
J. GUNSON AND J. G. TAYLOR

permitted by the uniform convergence of the sum in b
and z for small enough h. This gives

1—h'
A(h)=-, dsa(s), (A.s)

2 & r, (1—2sh+h')l

where we choose I. so as to avoid singularities arising
from the denominator. Using standard techniques of
continuation, ' we see that A (h) can be continued along
any finite path starting from k=0 and not passing
through any of the points (cr+(n' —1)'*), or h=1, or
returning to the origin. The initial coincidence of
singularities for h= (n —(n' —1)'}is harmless as the arc
I. is not pinched. It is also easy to see that &= 1 is not
actually a singularity of A(h), as the radius of con-
vergence of P a h" is R,)1.

The main theorem follows from the above lemma if we
express f(s) in the form

1 A (h)B(h')
(A.6)

(2sri)' & c ~ c [(hh')' —2shh'+1/i

which follows on substituting the expressions

1 p dh
a„= ~ A(h),

2sri ~ o h& "+'&

' These are fully described in (4) and by J. C. Polkinghorne and
G. R. Screaton, Nuovo cimento 15, 289 (1960).

h=n+ (n' —1)&, h'=P+ (P'—1)&, (hh')' —2shh'+1=0,

which gives

s=crp+ (cr' —1)&(p'—1)*'. (A.7)

(A.6) thus gives the continuation of f(s) required for
the theorem. The singularities of L(hh')' —2shh'+1j '

are in general branch points at hh'=s& (s'—1) i joined
by a cut. This cut has usually to be deformed when
continuing in s and gives no trouble unless we attempt
to continue back to a=~1 on another sheet of the
function, as the ends of the cut coincide to form a simple
pole at these points. Thus we cannot exclude the
possibility of singularities at 2:=~1 on other sheets of
its Riemann surface, as well as those of the type arising
from h —n —(cr'—1):

and likewise for b, into (A.2) and summing over rt. C is
a circle centered on the origin and of radius any value in
between E, ea—nd 1+e (e)0), if we keep s initially on
the interval P

—1, +1j.C is defined in a similar manner.
The integration in (A.6) is over the distinguished surface
C&&C' of a circular bicylinder. This can always be de-
formed into a general bicylinder when we attempt to
continue in s, so as to avoid singularities of the integrand,
unless it is pinched by a triple coincidence of the
singularities
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It is shown that the phase factor associated with the "orthogonality phase shift" due to a bound state
should be factored out of the S matrix. A crucial test of this statement is found in a study of the Anal state
interaction of an inelastic process which ends in a channel involving the bound state. If we assume that the
sum of the Born series for the S matrix gives a right answer after we separate the effect of the bound state in
terms of the orthogonality phase shift, an agreement with Watson's result obtains only when the S matrix
has the factored structure.

1. INTRODUCTION

E{„ECTLY it has been stated by Xishijima, '
Zimmermann, ' and Haag' that there is no dif-

ference between a composite particle and an elementary
particle as far as the theory of scattering is concerned.
This is true to the extent that it is possible to have an
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initial or a final state in which the composite particle
moves as a single entity at a distance from all other
particles. However, it is not quite arbitrary to regard
a particle as elementary or as composite, since there
is some experimental indication even in scattering when
two "elementary" particles form a stable "composite"
particle. Thus, a positive scattering length, when an
attractive force acts between two colliding "elementary"
particles, suggests that there is a bound state, i.e., a
"composite" particle formed of the two "elementary"
particles, of not too large a binding energy. 4

' See, for instance, J. M. Blatt and V. F. Weisskopf, Theore)ical
ENcleur Physics (John Wiley R Sons, Inc. , New York, 1952), p, 68.
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It was shown by the author' that the well-known
theorem on the zero energy limit of the scattering phase
shift is connected with the sign of the scattering length,
and that this theorem is a direct consequence of the
fact that the scattering states are orthogonal to a
bound state. It was suggested in I that the formation
of a bound. state is a sudden change in the character of
the system of the two colliding particles, and that the
Born series for the S matrix, which is based on the
idea of the adiabatic change of the system, does not
apply at low energies if a bound state is actually present.
Incidentally, the converse of the last statement was
established by Davies. ' The Born series does converge
when there is no bound state when one deals with
potential scattering by a nonsingular potential of 6nite
range.

