
PHYSI CAI. REVIEW VOI UME 121, NUMBER 2 J AN UAR V 1, 1961

Weak-Coupling Currents and Symmetries of Strong Interactions

R. E. BEHRENDS
Instetnte for Advanced Stndy, Prvnceton, Fete Jersey

AND

A. SrnLrwt
/em York University, 8'ashington Square, New Fork, Sew Fork

(Received July 26, 1960)

The general isotopic properties of bilinear currents which will
lead to the

~
DS

~

&1 and [DI ( =-,' rules for weak decay processes
are examined. The latter rule is re-expressed in terms of an
equivalent mathematical statement which permits one to obtain
the usual predictions in a simple manner. In general, when the
strangeness-conserving part of such a current is an isotopic vector,
the strangeness-changing part can be a linear combination of
I=~~ and I=-,' currents. The existence of an I=-,' current could
be established by experiments on the decays X~2f-+leptons,
or on high-energy neutrino capture, p+Zf ~ p, +Z. Experiments
on E.4 decays could test the bilinearity of the current.

The assumption that the vector part of such a current, both
strangeness changing and nonchanging, is quasi-conserved (i.e.,
neglecting certain mass differences) in the presence of the strong

interactions Gxes the specific form of the current and further
implies symmetries for the strong couplings. The various trans-
formations which leave invariant a Yukawa-type strong inter-
action as well as their associated currents are found. A new possible
symmetry group of the strong interactions is examined: a 14
parameter group usually denoted as G2. In the presence of both
~ and E couplings, it is found that I=-,' and 2 currents are quasi-
conserved when the strong Lagrangian has a 7-dimensional
rotational symmetry, while for the I=-,' alone, the symmetry
required is G2. In the presence of only ~-baryon couplings, only
I=-,' currents can be quasi-conserved. Certain predictions for the
E 3 and E,4 modes of decay and for Z ~ n+e +v follow from
the weak currents determined in this way.

hypothetical vector meson responsible for weak decay
processes.

In order to further specify these currents, the
assumption is made that they should be quasi-con-
served in the presence of strong interactions. In the
second section, it is demonstrated how this requirement
not only specifies the current but also a symmetry of
the strong interactions.

In the third section all the bilinear currents and
associated symmetries are found which are allowed by
a Yukawa-type strong-interaction Lagrangian in which
both E and m couplings are present and also in which
only x couplings are present. In the former case, a new
possible symmetry of the strong interactions is found
which is a 1.4-parameter group, usually denoted by G2.

The fourth section is devoted to the experimental
predictions which these symmetries imply for processes
involving only strong or strong and electromagnetic
interactions.

The experimental predictions for weak decay proc-
esses arising from these quasi-conserved currents is
then discussed in the fifth section.

INTRODUCTION

~N recent years, it has become increasingly evident
'&- that there seems to exist some deep underlying
connection between the strong interactions of ele-
mentary particles and their weak decay interactions.
This has been evidenced in weak decays by the apparent
lack of renormalization of the vector part of the P-decay
interaction on the one hand, and on the other by the
success of the

~
AI~ =—', rule. It is the purpose of this

paper to investigate, within the framework of con-
ventional theory, these possible connections between
the strong and weak interactions.

To this end, the first section is an examination of the
isotopic character of the currents which could give rise
to weak decays. The ~AI~ =—,'rule is expressed in a
mathematically equivalent way. In the framework of a
current-current type Lagrangian which satisfies ~AS~
&I, and the

~
IsI~ =—,

' rule, the most general bilinear
current is established. The strangeness-changing part
is found to be a linear combination of an I= ~ and an
I=~3 current. By introducing the leptons in a phe-
nomenological way, it is possible to make certain
experimental predictions on the E,3 and E„s decays.
Further predictions, which depend essentially only

I. WEAK INTERACTIONS —ISOTOPIC
SPIN CHARACTER

upon charge independence of the strong interactions Up to the present, there have been two general
and a bilinear character of the current of strongly points of view with regard to the fundamental

interacting particles are made for the gg mode of Lagrangian resPonsible for the interactions between
elementary particles. An extreme version of one ofdecay. At this point, we discuss several features oi an
these considers as basic the four-fermion interaction.

*National Science sou datio Po tdo toral rellow P ese t
address: Physics Department, University of Pennsylvania, four fermions is of the basic form while the strong and
Philadelphia, Pennsylvania. electromagnetic interactions are viewed as, in somef Work supported by the Office of Naval Research. Presently
on leave from Nev York University to CERN Geneva 23 sense, being Phenomenological descriPtions of more
Switzerland, fundamental four-fermion interactions, In comparison,
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(G/v2) 2' 8.""8""'. (2a)

Of course, if the process occurs via an intermediate
vector meson, 5'„"~, the basic interaction would be'

Z =g P; gv(') W„(')+H.c. (2b)

By taking into account requirements (ii) and noting
the existence of leptonic modes of decay, g„(') may be

R. P. Feynman and M. Gell-Mann, Phys, Rev. 109, 193
(1958).

I S, S. Gerstein and J. B.Zeldovich, Zhur. Eksp. i Teoret. Fiz.
29, 698 (1955) )translation: Soviet Phys. —JETP 2, 576 (1956)g.' S. B.Treiman, Nuovo cimento 15, 916 (1960).

4 T. D. Lee and C. N. Yang, Phys. Rev. Letters 4, 307 (1960)
and Phys. Rev. (to be published).

The symbol for a particle denotes the operator which annihi-
lates it.

the other extreme point of view stresses the concept
of an interaction between a current and a boson field.
Here, the electromagnetic interaction is fundamental
while the strong and weak interactions are, in some
sense, phenomenological descriptions of the more basic
current-boson type. Recently, with the experimental
verification of the V-A coupling for the weak inter-
action, it has become theoretically appealing to con-
sider the basic weak coupling to be of the current-boson
type and the four-f ermion decay processes to be phe-
nomenological descriptions of this more fundamental
coupling. This analogy with electrodynamics, in fact,
has even been extended to the point of considering
this weak current to be conserved, leading in a natural
fashion to the experimentally observed absence of
renormalization for the vector part in p decay. ' ' In
the present paper, we adopt the view that (i) the

Lagrangian responsible for weak decays is of the current
boson or current current t-ype

It has been suggested that the wea¹interaction
Lagrangian is of the form

z = (G/v2)g„trav,

where 6 is the weak-coupling constant given in reference
1, and g„ is a single charged current which transforms
in space-time as a linear combination of a vector and
an axial vector. '

On the other hand, there appear to be two selection
rules which are rather well satisfied experimental ly,
namely, to order G, (ii)

~
AS

~

(1 in all decays, and
(iii) in decays in()ol()ing only strongly interacting particles
and in which strangeness changes by one unit, the isotopic
spin obeys

~

EI
~

= xs. As has been previously noted, in a,

current-current type interaction a single charged cur-
rent cannot lead to a

~
EI

~

= xs rule. ' 4 It would seem
necessary, therefore, that this current be generalized
in order that rules (ii) and (iii) might be satisfied,

A rather natural generalization is to regard g„as
having several charge components, g„(') (where i
represents the various charge states). Thus, instead of
Eq. (1), we have

written as

g„"'=I„("+l„"'= j„")+s„(')+l„('),

where the currents of the strongly interacting particles,
j„(') and s„&@, carry zero and one unit of strangeness,
respective]y, and l„&" is the leptonic current. It is clear
that, in order to satisfy (ii) for the terms g; s„(')ts&('&,

the s„&') can contain only terms in which the change in
strangeness is solely of one sign. ' This statement
replaces the rule AQ= AS =+1 for charged currents.
By convention, we choose s„"' to have ES= 1 (then
s„(')t corresponds to AS = —1). If we restrict ourselves
to the usual bilinear expressions, then the j„&" trans-
form, in general, as linear combinations of the com-
ponents of isotopic scalars, j„"), vectors, j„o ', and
a symmetric second rank tensor, j„" & . Similarly, the
s„&" transform as linear combinations of the com-
ponents of isotopic spin ~, s„(& ', and 2, s„" ' tensors.
The existence of j„&' ) and s„~' ) is necessary in order
to describe the process n ~ p+e + ft and E+—+ e++v),
respectively. It follows that the components j„"
cannot exist in the present scheme because they, in
conjunction with s„" ', would give rise to terms with

~

AS
~

= 1 and
~

1}I
~

= -,', in contradiction with (iii). The
possible iso scalar contribution to j„&", i.e., j„' '&, by
the same token, can only exist if these s„&' & currents
are not present.

