
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I zo. 2. Path of
the integration in
the "usual" case,
&'&~P &~P.

which incoming packets collide at x to produce a virtual
8 which then decays or interacts with a packet at x'
to yield the specified outgoing state is given by ~S~'.
Hence it is appropriate to designate by S(g) the ampli-
tude for such an event.

An evaluation of I(k, r) requires some knowledge of
the functions y(k', k). We assume that the energy spec-
trum of all incident particles is limited to a finite range
of energy. Consequently the function p is distinct
from zero only for 4' within certain bounds which we
take to be 3fj' and 3f~'. The crucial property of y will
be the manner in which it vanishes at 3E&' and 3f2'. We
take

q (k', k) = (O' —M ') "(k'—M ') "4 (k' k)/I!,
M,s&k'&M, s (22)

to(k', k) =0, otherwise.
The symmetrical behavior at 3f&' and M2' is chosen

only to simplify the algebra. C(k', k) is taken to be
analytic in k' over the domain of interest.

Setting

on passing through the cut is denoted by Fzz(z),

Fzz(z) = [z 'M—' I—(z)+in(z)$ ' (25)

a,ccording to Eqs. (4) and (7). It is assumed that N(z)
and n(z) are analytic within the domain of deformation.
Fzz(z) has a pole at zs given by Eq. (13a); hence Eq.
(24) becomes'

I= —xi(zp+k') itp(zs, k) expL —i(zs+k')lr]
+Js(r, k)+Jz(r, k), (26)

where
1

J;(r,k) =- dz(z+k')-lp(z k)Fzz(z)
2~a;

XexpL —i(z+ k') lr]. (27)

The paths I'; in Fig. 2 are dered by allowing co to
range from 0 to ~ for j=i and from ~ to 0 for j=2
in the expression

z = $ i(u+—(M,s+ k') l$' —k'.
Therefore

J;(r,k) = (—1)'i exp[ —i(M'+k')ir]

d(v q (z(co),k)Fzz(z(~))e "'. (29)

An asymptotic expansion of J(7,k) for large r may
be obtained by substituting y=cor for the integration
variable and expanding the integrand in powers of r '.
Because q has the form indicated by Eq. (22), the lead-
ing term in the expansion is found to be

J,(r k) — ( 1)zt~+z& (ir)- t~+'l

X (M,'—Mz') "2"(Mz+k~)""4 (M' k)
XDp'(MP) expI i(M'—+k')ir5, (30)

when use is made of Eq. (3). The higher order terms in
r ' involve derivatives of Fzz(Mzs) and it can be seen
from the form of Fzz(z), Eq. (25), that these are of the
order of /2M;/(M ' M') jAz '(M ')—= (AM) 'Az ', where
AM=M —3f;. Therefore the critical time interval in
the asymptotic expansion is of the order of (z),M) ',
namely, of the order of the uncertainty in the definition
of the time of arrival of the wave packets. It will be
very short compared to the lifetime under normal
conditions. '

We turn now to the less usual case in which the in-
cident spectrum overlaps the branch point: M~'&b'
&Mss. Then the path of integration for Eq. (24) is
shown as I' in Fig. 3, and the path is deformed. as
indicated.

The result differs from Eq. (26) only in the contribu-
tions of the paths I'~' and I'~, the former lying on the

~ The propagator has been renormalized {wave function re-
normalization) so that F(z) = (z —so) ' in the neighborhood of
the pole.' It follows that the asymptotic form of the integrals J; may
be used for values of r smaller than or comparable to the lifetime,
as well as for much longer time intervals,
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FIG. 3. Path of
integration for MP
&b~&M,2.
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second Riemann sheet and the latter on the physical
sheet. Thus, the addition to Eq. (26) is

1
Ch(z+k') —'*q (s,k) t J n(s) —F(s)]

2~v '

Xexp[ —i (s+k') lr$, (31)

where the path P&' is now defined by

z = f—i(g+ (b2+ k2) -*'$2—k2

From Eq. (11) we fmd

Jb ———22r exp/ —i(b'+k')~r7

(32)

f
X d~ q (z(~),k)p(s(~))e '. (33)

where the "reduced width, "y', is a regular function of
s. Then the integral is asymptotically

(b2+ k2) -,'~2 (b2)
bJ(r) )k= ( 22ri) 'r l-

Lb2 ~2 I(b2) ]2

X &p(b' k) expL —i(b'+k') '*r] (35)

In this case the parameter in the asymptotic expansion
is rQ, where Q=3f b is the energy rel—ease on decay of
the unstable particle.

