
P H YS I CAL R EVI E% VOLUM E 12 i, NUM 8 ER JANUARY t, &O61

Divergence of the Green's Function Series for Rearrangement Collisions*
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The convergence of the Born series for rearrangement collisions is investigated in a potential model.
For a certain class of potentials it is shown that the iterated series for the full two particle Green's function,
(kz'kz'~G(E) ~kzkz), in terms of either the free-particle Green's function, the initial state Green's function,
or the final state Green's function, diverges for some continuous range of the variables k~, k2, kl', and k.'
independent of the energy, l~", of the incident particle. It is suggested that the usual Born series, which
is an integral over this Green s function series, therefore, also diverges for rearrangement collisions inde-
pendent of the incident energy.

I. INTRODUCTION

ALCULATIONS on rearrangement collisions have~ been a subject for theoretical investigation since
the early days of quantum mechanics. Among the more
popular problems which have been treated in a non-
relativistic potential formalism are exchange scattering
of an electron by an atom, ' charge transfer between H+
and H, ' and nuclear stripping reactions. ' For the most
part, calculations have been limited to evaluation of
the first and second Born approximations. While exact
formal expressions for the cross sections are well
established, 4 to our knowledge the validity of the Born
expansion for rearrangement collisions has never been
investigated. The validity of the first Born approxi-
mation in the low-energy region has been partially
explained by several authors. ' A natural question to
ask is whether the Born expansion converges in the
high-energy limit as does the Born series for the
scattering of a particle by a potential. ' In this note we
address ourselves to the question of convergence of the
Born expansion for the full Green's function. Ke
maintain that while the matrix elements calculated up
to second order may well be part of a convergent
scheme, the series expansion of the full Green's function
in terms of the free-particle Green's function diverges;
in fact, we shall prove that several of the more obvious
iterative series for rearrangement collisions diverge.

In a rearrangement collision a particle, for example
a neutron in a (d,P) reaction, is exchanged between the
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incident particle and the target. If we examine the Born
expansion of the full Green's function, (n'y'

~
G(E)

~
ny),

for this process we find that the convergence of the
series is not necessarily determined by the incident
energy K The relevent energy involved in the Green's
function expansion is not E, but a variable we call E',
which is related to the magnitude of the momentum
transfer to the exchanged particle. The problem of
convergence of the Green's function series for rearrange-
ment collisions then reduces to considering the three
dimensional Green's function series for the scattering
of the exchanged particle with incident energy E' on
the target (assumed to be a potential). The variable E'
is permitted to take on all possible negative values. It
is proven in the text that if a bound state exists (as it
must in a rearrangement collision) with energy Ezz-
the above series will diverge for —E~~& E.'&0, and thus
that the usual iterated series for the full two-particle
Green's function (n'y'~G(E) ~ny) diverges for some
continuous range of the variables n', y', n, and y. The
situation in rearrangement collisions, therefore, is quite
different from the case of the usual three dimensional
scattering of a partjcle by a potential, where if the
incident energy E is made large enough, the Born
expansion for the Green's function (k'~G(E) ~k), con-
verges uniformly with respect to k and k'. '

In the transition amplitude for the rearrangement
process G(E') is integrated over a range of energies E'
including negative values of E'. More precisely, the
Born series, Tf;, for the transition amplitude may be
considered as an integral over a set of subseries TJ, (E'),
each subseries being obtained from the Born series for
G(E'). We shall argue later in the text that the diver-
gence of Green's function expansion in a continuous
range of I' will, except for fortuitous cancellations,
insure the divergence of the full Born series for Tf,.

In Sec. II we shall prove that for the case of an
attractive potential whose Fourier transform is always
negative, the three natural iterative series, the one in

terms of the free-particle Green's function, the one in

terms of the initial state Green's function, and the one
in terms of the final state Green's function, all diverge.
In Sec. III we discuss implications of our results in the
formal theory of rearrangement collisions. In the Appen-
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dix the case of a separable potential is treated exactly to proton momenta, respectively;
illustrate mathematical assertions made in the text.