The components of the total current, J„&",may now
easily be written down.

J (+2) —p s (1 t)
Itt

J (+&) —p j 0&)+n s (i i)+8&s (t l)

I„(&)=psj ((,0)+nss ( —')+p s (1,—$)+rtj (o,(0

J„(—&) =ps j„(&,—&)+pss ($.—4)

where the n;, p;, and p;, and )) are arbitrary real con-
stants with the restriction qp, =0 and where the upper
index on the J„(') is the value, AQ, of the charge carried
by the current. By our convention, j ' ' = —j
j„&' ')~= j„&' &, j„( )~= j„(0 ). In order to further
specify the relationship amongst the various n's, p's,
and p s, we must invoke condition (iii), that is, the
) aI

)
= -,' rule.

Let us digress for a moment in order to express the
= sr rule in an equivalent mathematical statement

which will be useful for later discussions. The following
theorem depends only upon the conservation of charge
and baryon number, and uPon the relation Q= Is+ I~s
=Is+xs(1V+S). It does not depend upon the hypothesis
that the weak interaction involves a current.

Theorem: The selection rule
~

t(4I
~

= xs is equivalent
to the statements

(I,Z ') =0,

(I+,z„'t)=0,

(Sa)

(Sb)
4 V((e adopt the convention that for the covariant (a,b),

6S Sg Ss EQ Qg Qs AT4 T4o T44 etc.
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where Z„~ is that part of the weak Lagrangian, 2„,
which involves only the strongly interacting particles
and for which 65=+1.The operators I~ are the usual

isotopic spin raising and lowering operators.
Proof: Because Z„e must conserve charge and baryon

number, the third component of isotopic spin of Z„~
is Is= —5/2= ——,'. D the selection rule ~AI~ =-', holds,

must transform as an isospinor with I3= —~, i.e.,
as (0, —-', ). Equation (Sa) follows immediately because
the operation (I,Z 8) decreases Is by one unit. The
reciprocal is also true: if Eq. (Sa) is satisfied, then the

~AI~ =srrule follows. In fact, if Z„e contained terms
such as (ss, —sr), (ss, —rs), etc., Eq. (7a) would not be
true. Equation (5b) follows, of course, from Eq. (Sa).
(Since the strong interactions are assumed to be charge
independent, the effective matrix elements for a physical
process must also transform as the component of an
isotopic spinor, even after including the corrections
induced by the strong interactions. )

As a matter of practical interest, one can very simply
obtain the usual predictions of the ~AI~ =s rule by
judicious use of Eqs. (Sa) and (5b) without explicit
reference to the spurion method (for examples of the
method, see Appendix).

Now, let us note that Z„~, constructed from the
currents of Eq. (4) has the form (when &=0)

W2

J i0& —
psj 0,0&+ s ii, ii+ s it, i&+rtj (0,0& (10)

Ps P2

v3PJ ( 1&= "'0 1&+. s 't=psj~ hatt

P3

where we have set pi ——1 and the condition r&P=O is
understood. v

If J„"' is coupled to an intermediate vector meson,
then since J„")is not, in general, Hermitian, it will be
necessary that this meson field have the following
modes:

if n=P=O: W i*& W &'»(i=1, 0)
where S'„' ~= 8'„"',

if p=0 n~0 W "' W &'&t(i=1, 0, —1), (11)
if nAO, p/0: W„&'&, W„&"t(i=2, 1, 0, —1).

For arbitrary values of the constants in F.q. (10), it
is clear that the strangeness-conserving contributions
to P; J„&'tJ"&'& are not isotopic scalars. However, for
certain choices of these parameters, it is possible to
construct a Lagrangian in which

~
AI~ =0 or —,'. There

are two such sets of parameters.

Case a: rt=p=p0 0, Ps ——1——/V2, ps
——0,

We now assume that 2 e satisfies Eq (Sa),. i.e., the
~AII =-,' rule. By remembering the well-known com-
mutation relations for the lowering operators (we use
I~= (I,ai70)/v2 1

(I,I'&' "')= (1/V2) $(j +rN) (j r&i+ 1)i&I—'" ", (7)

J i+1) —j 0,1&+nS (k, ii

J (0) —(1/v&2) j 0,0)+ns i~i,—ii

Case b: rt=n=O, P,=P, p, =v2, p, =v3,

J (+) (;,-,')

J i+1& j 0 n+Ps„&t l&

J' (0& —v2 j 0,0&+Ps (8,—ti
(13)

where the I'" ) symbolize the various currents j„"
s„&: ', and s„': ), it follows that

(I g s) 0 j 0,0&Q (I Js(0&) Pgoi 1&+dj 0, 1&j
is" "Epi(I ,J-""") psJ""'-di.""-j (g)-

pq c—d
(I J (0&)= J i—1&+ j 0.—1&.

P2

Ps c+tE

(I J (+1&)= J i0&+ j 0,0& ~

ps Py

(I,J„&—")=0,

(9)

where c is an arbitrary constant. Sy explicit use of Kq.
(9), we are led to the following components for J„&'&:

J„&+'&=pos„&r '&,

J (+1&= ~' 0,1&+nS ii, r&+PS it, r&
JI&t )

where d= -,' (pis+ pss —2pss). Thus, the commutation
rules for the J„&') are found to be

J„(—1& —v3 j„0,—1&+Ps (t,—$i

As for the associated bosons, case (a) requires W„i+1&t
= —W„' ", while case (b) imposes no further require-
ments. Case (a) corresponds to the choice of currents
and bosons made by Lee and Yang. '

It should be noted that the differences in the experi-
mental predictions between Eqs. (10) and (12), when
p=0, for a current-current type theory arise only in
weak scattering processes of strongly interacting
particles, which, of course, are completely masked by
the strong interactions. In a current-boson version, on
the other hand, the decays of the intermediate bosons
will differ in the two cases.

It is now necessary to consider the way in which the
leptons are to be introduced into the theory. Since the
nslal charge space formalism seems inapplicable to
leptons, there is no straightforward application of the
requirements which prescribed J„"'which will lead to

~These currents, of course, have the proper Clebsch-Gordan
coeKcients for combining a spin 1 with a spin ~~ to give a spin —,

and for a spin 1 with a & to also give a spin ~~. We use the usual
phase convention of E. U. Condon and G. H. Shortley, Theory of
Atomic Spectra (Cambridge University Press, New York, 1953).
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a leptonic current. That is not to say that such a
method does not exist, but rather that the possibilities
have not yet been fully investigated. We would, there-
fore, prefer to consider the complete answer to this
question to be beyond the scope of the present work.
Rather, we shall introduce the leptonic currents in a
phenomenological manner. Experimentally, it is rather
well established that no neutral or doubly charged
leptonic currents exist. We shall, therefore, introduce
only the following ':

&.(+"= v)v. (1+vs)e ~r+vv(1 —Vo)» (14)

The fact that e&AO, is necessary in order to describe
leptonic decays with AQ=AS, such as E+ —+ e++vt,
Ao~ p+e +v&, etc." " However, there is very little
information about the existence or absence of leptonic
decays with AQ = —hS, such as Z+ ~ )s+e++ v),
E' ~ s-++e + v&, etc. These decays can occur only if
Pcs&0. Thus, if these processes are found in nature,
the I=-,' currents must exist. On the other hand, their
absence would not necessarily imply that the I=-,'
currents do not exist.