In the case of potential scattering studied in I,
thorough consideration was given to the "orthogonality
phase shift. "This paper is concerned with the orthogo-
nality phase shift in a channel of more complicated
nature. The points in which we are particularly inter-
ested are summarized as follows.

(1) The phase factor concerned with the orthogo-
nality phase shift is factored out of the 5 matrix.
Actually we have

Sorth SresSorth y

where S,rth is the part of the 5 matrix concerned ex-
clusively with the orthogonality phase shift, and 5„, is
what we shall call the residual part of the 5 matrix.
The Born series, which fails to apply in the straight-
forward calculation of 5, is supposed to apply to the
calculation of 5,.,

(2) The final-state interaction introduces the factor
(sinh/b) into any matrix element for inelastic scattering.
Here 5 denotes a suitably dehned part of the scattering
phase shift for the elestic scattering in the exit channel.
Since the inelastic scattering is properly accounted for
by 5„„it turns out that the 8 which should be sub-
stituted into (sinb/b), is the residual phase shift b„„
defined as the total phase shift minus the orthogonality
phase shift:

for the effect of the final-state interaction agrees with
that of Watson~ in spite of the differences in approach.

(4) It is unlikely that electrodisintegration of a deu-
teron into the triplet 5 state is forbidden at threshold
just because of the existence of a stable deuteron state.
If however this process is forbidden, Eq. (1) is not
valid so that an experimental investigation of the appro-
priate electrodisintegration cross section at threshold
will test our theory.

Finally, let us comment on the form of- Eq. (1).
Once the S matrix is fixed as a whole, there are, of
course, many other ways of decomposing or factoring it.
The particular factorization shown in Eq. (1) keeps
track of the order in which the mathematical operations
are made and eliminates the effect of the formation of a
bound state before the Born series is summed. '

2. THE STRUCTURE OF THE S MATRIX

I.et us specialize the discussion, for the sake of
definiteness, to the study of an inelastic scattering of
the type

a+o.~ b+p,

where there is a strong attraction between the two
particles b and P, so that there is a bound state c—= [bP]
composed of these two particles. We denote the entrance
channel by (2) and the exit channel by (B). As dis-
cussed in I, it is convenient to introduce a set of inde-
pendent creation-annihilation operators for the particle
c. Accordingly we have to perform a unitary trans-
formation to deal with the nonlocal potential which
represents the effect of the bound state c. Other kinds
of physical effects in the channel (B) will be computed
by summing up the Born series in the transformed
representation.

When all terms which are irrelevant for the study of
the reaction (3) are ignored, the 5 matrix is given by
(1), where

&.,ii, '= expLi P' B~*(k~&.,a, [
k')B~ ],

kk'

S...= expL2i P' B,*(k
~
b...

~

k')B,

~-.= ~~.t, —~..th. (2) +i 2' B~*(k~~(k')~~
kk'

The total phase shift 8t,,t must be used in the discussion
of the elastic scattering.

(3) b„, vanishes at the threshold, while b„ii„and so
bt,,~, assumes there the value ref. , where e is the number
of bound states. There is therefore a crucial difference
in the threshold behavior of the scattering matrix ele-
ment, depending on whether Eq. (1) holds or not,
since the factor (sinb„„/8i, t) would vanish at the thresh-
old fEq. (1) not valid), while (sinb„,/b„,) does not
va,nish there LEq. (1) valid]. It is found that our result

' S. Tani, Phys. Rev. 117, 252 (1960); this paper is referred to
as I in the following.' H. Davies, Nuclear Phys. j.4, 465 (1960).

+i P'Ai, *(k~Mt~k')Bi, ]. (5)

Several conventions on notations are introduced in
Eqs. (4)—(5). First, the product of the creation operators
for the u and the n (for the b and the P) is abbreviated
as A* (B*).The suKxes k, k' atta, ched to the creation-
annihilation operators denote the center-of-mass-frame
linear momenta and angular momenta of the pairs of

' K. M. Watson, Phys. Rev. 88, 1163 (1952).
8 Vfhenever one divides the interparticle interaction into two

parts, one of which is taken into account exactly at the beginning,
one observes that the S matrix assumes a form similar to Fq. (1).
See, for instance, p. 217 in K. Brenig and R. Haag, Fortschr.
Physik 7 183 (1959).
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particles in their respective channels. ' The c.igenfunc-
tions of angular momentum are absorbed in the defini-
tion of the matrix element. (See Appendix for details. )
The prime attached to the summation symbol implies
that the sum over k and k' runs only over values which
are consistent with the conservation of energy.