E=kd( '—Eg=k '—E
II. PROOF

Without loss of generality we investigate the case of
two particles bound by a potential V, incident on a
fixed center of force giving rise to a potential V~. The
preceding picture may describe, for example, a deuteron
incident on an infinitely heavy nucleus where V, is
the neutron-proton potential, Vf is the eGective po-
tential of the nucleus, ' and electromagnetic interactions
have been switched o8. As a further simplification let
us suppose that Vf acts on only one of the incident
particles, for example, the neutron. The Hamiltonian
for the system is

Tr'= (4r, V'+'")). (8)

Substitution of Eqs. (3) and (4) in Eq. (8), and iteration
according to Eq. (3a) defines the Born series:

(yf, v,e, (+))= (y„v,y,)y(y„v,Gpv~, )
+ (pf, v'Gp(v~+Vf)Gpp, )+ ' ' '. (9)

ed is the internal deuteron wave function, and v is the
wave function of the neutron bound in the potential.
The T matrix describing the transition i ~ f may be
written"

IX=T+ V,+V), (1) We shall denote by Rr; the difference of Tf; and its
first Born approximation Tr, (9)r, U,(t,).——

They are inter-related by

(a) G=Gp+Gp(v'+Vr)G,

(b) G=G,+G,VUGG,

(c) G=Gr+Gfv, G.

(3)

For future reference let us denote the quantity (T+ V~)
as the initial Harniltonian H, , and (T+Vr) as the final
Hamiltonian Bf. In the integral formulation of the
scattering problem a wave function is sought which
satisfies one of the following equations:

+.(6)—y, +G, (k) Vf+, (6)

—y.+G(6)U'fy.

where T is the sum of the kinetic energies of the two
particles. We may now define four Green's functions;
the total or full Green's function 6, the free-particle
Green's function Go, the initial state Green's function
t";, and the final state Green's function Gf. They satisfy
the following operator equations":

(T+V,+Vr E)G= —1,—(T+V,—E)G,= —1,
(2)

(T—E)Gp —1, (T+Vr ——E)Gf= —1. —

(10)

Upon substituting complete sets of plane waves of
neutrons and protons, we obtain

Ef'= ~ E (gl V'Inp)(nplGln'p')(n'p'I vfls) (11)
n, p n', p'

It is important to note that in a rearrangement
collision, since g, and gf describe at least one particle
in a bound state, neither of the matrix elements

(fl U, lnp) nor (n'p'I Vrli) contains any delta func-
tions on energy or momentum, " and thus the inter-
mediate momenta n, p, n', y' can assume all possible
values. We now consider the iterated series for the full
Green's function in Eq. (10):

(npIG(E) In'p') = (2~)P8(n —n')8(p —p')G'"(n, p E)

+G(')(n, p; E)u(n —n', p —p')G("(n p E)

1
+ t d)s" ~dp" G(')(n, p; E)u(n —n"; p —p")

(2s-) P "
XG(') (n",p"; E)u(n" —n'; p"—p')

(6)—y +Gr(+) V,+r(k)
=yf+G(6) V,y&

where
XG(P)(n' p' E)+ . (12)

where the superscripts (+) and (—) denote the out-
going and incoming boundary conditions. p; and pr are
solutions of the initial and final Hamiltonians, respec-
tively, and

@,= e'~s ('~+' )I Nd'(I r„r„l), p&
———e(&r rru(I r„l), (6)

where k~ and k„are the incident deuteron and final

~ The nucleus is assumed to have in6nite mass and the spins of
the nucleons are ignored.

8 The boundary conditions associated with these equations are
well understood. See E. Gerjuoy, Ann. Phys. 5, 58 (1958); and
E. Gerjuoy, Phys. Rev. 109, 1806 (1958).

~ We take units in which A=2m=1.

(13)G(P) (n p E)—
E+ir( n' p'——

rj(Q q)
— I Jr I Jr e((k rn+& rr)

J

xEV,(lr.—r. l)+ V, (lr. l)j. (14)
I

In order to prove the divergence of the Born series,
Eq. (12), it is sufhcient to consider the following
subseries If of terms containing only the I'"ourier

"B.A. Lippmsnn (see reference 4).



transform of Vf.