Let us now' consider further experimental results
which might be used to fix the remaining constants.
Okubo ef a/. "have considered the relations among the
various E» modes of decay which occur when the
strongly interacting current transforms as a spinor.
We shall proceed in a similar way for the more general
case.

In order to make the predictions more definite, we

will restrict ourselves to the case &2=0. This assumption
can be tested independently by searching for the
processes with EQ= —AS, or by comparing the total
rates for Et ~s.++leptons and Es —&s.++leptons
(if e&=0, these two rates should be equal, regardless of
the existence or absence of I= s and I= os currents).

8 We use the notation y0t=y0, y;t= —y; (i=1, 2, 3).
G. Feinberg, Phys. Rev. 110, 1482 {1958);J. Schwinger, Ann.

Phys. 2, 407 (1957)."F. Eisler, R. Piano, A. Prodell, N. Samios, M. Schwartz,
J. Steinberger, M. Conversi, P. Franzini, I. Mannelli, R. Stangelo,
and V. Silvestrini, Nevis Cyclotron Report No. 67 (unpublished).

' F. S. Crawford, M. Cresti, M. L. Good, G. R. KalMeisch,
M. L. Stevenson, and H. K. Ticho, Phys. Rev. Letters 1, 377
(1958).

'~ P. Nordin, J. Orear, L. Reed, A. H. Rosenfeld, F. T. Solmitz,
H. D. Taft, and R. D. Tripp, Phys. Rev. Letters 1, 380 (1958).

'3 S. Okubo, R. E.Marshak, E. C. G. Sudarshan, W. B.Teutsch,
and S. Weinberg, Phys. Rev. 112, 665 (1958).

We have assumed the lepton current to have a sym-
metry between the p, and e, and we have introduced
twin neutrinos in order to avoid the difficulty of
)(( —& e+y. o This leptonic current will now be added to
J„+ and its Hermitian conjugate to J„( ), with
arbitrary constants, in order to form the complete weak
interaction current g„').

(+2) I (+2) ~ g (+1) I (+1)+e ( (+)) ~

g (o) —I (0) ~ g (—0 —I (—&) e () (+t)t

In the case ~2=0 the matrix element for X'~~
+@++vs, is, by virtue of our current,

~ (Eo~ 7r-+&++ v2)
—0

while

M(E+ —+ s'+@+1vs)

= (G/v2)(m'~o(s), ' l)t+Ps), (l l)t~E+)(2„&),(1 po)—N 2,

and

M(E —& s. +p,++vs)
= (G/%2)(7r ~o(s),(i l) 1+Ps),(: l) t

~

E')(2 y), (1—yo)u

But the isotopic character implies the following
relations:

(7r'~s), «»t (E+)= (1/%2)(s.-~s),(l l) t~Eo);

()r (s), (& "t)K+)=—VZ(7r (s),(l l))~K').

It, therefore, follows that the transition rates are
related as

R(K —& .+s+p,++v) =R(K ' —+ s.++p++v)
=R(E' ~ s. +)((++vs)

=yR(E+ +s-o+p++ vs—), (16)

where y is a parameter which takes on the value 2 for a
pure I=—,

' current and the value ~ for a pure I=2
current. For arbitrary mixtures of I= ~~ and —,', the value
of y cannot be predicted without further specifying the
structure of the currents. The same relations will hold
for IC,3. It should be noted that any deviation of p from
2 is an indication that there exists an I= ~ current as
well as an I=-, current. As stated before, the vector
and/or the axial vector part of the I=-', current must
exist to explain A. —) p+s + vt, as well as E+—& p++ v&,

etc. On the other hand, this is one of the few crucial
experiments for determining whether, in addition, there
is also an I=23 current. By using the experimental
lifetimes and branching ratios for the E+, it is found
that the total rate for E2' into one x and leptons is

R (Es' —v 7r++ leptons)
= (13.4&1.4))(10' sec ' for pure I=-,' (17a)

= (3.4+0.4))&10' sec ' for pure I= s. (17b)

It should be noted that Kq. (17b) is valid only in the
particular case of es ——0, while Eq. (17a) is completely
unambiguous. For a mixture of I=-,' and —,', as before,
no definite prediction can be made. Thus, any deviation,
in any direction, from the. pure I= ~~ prediction implies
the presence of an I=2 current. The experimental
result of Crawford e1 al " is (20.4 o.o+r') &&10' sec ' lt
would be very desirable to improve the accuracy in
these various experiments in order to determine whether
the I= ~3 current actually exists.

Another possible experiment for determining the
existence of an I=+~ current is to examine the high

'4 F. S. Crawford, M. Cresti, R. L. Douglass, M. L. KalbQeisch,
and M. L. Stevenson, Phys. Rev. Letters 2, 561 (1959).
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(I+,(I+,J.""))=o,

(I,(I,J (+'&t)) =0
(19a,)

(19b)

These follow simply from the fact that a bilinear
combination of particles whose charge

I QI &1 cannot
be formed into a current with I)2.

Let us now consider processes of the type E+~ m+'

+m '+@++ vaond E ~om +o~ +@++vo. Assuming
that the leptons interact locally, the matrix element
for the processes are of the form

(orner
I
J (+'» IE+)zc„y (1—y )u„,.

Now, from Eq. (19b) we readily obtain the relation

2((1/~2) (~'~ +~ ~') I»'+"'IE')
+~2((1/~2) (~+~ +~ ~+)

I
J~(+"'IE+)

2(mo~oI J),(+utIE+) =0

If we further assume &2=0 and the validity of time
reversal invariance, we can relate the (E+),4 and
(Eo'),4 processes. When the relative motion of the two
pions is predominantly in states of even angular mo-
mentum, we obtain

2M('+ Mo' —&2M o' ——0, (2o)

where M~', M2', and 3I3' stand for the matrix elements
of E'o' —+m'+~ +p++vo (or EP —+7r'+m +p++vo),
E+~m.++@ +@++'vo, and E+~ m1m. +p++ vo, re-
spectively, when the ~'s are in even relative angular
momentum states. This in turn implies the triangular
inequalities

2I(.'g''*&&2Eo"*+Eo" (21)

where E&', E2', and E&' are the three decay rates corre-
sponding to M~', M2', and M~'. If the I=-,' current
were not present, we could use

(I J(+&)t) —0 (22)

instead of Eq. (19). In this particular case, we would
obtain M&'=0, M2'=02&3', which implies

g '=0 gq'=2+~~. (23)

energy neutrino capture experiment suggested in
reference 4, namely,

vo+n —+ p++Z,
v2+p ~ p++&o.

For pure I=—,' and I=-,' currents, these cross sections
are in the ratio 2 to 1 and 1 to 2, respectively.

It is interesting to notice that the general structure
of the weak-interaction Lagrangian discussed above,
Eqs. (2a) and (10), leads to some very general experi-
mental predictions which are independent of the
existence or absence of the I=~ currents. In fact, if
we assume that the currents of the strongly interacting
particles involve only expressions bilinear in the fields
and that the strong interactions are charge independent,
it is clear that

The predictions (21) and (23) hold also, of course, for
decays involving e+ instead of p+, provided. the pions
are predominantly in states of even relative angular
momentum.