The asymptotic expression for I in the event that the
mass spectrum overlies the branch point is then

I=—2riq (sp, k) (zp+k') —b expL —i(zp+k')br j
+J2(r,k)+J2(r,k)+Jb(r, k). (36)

The asymptotic behavior of the integral is controlled
by the manner in which p(x) goes to zero at x=b'
rather than by the form of the wave packet (q is
assumed to be regular at b') as it was in the usual case.
The behavior of p(x) depends in turn, on the behavior
of v. (x) near x= b', as can be seen from Eq. (12). Follow-
ing the suggestion of Eq. (Sb), we assume that for the
general case of an S-wave threshold

(34)

(rhM) —
& "+'& (37)

where AM is, as before, the order of magnitude of the
uncertainty in the experimental mass spectrum. For 7-

of the order of the 0~ lifetime this ratio is 10 "("+"if
the mass is determined to 0.1%. In the probability dis-
tribution, ~S~, the interference term will vanish after
averaging over a very small time interval as a conse-
quence of the time dependence of the relative phases of
the exponential and J; terms. Hence a measure of the
contribution of J, to the observation is the square of
Eq. (37), which is very small.

The Jb terms in Eq. (36) appear only when the ex-
perimental mass spectrum overlaps the branch point.
This is a consequence of the natural cutoff in the spec-
trum introduced by the threshold for dissociation of the
unstable particle. Its form is governed by the behavior
of the propagator; hence it is not very sensitive to
experimental conditions other than the important con-
dition on the location of the mass spectrum. "For just
this reason, the possibility of actually detecting the
term is of soxne interest.

The r ' dependence may be understood in the follow-

ing way. If a particle is produced at a point x having a
velocity between v and v+dv, it will appear after a time

"Note that the condition can be satisfied by considering the
interaction of a pion, say, with a nucleus producing a A. particle
and a virtual tI. The propagator discussed here would then provide
a description of the virtual 81-component of the 0 field. This would
interact with mat ter as a (virtual} 8, producing another A although
the energy might be below the threshold for production of a real
0 or even below the 2m threshold, which defines the bra~ch point.

4. INTERPRETATION OF THE ANALYSIS

The expressions Eq. (26) or Eq. (36) for I(r,k) are
now to be inserted into Eq. (20) to obtain the S-matrix
element. The matrix element is then made up of two
distinctly diGerent types of terms, those having an
exponential v.-dependence and those depending on some
inverse power of 7. The exponential terms are governed
by the location of the pole so. In particular, the decay
rate of the amplitude for fixed momentum k is
2 Im(sb+k2)l, as would be expected. Correspondingly,
Re(so+ k') & determines the phase of the decaying
amplitude so that Rezb may be defined as the (unique)
mass of the unstable particle.

The terms J~ and J2 proportional to r '"+') have a
very simple explanation. They arise as a consequence
of the way in which the mass spectrum is cut off, as
shown in Eq. (22). But the amplitude of the time dis-
tribution associated with this mass spectrum is also
proportional to v '"+') for large 7-. Hence these terms in
I are just a manifestation of the uncertainty in the time
at which the interactions take place. They can, of
course, be modified by changing the form of the wave
packets describing the reacting particles.

The magnitude of these terms relative to the ex-
ponential term is roughly
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v within a spherical shell of radius vz centered on x. The
thickness of the shell will be ~de. The probability that
it will be found within a small element of volume
within the shell is inversely proportional to the volume
4~7'v'd~ of the shell. Hence the probability amplitude
is proportional to 7:.Therefore the entire amplitude 5,
given by Eq. (20), will be proportional to r l if the
location of the center of mass of the packet is speci6ed
to be within a small volume centered at r'. The addi-
tional factor v ' appearing explicitly in J& results from
the fact that tao particles are involved. "The contribu-
tion at the branch point corresponds to production of
two real pions at r and both znust arrive within the
element of volume at r' in order to produce the desired
reaction.

The order of magnitude of the amplitude relative to
the exponential term is

(38)

where X is the decay rate of the unstable particle

X=r (M')/M, (39)

and Q=M —b is the energy release on decay. Since
X&(Q(}/Q= 10 " for the 8 particle) the ratio Eq. (38)
is extremely small when r=X '. Since again, the quan-
tity to be observed is proportional to the square of
Eq. (38), the probability of observing the effect in
competition with the exponential decay is very small
indeed (10 ")

In general, the eBect in question has a probability
of the order of (X/Q)'. For it to be observable, the width
X must be of the order of Q. Even for X/Q=10 ', the
detection of the deviation from an exponential decay
would be dificult. Resonances are known for which the
width is of the same order as the Q value, for example,
the (3~$3~) nucleon isobar. The difficulty in these cases
is that the time scale is too short to permit a detailed
measurement of the shape of the decay curve. For the
sake of discussion we may assume that such a measure-
ment requires a lifetime greater than 10 " sec, or
X(0.1 ev. Then a reaction with Q(1 ev would be
required.

It may be worthwhile to note that for a number of
nuclei there are slow neutron resonances which seezn to
satisfy these conditions. The decay curve of the corre-

sponding compound nucleus produced in the proper
fashion should be nonexponential in character.

Except under very unusual circumstances it is clear
that the chronological history of the particle has the
expected form of an exponential decay to a very good
approximation. The mass of the particle, which deter-
mines the phase of its amplitude, is Resp and the life-

time is (2 Imso)
—'.