Ir(n, n'; E—p')

32i

V~(q) = —)tfM(q), )tg) 0, M(q) &~0, (18)
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and positive values. "If we let

= Vy(n —n')+ I dn" Vf(n —n")
(2s.)s &

&&G&si(n",y; E)Vq(n" —n')+

and consider only those values of y for which as= ps —E
)0, then the it) in Eq. (15) is superfluous, and Eq.
(15) can be rewritten in the form

If(q, q', —a') =)tgM(q —q')

1= V~(n —n')+ dn" V~(n —n")
(2s.)' "

+ ' dq" M(q —q") M(q" —q')
(2s.)s ~ q&&2+~2

X Vg(n" —n')
(E—p'+it)) —n'"

~ dq" dq"' M(q —q") M(q" —q'")
(2s)s J & q'"+n'

M(q"' —q')+" . . (15')
II/sy

This clearly is the Neumann series solution of the
integral equation, Eq. (17).Note that each term on the
right-hand side of Eq. (15 ) is positive and its derivative
with respect to ots is negative. Thus Ir(q, q'; —n') is
motonically increasing as o2&0 decreases. From the
study of the three dimensional potential scattering
problem it is well known that if a bound state exists
with binding energy —Ea, the series If will converge
for n' sufficiently greater than E~,"and diverge at E~
where the Green's function has a pole. Thus the series
must diverge at some OP=ED such that Eo~&EJB. Since
each term in the series If is positive and increasing as
n' decreases, the series will certainly diverge for all
values of n'~&ED, and thus I~ is absolutely divergent
for 0(n'& Eg.

It is true that we have proven divergence for a
particular subset of the Green's function series, and
one might be tempted to argue that divergences may
cancel if one considers the entire series. However, the
iteration in terms of Go is a double power series in the
two potential strengths )t, (V,) arid Xf(Vf). Since the
usual theorems about absolute convergence and rear-
rangement of single power series are easily extended to
double series, " the absolute divergence of the series in
a particular arrangement, namely, taking first the terms
involving A; to the zero power, cannot in general be
avoided by a rearrangement of the series. Thus the
iteration series for the total Green's function in terms
of the free particle Green's function diverges at least
in a continuous range of p such that 0(p' —E&~E&.

Finally we prove that iteration in terms of either the
initial state Green's function or the Anal state Green's

X- V~(n"—n"')
(E—p+i&) —n"

X Vf(n"' —n')+ . (15)
(E p'+iri) n""— —

Equation (15) may be interpreted as the formal
expansion of the final state interaction operator, defined

by

(n, ytGf(E) (n'y')
= (2~)'~(y —y') L(2~)'~(n —n') G"'(ny; E)

+G "&(n y E)Ir(n,n' E—p')Gwi(n' y' E)]. (16)

Ig(q", q'; E). (17)
E+sri —q'"

We now proceed with the machinery set up in the
last paragraph to prove divergence of Born series for a
somewhat restricted class of potentials. We insist upon
an attractive potential whose Fourier transform is
always negative for all real values of momentum. This
class, however, includes all the more common potentials
such as the Gaussian, the exponential, the Yukawa,
and the Hulthen potentials, and one would indeed be
surprised if the result were not true in general for
attractive potentials. The instructive case of a separable
potential is treated in detail separately in the Appendix.
We again emphasize that, in the final expressions for
the transition amplitude, such as Eq. (11), y is inte-
grated over all momentum space, and therefore the
argument E—p' of Iy in Eq. (15) can take on negative

"E—p' is the variable E' defined in Sec. I as a variable related
to the magnitude of the momentum transfer to the exchanged
particle.

'2 See references cited in footnote 6; it can be easily seen that
the Fredholm determinant for Eq. (17) is identical with that
appearing in the Green's function,' See, for example, E. T. Whittaker and G. N. %atson, Modern
Awalysis (Cambridge University Press, Cambridge, 1958), pp.
26-$2,

The interaction operator I~(q, q';E) satisfies the
integral equation

If (q, q'; E) = Vr(q —q')+ — dq" Vr(q q")—
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6=G;+G,VfG, +G.;VUGG, UfG+. . . (19)

function also produces divergent results. I.et us deal
specifically with the expansion in terms of 6;. The
proof for the expansion in terms of Gf follows mltutis
mgtandi s.