It is also possible to verify Eqs. (19) by means of
neutrino capture experiments of the type f»+X~
e++Z+m. One obtains an equality between the matrix
elements of five different processes involving the various

~, Z, and nucleon charge states.
The above results are independent of the possible

existence of any intermediate bosons. Let us now
examine those results which follow from the existence
of such particles. Lee and Yang have recently discussed
the implications of the "schizon" which is associated
with an isotopic spin ~ strangeness-changing current
Lsee Eqs. (11) and (12)].In their scheme, the "schizon"
character arises since such a boson is simultaneously a
member of a quartet of bosons (two doublets, similar
t:o the E-particles) and a member of a triplet. In the
general case n, PNO, it is not possible to make both the
interactions g, j ("W&"' and P; s„(oW"'"' isotopic
scalars by assigning a dual or "schizon" character to
the 5'&(". For this reason, it is not possible, in general,
to make simple predictions for the decays of the W
particles. On the other hand, if o.=0, one can adopt the
scheme of Eqs. (11) and (13), which gives rise, in a
manner similar to that of Eqs. (11) and (12), to a
"schizon" character for the bosons. In this case, the
meson is simultaneously a member of an octet (two
quartets) and a triplet.

Several other points concerning the intermediate
mesons should be mentioned. First, if ~2=0, high-energy
neutrino capture will produce 8'+"'s but not 8'( "t's.
The reason for this is that, in this case, the leptons are
only coupled to one of the charged currents. However,
if the Ws are produced by the scattering of strongly
interacting particles, e.g.,

m++p ~ W++p (24a)

then both 5'(+" and 8'& "~ are produced. Finally, if
there exists a doubly charged meson, then the following
process is possible

m++p —+ W+++Z' (or A). (24b)

Since the leptons are not coupled to 5'(+'), this would
seem to be the best method of producing such a doubly
charged component.

The existence of the intermediate boson also has
interesting effects on the various parameters which
characterize muon decay, such as the mean life r„
and the parameters p and $.

When the electromagnetic corrections are calculated
on the basis of the universal four-fermion interaction,
the theoretical value quoted for 7.„has been"

r„=2.31&0.05 p, sec. (25a)

On the basis of a new determination of the end-point

"T.Kinoshita and A. Sirlin, Phys. Rev. 113, 1652 {1959).
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v„~=2.24&0.03 p,sec, (25d)

which is to be compared with the experimental result, "
v-„' I'= 2.21~0.005 ysec. (25e)

For such a value of mw, the p and $ parameters have
the values

pw 0 )63. (w 1 02 (25f)

which are consistent with the present experimental
results "

II. CONSERVED CURRENTS —IMPLICATIONS

The previous considerations on the weak-interaction
current has depended only upon general transformation
properties in isotopic spin space. But aside from the
striking experimental rules (ii) and (iii), there is another
experimental fact which seems to indicate some deep
underlying connection between the strong couplings of
elementary particles and their weak decay interactions.
This is the apparent lack of renormalization of the
vector part of the P-decay interaction. ' '

It is possible, entirely by analogy with electro-
dynamics, to achieve this absence of renormalization
by requiring that the current involved be conserved
in the presence of the strong interactions. Although
this may not be the only way of achieving such a result,
it is currently the most appealing way, from a theo-
retical point of view, and hence will be used as the basis
for the following analysis. This conservation of current
implies a definite connection between the strong and
weak interactions —namely, the conservation implies a
symmetry of the strong interactions, charge independ-
ence, while at the same time it prescribes the exact
current of strongly interacting particles for the non-

' Reported by R. P. Feynman at the Tenth Annual Rochester
Conference on High-Energy Nuclear Physics, August, 1960 (to be
published); R. K. Bardin, C. A. Barnes, W. A. E'owler, and P. A.
Seeger (to be published). without radiative corrections 7„=2,251
~0.012. In Eq. (25b), we have added the corrections of reference
15 evaluated with the usual definition of universality, i.e., equality
of bare coupling constants, and have added 1 g& to the estimated
error to tal. e into account uncertainties of the calculation."T.D. Lee and C. N. Vang, Phys. Rev. 108, 1611 (1957); A.
Sirlin, Phys. Rev. 111,337 (1958).

R. J. Piano and A, Lecourtois, Bull. Am, Phys, Soc. 4, 82
(1959),

energy of 0'4 this value is i6

r„=2.30&0.03 @sec.

On the other hand, if the weak interactions are
mediated by a boson of mass m~, the direct decay
mean life (i.e. , uncorrected by the electromagnetic
interactions) becomes"

= r„)1+5rN '/mw2j ' (25c)

As is well known, the mass of such a boson must be
larger than m~ in order to avoid a rapid decay
E—+ W+p. Taking into account Eqs. (25b) and (25c)
and for a value of m~ 1000m„one obtains approxi-
mately

strangeness-changing weak Lagrangian. It should, of
course, be noted that, unlike electrodynamics, this
current is not absolutely conserved; its conservation
is broken by those interactions which violate charge
independence, such as the electromagnetic field, and
which, therefore, supposedly give rise to the various
multiplet mass splittings. "

Now, in order to introduce a weak interaction which
is responsible for strangeness-changing decays, it seems
entirely reasonable just to add to the current described
above another current which carries a strangeness of
one unit. Then, by analogy, if it is required that this
new current also be conserved, there should exist some
further symmetry of the strong interactions as well as
a definite prescription for writing down this new current.
Again, it should be noted that this current will not be
absolutely conserved"; its conservation will be broken
by those interactions which violate the symmetry
between particles which di6'er in strangeness by one
unit, such as by those which are responsible for the
mass differences between, for example, the Z and the
nucleon or ™,or the E and +. Such currents, which are
conserved in the limit of neglecting certain mass
differences, will be denoted as "quasi-conserved. "

Let us briefly examine the form of the current which
would be responsible for P decay and for possibly all
other strangeness-conserving decays. In the case of
neutron decay, one of the terms of this current must be
py„e. It might easily be expected that other terms such
as 5+y„ZO, y~™,m B„x', ~'B„x, etc. , might also be
present, but as yet experimentally undetected, so that
the proper current should be of the form

j„=py„rs+aZ+pg'+bZ'p„Z +c'y~ +
where a, b, c, are arbitrary constants which are yet
to be specified. If this current were, in addition, as-
sumed to have some specific transformation property
in isotopic spin space, then certain relations among
some of these constants would be implied, e.g., that of
a vector would imply a= —b. Many unrelated and thus
arbitrary constants, however, still would remain. One
way of fixing these remaining constants, for example,
might be to assume that the isotoPic form of j„ is the
same as the isotopic vector which is coupled to the
x-meson in the strong interactions of the Yukawa type
(e.g., see references 3 and 13). This would imply that
c=g-. /g~, etc., where the g's are the coupling con-
stants for the strong interactions. This current, of
course, would not be conserved in general and hence
would give rise to renormalization effects.

The assumption of a conserved current, on the other
hand, fixes these constants in another way, namely
a= b= V2, c=1—, etc.—, which makes j„just that
conserved current that invariance under isotopic spin
transformations implies exists. In fact, this invariance
actually implies the existence of three conserved cur-
"R.E.Behrends and A. Sirlin, Phys. Rev. Letters 4, 186 (1960).
~ S, Okubo, Kuovo cimento 13, 292 (1939).
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III. SYMMETRIES AND CONSERVED CURRENTS

The invariance of a Lagrangian under a transfor-
mation implies the existence of a conserved vector
current, and conversely, the existence of a conserved
vector current implies the existence of a transformation
which leaves the Lagrangian invariant. It is this latter
statement which we will use as the basis for the fol-
lowing analysis of the strong interactions. Namely,
we will construct the most general vector current,
impose the condition of its conservation, and thereby
determine the symmetry of the Lagrangian as well as
the specific form of the current. The Lagrangian which
we will consider is the most general, charge-independent,
Yukawa-type Lagrangian,

~ int g7rN~& 7"i&+5~&~i Mgx "~~P+~~i
—ig.zo;,a& ipse, m-I +g.z(Xe.gZ, m-, +2;O.pter~, )
+gzNN&r~zN+A+gz Z&j8z ZjKg

+gz gNnzy&K+gg-. Gg-.&KG,
where

(26)

rents, i„', i„2, i„3, or more simply the isotopic vector
current j„'. Thus, the requirement of the conservation
of a current, in addition to preventing renormalization
of the charge, fixes, in a specific manner, the relative
magnitudes of the various terms which appear in an
arbitrary current.