G(s) =sl —M' —f(s), (40)

where I is the unit matrix. In the gi, 82 case, G will be a
2&(2 matrix but we need not limit attention to this
example. Note that although Mo' is a multiple of the
unit matrix, 3P is not. The propagator is now also a
matrix defined by Eq. (3) in terms of

F(s)=G '(s). (41)

Similarly a spectral matrix p(x) may be obtained from
Eq. (11).

As before, the extension of the matrix F(s) to the
second sheet, i.e., the continuation Fzz(s) of F(@+i')
into the lower half plane, is expected to have poles at
points s . We address ourselves to the problem of locat-
ing the poles and determining an appropriate repre-
sentation of the matrices.

Our assumption is that in the immediate neighbor-
hood of s, Fzz has the form

where 1} is a constant matrix and Q (s) is regular at
s= s . The poles s„are roots of the equation

detGrr(s )=0. (43)

To show this, Eqs. (41) and (42) are combined to give

(s—s ) rGzz(s)Q +Grr(s)Q (s)=1 (44a)

S. THE CASE OF DEGENERACY

In connection with the 0~, 02 problem it is of some
interest to consider the case of a mass degeneracy be-
tween two or more particles. The degeneracy in ques-
tion is removed by the weak interaction, so that the
mass operator II* is in general a matrix connecting the
degenerate states. For example, if the mass operator of
the 8 particle is calculated it will be found to have terms
connecting it to the 0. The 8~ and 02 particles are to be
defined in such a way that they are uncoupled. If the
weak interactions are subject to a strong invariance
condition, such as CF invariance, it is trivial to define
the decoupled 0~ and 0~ as eigenstates of the appropriate
operator. Then the treatment of Sec. 2 would yield the
propagator of the 0~ particle, that being the one capable
of decaying into two pions. The 02 wouM be stable in
this model, and its propagator would be that of a
particle of fixed mass.

In the absence of a simple invariance condition, the
problem is somewhat more complicated. It's solution
has been given" in terms of the standard Wigner-
Weisskopf perturbation theory, and it will be of interest
to demonstrate that the same result is obtained by the
present methods.

In an arbitrary representation of the particle states,
the quantities M' and f(s) are matrices. Hence we define
the matrix function

'~This point was brought out by discussion with Professor
R. Haag.

'3 T. D. I.ee, R. Oehrne, and C. N. Yang, Phys. Rev. 106, 340
(1957}.
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(s—s-) '&-Gr~(s)+Q-(s)Gn(s) = & (44b)

for s/ s . In order that these equations be valid for s
in the neighborhood of z, we must have

It follows that

Gn (s.)0.=Q.Ggr (s.) =0. (45)

(46)

where co and v are appropriately normalized column
and row vectors given by the solutions of the homo-
geneous linear equations

and
Grr (s.)~.= 0

~.Gr)(s.)= 0.

(47a)

(47b)

These solutions exist by virtue of Eq. (43).
We may now write

1"rr (s) =P. (u. &( v. (s—s.)—'+Q(s), (4g)

where the sum is taken over all roots of Eq. (43) and

Q(s) is regular in the domain under consideration.
From Eqs. (40) and (47) we find tha, t the co a,re

solutions of

PP+f(s )js) =s (u . (50)

In the special case of weak coupling, f(s ) may again be
replaced by f(M'), whence it follows that the s are the
characteristic values of the matrix M'+ f(M'). The real
part of each of these characteristic values defines the
mass of a particle and the reciprocal of the imaginary
part defines twice the mean life of the same particle.
This result is identical with that obtained by means of
the Wigner-Weisskopf method. "

6. CONCLUSIONS

Our results are in complete accord with Peierls' sug-
gestion' that the mass and lifetime of an unstable
particle are determined by the pole in the spectral

function of the propagator which lies in the lower half
plane. An analysis of a typical experimental situation
in terms of wave packets shows that the amplitude of
the particle state is essentially the Fourier transform
of the propagator, as generally assumed, but that there
are corrections due to the experimental limitations on
the energy. These corrections are not described by
Schwinger's' "mass filter" acting on the spectral func-
tion. Instead, the filter eGect of the wave packets acts
directly on the propagator. The resulting corrections
are a direct manifestation of the uncertainty in the
definition of the time associated with the spread in
energy of the packets in the usual case of an event
having a rather well-defined energy. This corresponds
to the points made by Levy and Schwinger that the
nonexponential terms in the decay amplitude are
strongly dependent on experimental conditions. How-
ever, if the spectrum is broad enough to overlap a
branch point (for an S-wave threshold) the terms pro-
portional to ~: will occur and will not be otherwise
sensitive to the experimental conditions. But the mag-
nitude of the effect is such that it may not be possible
to observe the deviations from a purely exponential
decay with presently available techniques.

It has been assumed throughout this discussion that
the analytic structure of the propagator has the general
form suggested by the model. No attempt has been
made to justify this assumption on general theoretical
grounds. "However it is clear that if the propagator has
this general form, in particular if the pole occurs on the
second sheet, then the characteristic behavior of an
unstable particle will be observed. Although it has not
been proved, it seems unlikely that this behavior will
occur under distinctly different circumstances.
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