Consider the formal expansion for 6 in terms of G~
and Vf.
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APPENDIX: SEPARABLE POTENTIAL

For a separable potential —liv(p)v(q), the Schrodinger
equation in momentum space may be written

We may further write

G, =Gp+GpV, G;. (20)
(p' —ko')h(y, ko) —Xv(y) dq v(q)h(q, ko) =0, (A.1)

J

After substituting Eq. (20) in Eq. (19), we group the
result as follows:

G=F(V,)+Gp+GpUIGO+GpV)GpUJGp+ ' ', (21)

where F(V,) contains an infinite number of terms, all
of which are explicitly dependent on V;." We have
proven above the divergence of G F(V,)—in a certain
region of momentum space. Since the potentials V, and
Vf are independent, in general divergences in F(V,)
cannot cancel the divergences in the remaining series
of Eq. (21). Hence the divergence of Eq. (15) implies
the divergence of Eq. (19).

III. CONCLUSIONS

We would like to be able to prove that the Born series
for the transition amplitude diverges. However, even
thoqgh the Green's function series is a divergent sum
of positive terms in a hnite measure of the integration,
this is not enough to insure the divergence of the
transition amplitude which is an integral over this
series. If in Eq. (11) the function (f~ V, ~np) and
(n'p'~ Vi ~i) can change sign in the integration interval
then a cancellation is possible and one cannot conclude
that the integral diverges. But for the class of potentials
used in our proof, at least for the first S-wave bound
state, the matrix elements (f~ V;~ny) and (n'p'~ Vf~i)
never change sign. For these restrictive cases the
cancellation cannot occur, and we would be surprised
if it did in more general examples. A more dificult
point concerns the interval of convergence of the
Green's function expansion. The series for 6 probably
diverges in other integration ranges than those concen-
trated on in the text, (for example, for small positive
values of E p'), and diverg—ent contributions from
these ranges might be of opposite sign and cancel the
divergences arising from E&p &~Eii. This cancellation
would, of course, depend delicately on the functions
(f)V;~np) and (n'p'~ Vi~i) and seems highly unlikely
to occur. Thus we believe that the Born series for the
scattering amplitude in a rearrangement collision
diverges, and we have pointed out the origins of this
divergence, but a rigorous proof involves very diAicult
mathematical questions which we cannot as yet resolve,

' While this point is suspect, the authors strongly believe it to
be valid.

Xv(p)
h(p, Eii) = dq v(q)h(q, E&).

p'+Em
(A.2)

Qne can readily verify that the condition for the exist-
ence of a bound state, k(p, Eii), is

v(q)
dq — =1,

Ea+ g

(A.3)

and also that there exists only one such solution.
The interaction operator of Eq. (15), for a separable

potential, becomes

If=kv(y)v(q)

v'(q)
1+) I'd,

q' —kg' —zing

v'(q)
+2Pf ' dq f+

q' —k02 —ig)

(A.4)

In terms of the ratio test, the condition for convergence
is given by

v'(q)
(A.5)

k()

Pro. 1. The shaded area represents that region in which the Born
series converges in the complex k plane.

where h(p, ko) is the wave function and ko' is the energy
eigenvalue. If a bound state exists at energy ko' ———E&,
the solution of Eq. (A.1) becomes
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Equation (A.3) insures the divergence of the series of

Eq. (A.4) at the bound state energy E&, while the series

will diverge for —E~&~ko'&0 for the same reason as
discussed in the text in Sec. II. (The potential must of
course satisfy the same conditions. ) In general it is
extremely dificult to investigate the region of conver-

gence of the above series in the complex k (=kp+fg) q dq

~ p (q'+ p') (q' kp—' ip—) 47'
(A.7)

plane. However, if we choose n(q) as a Yukawa-like
potential,

~(e) = 1/(q'+~'), (A.6)

where p is the range of the potential, all the integrals
can be evaluated, and Eq. (A.5) can be written as

Upon performing the integration, the above condition
becomes

kp'+ (g+p)') pr9/p. (A.S)

For the particular potential under consideration the
bound state energy is given by solving Eq. (A.3) and
we obtain

L'a= s9/p p— (A.9)

FIG. 2. The region of convergence of the Born series in Fig. 1 maps
into the above shaded region in the complex energy plane.

From Eq. (A.8) the region of convergence in the k
plane is seen to be the region outside the circle of
radius R=pr9/p, surrounding the point k= ip, —as
illustrated in Fig. (1). The region of convergence in
the energy plane is shown in Fig. (2). It is interesting
to note that the Born series diverges everywhere within
a circle (in the k plane) of radius

~
k

~

=QJ"s surrounding
the origin,