The strangeness-changing current can be analyzed
in an analogous manner. We can easily convince our-
selves that the form of such a current (which changes
strangeness by one unit) is

s„=any„Z +bpy„A+cZ+y„n+dZ+y~o+.

Now, in order to 6x the various arbitrary constants, we
will assume, by analogy with the strangeness-con-
serving current j„, that s„ is also a quasi-conserved
current. This then implies a symmetry of the strong
interactions higher than charge independence, i.e., the
invariance of the Lagrangian under a transformation
which changes strangeness by one unit. Since we do
not know of the existence of such a symmetry, we must
solve both problems at once. To this end, we will make
the general analyses of the next section.

and the 8,b are the space-time operators of the inter-
actions (e.g. , 1, iso).

In the erst part of this section, we shall base our
analysis on the full Lagrangian, i.e., we shall assume
that all the gi/0. The basic assumption of this approach
is that the currents which appear in the weak inter-
action are to be quasi-conserved in the presence of all
strong interactions, both E and x. On the other hand,
in the second part, we shall assume that the E couplings
are weaker than the m couplings and that the weak
currents are quasi-conserved only in the presence of
the stronger m.-baryon interactions. This latter approach
allows for the possibility that the E interactions have
less symmetry than those of the pions and hence could
give rise to the various mass splittings between the
baryons.

The general method is as follows. We construct the
most general current of one charge by forming an
arbitrary linear combination of all possible vector
covariants which are bilinear in either baryons or
mesons. We then demand that the divergence of such
a current should vanish. With the help of the equations
of motion derived from the Lagrangian above, we obtain
a set of simultaneous algebraic equations involving the
coeKcients of the vector covariants of the arbitrary
current, the various strong-coupling constants, g;, the
masses, mi of the baryons and pi of the bosons, and the
various space-time interactions, 8;. As mentioned

above, we assume first that all the gi@0 in order to
solve this set of equations. The solutions give various

relations amongst the coefficients of the currents, the

g;, m;, p;, and 8;. With this knowledge, it is an easy
matter to And the symmetries of the Lagrangian which

gives rise to the determined current. In the second part,
we proceed in exactly the same manner except that we

simplify the Lagrangian by setting all the E-coupling
constants equal to zero.

Since the details of the calculation are too cumber-

some to present, we shall list only the results obtained
in the manner described above. In order to do this in a
compact notation, it is convenient to introduce the
seven-dimensional charge space which has been previ-

ously discussed in the literature. "BrieQy, in this charge

space, an eight-component spinor represents the baryons
and a seven-dimensional vector, the bosons. Thus

Eg
E2.
E3
E4

'n
WP

Qp

gp

~' J. Tiomno, Nuovo cimento 6, 69 (1957);
(1960);J. M, Sourian, Compt. rend. 250, 2807

I"= (cV—Z')/V2,
K,= (K++K+)/K2,
Eo= (Ko+Eo)/~2
7r;= (~—+~+)/v2,

Z'= (A'+Z')/K2,
E,= (K+ K+)/%2i, —
E4 (Ko— )E/vo2i, ——

~& ——(~ 7r+)/&2i. ——
(27)

Tc

R. E. Behrends, Nuovo cimento 11, 424 (1959); D. C. Peaslee, Phys. Rev. 117, 873
(i96O).
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In this Euclidean space there are then a set of seven
Hermitian anticommuting 8X8 matrices, I';. The
representation of these F; associated with the spinors
defined above are

I'g, 2, 3= 1XO &,2, 3XO i) I'4= 1X1X0.2)

I 5, 6, 7 01,2, 8X 1X03)

where the 0-; are the usual three Pauli 2X2 spin matrices.
There are 21 independent rotations in this space under
which the spinors transform as P'=e'*r'l '&P [where
F;,—= -', (F;F,—F~F,)j and the vectors as P =a;,(t;. For
example, the three usual isotopic spin rotations are
given as e""~' where.,=i[F„+-,'(F„—F„)j. ..=3[F„——.', (F„+F„)],

&3 3[F56+2 (F12 F34)j.
In the following, we shall group the results by the

relations amongst the strong coupling constants which
are required in order that the current be conserved.
We shall then explicitly list the conserved currents and
also the specific rotations in the 7-dimensional space
under which this Lagrangian is invariant. Since each

of these sets of rotations form a group, the identification

and the number of parameters will also be given.

Results @&hen R11 g;@0

(I) No further conditions on g, .

j„"o&=N&„N+ p~+Z;y„Z;+X&„A,

+V2(Z'~„Z- —Z+~„Zo) —i'(~-B„~o—~oB„~-)

i (K'—B„K+ K+B—„K'),

i ('"=——[py P—ny n+™oy~' —~ y
v2

+2(Z+y„Z+—Z—
y„Z

—
)—i2(rr+B„lr —rr B„lr+)

i (K+B—„K+ K+B„—K+)+i(K'B„K' K'B,K—')j,
1

Lp YI P+
v2

+i(K+B„K+ K+B„K+—)+i(K B„K K B„K)]

Lagrangian invariant under e'l; exp[F62+2'(F&4 —F23) j(rl, exp[F52 ——,'(Fls+F24) j(22, exp[F56+-,'(Fls —F34)j(23,'

exp[2 (F&2+F34)(rj, respectively (1-parameter baryon gauge group; 3-parameter rotation group, Es, which is the

isotopic spin group; 1 parameter rotation group, E2, which corresponds to hypercharge conservation).

(II) gNng"w') "&lgN4= /2g . 4i VlgNz='V'2gxzi rf1=~1) rf2=~1, mN ——m-. ; f)N&l=f)„.&(, ONz
——O-. z.

Currents are j ( '), j„(' ) y„', and

y '=y "=rllrfs(7&y& '+ny~ ) i (K—"B—„K' K'B„K—+)

Lagrangian invariant" under (I) and exp[2 (F,4+F23)(r,j, exp[2 (I'24 —F»)usj (baryon gauge group plus 6-parame-

te««ation group, E4, which is decomposable into two invariant, subgroups of 3-parameter rotations, E&, which

are the isotopic spin group and the hypercharge rotation group).
(III) g4 ——r&2gz

' gN&l=rf3gNz,
'

g 4 $3[ z $2'=+1 rf3=+1 m&=mz' 84 —i+5, BNhBNz, 8 4 8 "z.
.

Currents are j„(''), i„(' ), and

r ""= —r," "'= (1/~2) [q3(l1q„Z-+Z+q A) Zopf +Z+y„Zo—i%2(K+B K' K—oB++)j-
""=—(1/~&)[rf gp, Z'+Z'y/)+Z y„Z Z+y„Z+ '(K+—B„K+ K—+B~+)+—(K'B„K' K''B„K')]—

Lagrangian invariant under (I) and exp[-,'(F» —F,4)(r,j, exp[-,'(F»+F24)(32], exp[—,'(F,4
—F»)n3] (baryon gauge

group, 1-parameter hypercharge rotation group, jV2, plus 6-parameter rotation group, R4, which is decomposable

into two invariant subgroups of 3-parameter rotations, R3).
(IV) gN =g = —gz = —rflgNz= —rfsg z,' g4 =rflgN4=312g. 4,' rll= &1, 2&2= &1; mÃ=m- = zi j K P

6NZ= 8=-Z= 2+5)' 8h~= 8AM= 8A=-.