The b.,&b is the orthogonality phase shift which is
caused by the bound state c. The 6„, is the residual
phase shift, which together with 8„&~ is used in the
discussion of the elastic scattering in the channel (8):

&+0~ &+0 (6)

The quantity (k~ M
~

k') in 5„,is the matrix element of
the inelastic scattering (3) with the effect of the final-
state interaction on the energy shell excluded. It is
important to note that (k~M~ k') is porportional to kz

near threshold, when tbe orbital angular momentum
concerned is L."This follows simply from kinematical
considerations in first Born approximation and the same
threshold behavior obtains from higher order Born
approximations. Consequently, this threshold behavior
must be true in general if our conjecture about the
existence of the well-defined Born series for 5„,is valid.
A similar argument shows that near threshold 8,.„ is
proportional to k' +'. A straightforward Born series is,
however, ruled out for 8~,~ because the individual terms
of this series vanish at threshold, so that their sum can
never give a multiple of m.. In fact, the threshold be-
havior of 8«& ——8„,+6„„i,is given by:

(const) k'~'+ zzzr—izzr.

3. THE FINAL-STATE INTERACTION

I.et us study the matrix element of the inelastic
scattering (3), starting with the 5 matrix as given by
(1), (4), and (5). We first introduce a further assump-
tion which simplifies the analysis without sacrificing
our general goal. Thus we consider cases where the
inelastic process (3), produced in lowest order by a
"weak" interaction, is followed by a "strong" final state
interaction (6).

Accordingly we retain only the terms linear in

(k ~
M

~

k') in the following calculation. The higher order
terms in (k

~
M

~

k') take into account the "shadow" in
channel (8) caused by the inelastic transition into
channel (2); in other words, the eKect of these higher
order terms is equivalent to the replacement of 8„,by a
complex phase shift.

We have to expand 5 into power series in the 2' s
and 8's. Insofar as we consider only one pair of a and n,
or b and P, it turns out that the following expression for
the commutation relations is sufhcient; even any dif-
ference of statistics does not matter. We can take

' Such a device is discussed by B. I.ippmann and J. Schwinger;
see p. 476 in B. I.ippmann and J. Schwinger, Phys. Rev. 79, 469
(&95O).

' It is important to note that the contribution of the normaliza-
tion of the angular momentum eigenfunction is included here.
See the last paragraph of Appendix.

LAk, Ag *)=LB')Bg '"j=b(k—k'), (7)

Equation (8) shows that the expected result is obtained
for the elastic scattering; the total phase shift bf.~

appears here. Watson showed' that the inelastic scatter-
ing matrix element including the effect of the final state
interaction is proportional to

exp Lz8) (sinb/kz+'). (9)

The other factors being independent of k; in Eq. (9)
8 should be identified with our 8«z. To compare Eq. (9)
with our result in Eq. (8) we note first of all that the
phase factor exp(ib) is identical in both equations.
Secondly, sin8«& ——sin(8„,+5„&z) in Eq. (9) is almost
equivalent to ~sin8„„. this is because 5„&i, is nearly m-

around the threshold. Thirdly, as mentioned in the last
section, 8„, and the (k~M~ k') vary as k'~+' and k"'

near threshold so that (k~ (1/8„,) M~ k') varies as
1/k'+'. Thus our result given by Eq. (8) is essentially
equivalent to Watson's result in Eq. (9), although the
derivations of the two results are quite diferent. (More
details of the necessary kinematical considerations are
given in the Appendix. )

4. DISCUSSION

Summarizing, we can say that, if our conjecture
about the structure of the 5 matrix involving a bound
state is valid, we get the same threshold behavior of
inelastic scattering cross sections as Watson. ~ Watson
based his investigation on the asymptotic form of the
scattering state wave function in configuration space.
In our approach, we worked in the momentum space
representation exclusively, since it is useful at high
energies and since we are interested in its consistent
development in all connections. To the extent that we
do not measure the orthogonality phase shift directly,
its distinction from the other part of the total scattering
phase shift might appear ambiguous. What is to be
emphasized, however, is that one can restore the appli-
cability of the Born series, if one follows our prescription.

It is interesting to test the predicted threshold be-
havior by an experiment. The most promising experi-
ment seems to be the electrodisintegration of a deuteron

e+d —+ e+P+zz.