Currents are j„&'0), i„&' ) y ' and

s„(i l& =43[ rfl py„Z +rfsZ+—y~ i (-K+B„rr rr
-B—++)j, -——

s '* ' = rfl (ny Z —&2' 7„Z—) rf2(Z+y~—o+&2Z y~ )+is2 (K+B„rr rr B~+) —i (K B„rr —&B&K ),—
s„(*' *'&=rfl(7&y„Z++42ny„Z ) rl2(Z y " —v2Z y~ )+i%2(K —B„7r rr B„K)+i(K+B„7r+—&+B,K+), —
s„(' '& =V3[rl,nypZ++rf2Z y~ +i (KoBerr+ or+BpKo) j, —

plus Hermitian conjugate currents s„(f &t. Lagrangian invariant under (I), (II), and exp[F4l+-2'(F25 —Flo)j(rl,
exp[F»+ —',(F»+F26) ju2, exp[F» ——,'(F36+F45) ]423, exp[F,2+2 (F46—I', )]I34, exp[-,'(I'36 F45)(25], exp[2 (F46

+F35)426], exp[2 (F25+F36)nr], exp[2 (I"»—F26)(rsj (baryon gauge group plus 14-parameter exceptional group G2,

which is not decomposable into invariant subgroups).

"The vector f and p of Eq. (27) correspond to the following choice of phases: r» =s3=q3 ——1.To consider the more general case, it
is simply sniiicient to replace 35 in Eq. (27) by a (5' where Ã=r&lN, '=i&2, A'=S3A.
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(V) givw=g ~= gz~= rlsgs~= 'gygNz= —vjsg z= —'grrlsglvs= —res'Qsg s,' 'gy= ~ 1, tl, =+1, gs ——+1.
(7-dimensional symmetry. ) All baryon masses equal; all 6's equal to its', prr= p .
Currentsare ""i " ' r(' ' ~1' s(' ' s" 't andr p ~ fs ) Zpi Is r fz

s„&'* '& = (1/v3) $ 3r—ltrls77y„& 3t—l,res&y„+t—l, (py„Z'+v2ny„h )—rls(Z'ys" —%2Z+yp')
i2—(K+ri 7ro 7rorl K+) i2~2(KoB 7r n—

BsK.
—

o))
s„''*'&= (1/K3) $ 3r—l&tlsny„A+3rlstlsAy~~' rir—(ny„Z' &2—fly„Z+) rls—(Z'ps~'+HZ y )

+s2 (K 8„7rs 7r—sB„K) i2v—2 (K+8„7r+ 7r+—B„K+)5,

plus Hermitian conjugate currents s„(' 't. Lagrangian is invariant under baryon gauge group and 21-parameter
rotation group, E7.

It is important to observe that the quasi-conservation of the I=-, currents requires the seven-dimensional
rotation symmetry, "while the quasi-conservation of the I=—,'currents necessitates a lower symmetry, namely, G2.

Results When X-Couplings Absent'4

(A) No further conditions on g, . Symmetry is identi-
cal with symmetry (I) except that currents do not have
E8„E type terms and there is the following additional
symmetry:

t "'=z+y z++z y z +z'y z'+Xy A

Lagrangian invariant under Z =e'"Z;, A.'=e'"A (one-
pa, rameter gauge group).

(8) gy ——g-. , nsy ——ns-. . Symmetry is identical with
symmetry (II) except that currents do not have EB„E
type terms.

(C) gz =tlg~, ntz=nss, Os =its. Symmetry is
identical with symmetry (III) except that currents do
not have EB„,E type terms.

(D) gw =gz =tlgs. , nsz=mx=ms, 8s =its Cur-.
rents of (A), (C), and

plus Hermitian currents s„&'

(E) g-„. =gz tlgs, mz m——=ns——s, B-. s =its. Cur-
rents of (A), (C), and

s 11,2)'=tlAp ~~ gsp ~~ —+~2+—+p ~~s

s (2 2) ——

'riley

Hs gay Hs

plus Hermitian currents s„': '~. It is important to
observe that in the present case (E'-couplings switched
off) the I= ss currents cannot be quasi-conserved.

IV. STRONG INTERACTIONS —PREDICTIONS

In the previous section we determined the various
possible symmetries of the strong interactions. These
symmetries, of course, have certain experimental con-
sequences for those physical processes which proceed
through just the strong couplings. In this section, we
shall discuss these predictions.

Of the symmetries when the E couplings are absent,
the most interesting is when all the constants are equal,

'3 This fact has been emphasized by V, M. Shekhter, J. Exptl.
Theoret. Phys. 36, 581 i1959} Ltranslation: Soviet Phys. —JETP
9, 403 (2959)g.

'4 Currents for this truncated case are denoted by carats.

i.e., global symmetry, This has been discussed ex-
tensively in the literature. -''

In the symmetry (I), the invariance under the baryon
gauge group, the isotopic spin group and the one-
parameter hypercharge group guarantees the con-
servation of baryons, isotopic spin, and hypercharge,
respectively. The experimental implications of these
symmetries are well known and will not be discussed
here.

Symmetry (II), the hypercharge rotation group, has
been discussed in some detail by Feinberg and
3ehrends. " There seems to be little experimental
evidence either favoring or disagreeing with the pre-
dictions of this symmetry.

Symmetry (III), the "doublet approximation, " has
been discussed by Pais and shown to be in disagreement
with experiment. "

Symmetry (IV), the exceptional group G2, which
has not, been discussed previously will form the basis
of the present considerations.

According to the theory of continuous groups, there
are four general classes of simple groups with varying
numbers of parameters (orthogonal, unitary, etc.).
Aside from these there are five exceptional groups,
each with a fixed number of parameters. The exceptional
group with the smallest number of parameters, 14, has
been designated by Cartan as G2."It is a nondecom-
posable subgroup of the 7-dimensional rotation group,
Rv, and is in fact the subgroup which we have desig-
nated as symmetry (IV).

However, rather than give a complete analysis of
this group and its properties which bear on the strong
interactions, we shall follow a more pedestrian approach
in order to determine some of the predictions for
physical processes. If it should turn out that this group
is, in some way, a symmetry of the strong interactions,
or a. part thereof, then, of course, a complete analysis
will have to be made,

The group G2, as constit:uted in our symmetry (IV),
'" For example; see M. Gell-Mann, Phys. Rev. 106, 2296 (1957);

D. Amati and B. Vitale, Fortschr. Physik 7, 375 (1959)."G. Feiriberg and R. E. Behrends, Phys. Rev. 115, 745 (1959).
"A. Pais, Phys. Rev. 110, 574 (1958).
2 E. Cartan, "Sur la structure des groups de transformations

fjnjs et continus", These, Paris, 1894, II edition 1933.
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TABLE I. Finite-angle rotations of G2. The exponentials describe the rotations which take the first column into the corresponding
column. The second column is the usual charge symmetry operation. The A. is not transformed under G2.

M0

M-
H

g+
+0
Z
E+
E0
E0
g+
7r+
X0

expLa54r(2r57—r„—r„)j
&n
wp
&H
p M0

—Z
+0
g+

~IP
~E+
+X+
&%0

7r

—7r+

exPL&-'44r (2I'27
+r 15+i 26)j

~g+
MO

n
~Z
&p

+0
yM
~7r+
—E'
—E0
%7r
~IV+

&E+

e xP[W-4441(2r 17
+.r46 —r 25)]

MH

~Z
~g+
—p

0

+0
Wn—E+
&1r
~x'+
—-K'
WI|."

WE0

exp/+ 42. {I'46
+l'65) g

p~g+
~Z

MH

+n
g0

pM0
E+

%7r+

E+
&E0

~g'0

exp L~4'42 (F52—&24) g

&p
an

g+
QO

Z
+E0
wg+
WE+
~EO

7r+

exp L&-'44r (I'45
r26) j

~Z
n
MO

~g+

g0
ap
%7r

E0
X0

aE+
Vr0

&E+

contains two subgroups (not invariant subgroups)
which are the 3-parameter isotopic spin rotation group
and the 3-parameter hypercharge rotation group. It
should be noted that it does not contain the symmetry
(III) which disagrees so definitely with experiment. It,
therefore, cannot be dismissed, out of hand, as being
incorrect. Physically, G2 is the group of all rotations
in the seven-dimensional space which does not trans-
form the A particle Lthe transformation of A into Z's
is physically the symmetry (III)j. fit is easy to see
physically that this set of rotations, symmetry (IV),
forms a group: namely, each of these rotations mixes
the remaining seven baryons among themselves, but
does not mix any of the seven with a A. Therefore, any
combination of rotations will always lead to a rotation
which does not transform the A.)

In Table I we have listed the finite-angle rotations
of G2 which will be useful in our analysis. The angle
was chosen so that the rotation would take one particle
into another rather than a linear combination of others.

We now consider the four-point function for a scat-
tering, say, 7r++p ~ 7r++p,

(TL0.(»)4(~2)4 -'(»)4 -'*(*4)7)o (29)

where T is the time-ordering operator and ( )o means
the vacuum expectation value in the physical vacuum.
This quantity is related by a simple linear integral
transform to the matrix element operator. We will
symbolize this quantity by (P7r+; P7r+).

If U is the unitary operator which induces one of t,he
rotations, then it will commute with the Hamiltonian
when the various mass and coupling-constant relations
necessary for invariance are satisfied Lin this case the
restrictions for the symmetry (IV)], and hence it will
leave the vacuum invariant. It thus follows, by using
Table I, that the rotation expL+47r(2I'Ij7 r» —I',4)]
ChangeS the fOur-pOint funCtiOn fOr 7r++p —+7r++p in
the following manner:

(p~+; p~+) =(Up7r+; p~+Ut)
S7l

p
S1l a

This is the usual charge symmetry relation. Similarly,
the rotation expL&-', 7r(I'15—I"26)j leads to the following
relations:

Di = (p7r+; p~+) = (B7r=; B7r-) = (pEo; pE')
= (BE+;BE+),

0 =(Z+E+' p7r+)=(Z Eo' B7r )=(nK+; pEo)
= (pE'; BE+),

0,= (Px-; Px )= (Bx+; n~+) = (PK-', PK')
=(BK+ nK+),

0 = (n7r'; P7r )= —(P7r'; n7r+) = (Z+7ro; PK')
(Z ~o; BK—+),

0 =(Z'E'; p7r )= —(Z'E+; B7r+) = —(Z'7r+; pK')
=(Zo; BK+),

0 (oZ'E+,p )7=r(Z+E'; n7r+) = ( 'E+; pK')
(:- E', nK+), — —

0 = (pE+pE+) =(BE' BE')'
Qo ——(pK+; pK+) = (BK'; nK'),

Q, =(Z+~—;pK+) =(Z ~+; BK')= (BK'; pK+—)
(pK+; BK'), —

n =(Z +pK+) =(Z+ -BKo)=(=-oEo pK—+)
(= E+; BK'), — -'

0» ——(Z'~'; pK+) =(Z'~'; nK'),

n =(~Eo P~ )=(~E+ n~+)= (~~+.P-K')—
(X~ ;BE+), —-

0» (A7ro. PK+) =(A7ro. BKo)

(32)

Due to isotopic spin conservation, there exist certain
relations among these four-point functions. These are

(p7r+. p7r+) = (Z E+ Z
—K+)=—(B7r

—. B7r-)

=(nE+; BE+) (3I. )

In this manner, it is possible to list the following re-
lations among the various experimentally feasible
processes:
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found, for example, by writing the Z x+ and 2+m' in
terms of isotopic spin 2 and spin 1 functions and then
noting that pEg is a pure spin I function. In this
manner the following relations Inay be found:

04 ——Qg, Qgg
———v20tg, 20tt —Qtp —Og=0;

V2fl4+Qg —fl, =0; v2ftg+ fig —fig
——0. (33)
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With the present experimental evidence at moderate

energies, it seems difficult to establish whether any of
these relations are valid or not. However, if an addi-
tional assumption is made, it is possible to make an
experimental test of the symmetry. Namely, if we

assume that the electromagnetic fieM is introduced
into the Lagrangian according to the principle of
minimal electromagnetic coupling, we then note that
the total Lagrangian, strong plus electromagnetic, is
invariant under

the rotation expL+-'gr(Plg +26)]
and A„~ —A„,

the rotation L&agr(2737+I g$+Fgg)]
and A„~3„,

(35a)

since the first rotation takes all charged particles into
particles with the opposite charge and neutrals into
neutrals, while the second rotation takes particles into
other particles of the same charge. In the manner of
reference 26, we now consider the three-point func-
tions, say for the A, i.e.,

In order to compare with experiment, it is necessary
to first form the matrix elements from these operators
and then their cross sections. The formation of the
matrix elements involves taking these operators be-
tween physical particle states. This implies that the
matrix elements will depend explicitly on the masses
of the incoming and outgoing particles, the functional
form of which is unknown from the present con-
siderations. Therefore, it would seem that a comparison
of a set of reactions that are related by the above sym-
metries but whose incoming or outgoing products do
not have corresponding masses is possible only at
energies which are sufficiently large so that the mass
differences are negligible.

At sufficiently high energies, the three-term relations
in Eq. (33) can be used to form the usual triangular
inequalities among the magnitudes of the various
amplitudes. If we denote the amplitude for the process
represented by the operator 0;by A;, then the triangular
inequalities are

which is related by a simple linear integral transform"
to the e-m vertex operator for the A, symbolized by
Fz". By applying the first transformation, we find that
F~&= —Fq&=0. In a similar manner we obtain the
results 1—5 of reference 26. However, in addition, we

obtain the following results

F.~= -F-."=-F„~=O
F ttt —F~+u= F„-w= F~-~

(37)

V. WEAK INTERACTIONS —PREDICTIONS

In a previous section, we derived the vector currents
which are quasi-conserved in the presence of the
strong interactions when both the E and x couplings
are present and when only the x couplings are present.
We now will make the following assumption: (isa)
The vector part of the cgtrrerlts which appear igg the weak

Since these are the total electromagnetic vertex
operators, it follows that both the magnetic moment
and the charge distributions of the neutron are zero.
Experimentally, the charge distribution of the neutron
does indeed seem to be zero, but that of the magnetic
moment is definitely not. However, two observations
are important at this point: (a) This result depends
essentially on the use of the principle of minimal

electromagnetic coupling. It is conceivable that this

principle might not be valid. For example, if the
baryons had intrinsic anomalous magnetic moments
(Pauli terms), then this principle would be violated,
and by the same token, the results we just found would
not be valid. (b) The effect of the E 7r mass d—ifference

on the predictions of the G2 symmetry is particularly
important when evaluating quantities proportional
to powers of the momentum transfer q„at small values
of q'. In fact, a second order calculation using the G2

symmetry and the principle of minimal electromagnetic
coupling gives corrections proportional to (yIr tj,„)/no, —
where m is the baryon mass (the Z —tV mass difference
has been neglected in this calculation). Numerically,
one obtains a result p —1 nuclear magnetons. Such
large corrections to the predictions as occur in this case
would tend to make this a, poor process for testing the
G2 symmetry.

These two observations suggest that no definite
conclusions with respect to the validity of G2 can be
drawn from electromagnetic processes (at least at
small momentum transfers) and that it might be
preferable to test this symmetry by nonelectromagnetic
phenomena.