This reaction does not fall exactly into the ca,tegory as
schematized by Eq. (3), but since the electron does
nothing but break up the deuteron by means of the
impulse it provides, the final. -state interaction can be

with all other commutators vanishing. With use of Eqs.
(7), (4), (5) we expand Eq. (1) as

5=1++' &a*(k
~
expL2z&z. z7 —1

~

k')&~
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treated in the same way as in the last section. Experi-
ments on the electrodisintegration of the deuteron were
done by Friedman" at an electron energy of 175 Mev.
But the energy resolution at such high energies, being
comparable to the deuteron binding energy, unfor-
tunately does not allow any de6nite conclusions to be
drawn on the threshold behavior. It would, however,
be interesting to extend these experiments to lower
energies, since, as discussed by Jankus, i2 one can expect
that at lower energies the contribution of the electron-
proton Coulomb interaction, which produces p+n in
the triplet S state, is relatively enhanced.

If the predicted threshold behavior is confirn:ed, one
will establish the inapplicability of the Born series for
the inelastic scattering matrix element in a formulation
in which the orthogonality phase shift is not factored
out as in Eq. (1).The inapplicability of the Born series
for the calculation of the elastic scattering phase shift
was noted already at the end of Sec. 2.
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APPENDIX

In accordance with our convention for the notation
for k, the operators which appear in Eqs. (4) and (5)
are given explicitly by

P'Bi,*(kl 8
l
k')Bi,

d'kd'k' Z B~r. *Bi r l'r. (8, v)
a J

X 8(k—k')8'z&(k) I'z, (8', q') (A 1)
kk'

P' Bi,*(k
l
M

l
k') A I,

d'kd'k'Q Bi,z *Yr (8,y)
L,m,

8(k' —c(k))M& &(k k') &L (8', q')&i L, (A.2)
kk'

8 and y (8' and q') are the angular variables for k(k').
%e assume that the particles are spinless and the inter-
action is spherical symmetric, for simplicity. The con-
servation of energy in the inelastic scattering is repre-

"J.I. Friedman, Phys. Rev. 116, 1257 (1959}.
'2 P. Z. Jankus, Phys. Rev. 102, 1586 (1956}.

sented by

2'~ 2M~
(A.3)

$B,B *7=8 8, 8(k —k').

Obviously one gets

exp)i P'B,*(kl8Ik')B')

(A.5)

=1+ d'kd'k'QBir. *B~. r. I"r (8,q)&z (8', q')

X8 (k —k') (1/kk') {expkib&~'(k)] —1)+ . (A.6)

and other relations as used to derive Eq. (g). Note that
the extra factor (1/kk') in (A.1) is canceled by the
volume element in the integrations over the inter-
mediate states.

Due to the fact that we are dealing with the one-
dimensional problem (the free radial wave function for
I =0 is sinkr), a matrix element of the interaction in

any channel is proportional to (k) ~+'(k') +' when both
k and k' are small. By multiplying the delta function
to take into account the energy conservation, we get
the k dependence of 8'~&(k) and M&z&(k k') in (A.1—2).
For the elastic scattering, energy conservation is taken
into account by multiplication with

p
k' k" y ~M&q

l&(k —k'), (A.7)
2M, J

and for the inelastic scattering, by

( k' k"
q )M~q

+Q—
I
=2~(, I ~(~(k) —k') (A.g)

E2Mri 2M') ( k' )
Thus, we find near threshold 8'~&(k) is proportional to
E' +' and M&z'(k k') to E +'. (k'—const near thresh-
old. ) This situation for 8 has been described in the text
by the statement that 8„, is proportional to k' +'.

In order to get the threshold behavior of the scatter-
ing amplitude and compare it with the result of Watson,
we have to take out the energy conservation factor
(A.S) from the 5-matrix element given by (8) in the
text. We find that (1/k) due to the normalization of the
radial wave function is left. . This reduces the k depend-
ence of M&~&(k, k') to k~; this situation has been de-
scribed in the text by the statement that (kl Ml k') is
proportional to k~. LThe extra factor (1/k) for the
elastic scat, tering can be shown to give rise to the well-

known formula for the cross section: a= (4~/k')
XP r (2I +1) sin'8'~'(k). 1

where M~ (Mri) is the reduced mass in the channel (A)
((B)).C(k) in (A.2) is defined by

C(k) = L2MgQ+ (Mg/Mri)k'$i. (A.4)

In our notation the radial wave equation is treated
exactly as a one-dimensional problem. The comrnuta-
tion relation in Eq. (7) reads as