Other predictions follow from the transformation

(35a), namely, (rtgrg; nA„)= —(m.g,'mA„)=0, i.e., pho-
toproduction of m"s from neutrons is zero. Also,

(AA Z')= —(AA„Z')=0, i.e., the decay Z' —+Ag+y
is forbidden. Again, these disagree v ith experiment but
are subject to the comments given above.

(Tga(x, )ga(xg)A„(ag)])g, (36) "See, e.g. , Y. Takahashi, Nnovo cimento 6, 371 (1957l.



CURRENTS AND SYMMETRIES OF STRONG I NTERACTIONS 335

interaction are quasi co-nserved in the presence of all strong
inter(tctions, both E and ir, os expressed in the Lagrangian
of Eq. (Z6); or (ivb) the vector part of the currents which

appear in the weak interaction are quasi co-nserved in the

presence of only the strong ir bar-yon interactions of Eq.
(Z6). These alternative assumptions will, of course,
give rise to different experimental predictions.

The smost general vector part of the current J„&')
under (iva) may then be written

J (+) — (-', )
~OV ys

J (+1)V=i (1»)+p 'v (1,1)+(rvs (2 i)

+PVS (l, l)+0 t (+1)

AvJ (0) v —
p i (1,0)+p v v (1,0)+ s (-'„—l)—P2V p 2V p

ps v&2

v2
+ Pvs (-:,—f)+rtv j ( ,0)0+ riv' ys

2V
v3

J(1)Vpsvi Ql)+psvv(11)+Pvs(f f)

p3v

where these various currents are given in the discussion
of the symmet:ries (A) to (E). In this case, there are no
deFinite results from the strong interactions which
necessitates the exclusion of any of the above currents.

Because i„""and x„""are the usual quasi-conserved
currents which arise from isotopic spin conservation,
we obtain the well-known lack of renormalization of
the vector part of neutron P decay. For the same reason,
both currents will give rise to the decay ~+ —+ ~'
+e++vl at the predict:ed rate. ' The other predictions
which follow from such a current are valid here also.

For decays not involving leptons, no predictions can
be made without further specifying the form of the
axial vector part of the current J„"'~.Thus, for ex-
ample, the absence of an isotopic spin —,

' part of the
vector current is rot sufficient to guarantee a lack of
asymmetry in the A —l Ã+ir decays.

Let us now turn our attention to strangeness-
changing decays which involve leptons. If we neglect
terms of relative order (tlrc' —tu..')/ni)v' in the matrix
elements, then assumption (iva) permits the prediction
of the ratio of the E,3 and E» modes of decay, valid
to all orders in the strong coupling. Sugawara" has
shown that this ratio is

where these various currents are explicitly listed in the
discussion of the symmetries" (I) to (V), and the
conditions 4)P=r)'P=O are understood. As was seen in
the last section, symmetry (III) is definitely not a
symmetry of the strong intera, ctions. " However, this
symmetry must be satisfied in order that r„(' and
s„'"' ' be quasi-conserved. Thus, if we require condition
(iva) to be satisfied, we are forced to exclude the r„""'
and s„&& ) currents, i.e., nv=0=- p;v."

The most general vector part of the current J„&')
under assumption (ivb) is

J (+1)V —i (l,l)+p ~r" (l,l)+(rvs (i,l)

+crv's (i, m)'+sit (+1)

R (IC+ ~ rr +e++vl)/R(E+ ~ ir +tu++ f 0) = 1.55. (40)

This result is independent of the rela, tive strengths of
the strangeness-changing currents, (r and P. By using
the Gell-Mann and Rosenfeld" averages, the experi-
mental value is 1.04~0.22.

It also follows, when this current is quasi-conserved
under assumption (va), that we can obtain the absolute
rate, R(E+—&ir'+e++vl), as a function of /el, inde-
pendently of any closed loop diagrams involving the
strong couplings. The analogous case of ir+ —+ ir0+e++ vl
was discussed by Feynman and Gell-Mann. ' The rate
is, up to terms of relative order (t(x' —ti s)/m)vs and
further neglecting the electron mass, '4

1 ~v
(0) V=pivi (1 0)+.pSV j (1 0)y— S (8 i)

K2 psv

R(E+~ ir'+c++ v, )
= [(4P'elsG'/(2ir)'])ix(t4 o)4(0.54). (41)

0

1 Ov'
+ s (l,—l)'+rt~g (0,0)+r)v'g 0

V2 p,v
i~t (0,0)

Substituting the observed rate, we obtain

(42)

J (—1)V— f (1,—1)+p V~j (1,—1)

"P.Gursey has independently discussed the possible existence
of a quasi-conserved I=-', current )private communication and
Ann. Phys. (to be published) j.

3' It is perhaps interesting to note that if the I= —,
' currents were

accepted and the seven dimensional rotation symmetry were, in
some sense, a symmetry of the strong interactions, one could
determine 0. and p from the ratio of the E+ —+ m +e+-t-vI and
E ~ x +e++v~ decays and from their absolute rates. If it were
further assumed that in (t)A) the vector and axial vector parts
enter in the combination 1&y~ in the effective matrix element,
one would obtain a prediction for the P decay of the h. of about
1.2 parts in a thousand, which is consistent with experiment.

By using this value of (sip)', it is possible to obtain
a lower limit on the rate for the decay Z ~ n+e +f 1

If in this decay we neglect the mass of the electron, it
is well known that there is no interference between
the vector and the axial vector contributions to the
total rate, so that the pure vector part provides a lower

3 M. Sugawara, Phys. Rev. 112, 2128 (1958).
3g M. Gell-Mann and A. H. Rosenfeld, Annual Review of

Nuclear Science (Annual Reviews, Inc. , Palo Alto, California,
1 957), Vol. 7, p. 407.

M J. C. Pati, S. Oneda, and B. Sakita (to be published).
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limit. Ke obtain"

APPENDIX

especially to F. Giirsey, J. P. La,scoux, T. D. Lee,
M. Nauenberg, and C. X. Yang.

g(Z ~n+e +pr)/R(& —+n+x )&1.7X10 ' (43)

for rq-=1.6)&10 " sec. Similar results can be calcu-
lated for the decays —&Z'+e +Pr and ' —+Z+
+e +~i.

We again point out that the pure J= —,
' current,

which arises from assumption (isa), will lead to the
predictions of Eq. (17b), which appear, at present, to
be in .disagreement with experiment. However, this
result implies the additional assumption ~2=0 which
can be investigated independently [see the discussion
after Eq. (15)].

For the condition (ivb), we have the prediction of
Eq. (17a), and the absence of decays with AQ=DS.
Without making an additional assumption concerning
the form of the axial vector part of the current, no
further predictions for assumption (iwb) are feasible.
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m, =(n -~I Z„I ~Z-)

=((1/v2)p +n 'i Z 'ix'&. (A.1)

As I commutes with 2„', we also have

~r=(nor l~ '-'(I' —Is' —Is)l& &=(n7r l~ 'I~
& (A2)

We consider now

Ms=((1/K2) per
—+nor') I 2 'I+

~

Z'&

= —(Vrp '—n +~2„'~Z+&. (A.3)

On the other hand, by using Eq. (7a) again,

M, =((1/K2) p~-+n~'~ Z. tx') =u, . (A.4)

Thus, we obtain

(n -iZ. iZ-)= —V2(p oiZ. is+&
+(n7r+~2 '~Z+&, (A.s)

which is the well-known relation of the
~

d,I 1 =-,'rule.

In this Appendix, we illustrate the fact that the
relationships implied by the

~

AI
~

=—,'rule can be
readily obtained by means of Eqs. (Sa) and (5b). Let
us, for example, consider the decays Z~N+7r. We
write the matrix element


