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Double injection into semiconductors and insulators is studied under conditions where the injected
electrons and holes are free (injected plasma), the current is volume-controlled, i.e., determined by dis-
tributed space charge, and the current is field-driven (diffusion negligible). The major results are, assuming
a one-dimensional geometry and carrier lifetime independent of injection level, for extrinsic semiconductors,
(i) an extended voltage region over which J« V2 (J current density and V voltage), and (ii) depression
of the current, at fixed voltage, in the square-law region through éncrease in the number of thermal minority
carriers, J « |np—pr|, with nr, pr the thermal-equilibrium densities of electrons and holes, respectively.
This unusual behavior is shown to be a direct consequence of recombination kinetic requirements. For
insulators, assuming trapping is negligible, J « V3. A rigorous solution is obtained for the constant-lifetime
problem, valid for both semiconductors and trap-free insulators. This solution furnishes a good approxima-
tion also for variable-lifetime cases, e.g., bimolecular recombination kinetics.

I. INTRODUCTION

OUBLE injection into solids, that is, the simul-
taneous injection of electrons from a negative
contact and holes from a positive contact, is a subject
of both considerable complexity and diversity. In the
theoretical studies of this subject over the past decade
by far the greatest attention has been given to double
injection into semiconductors, usually “short” »-i-p
structures, in which the current is controlled by one or
both contacts and the carrier density is determined by
the solution of a diffusion equation.*~* More recently,
double injection into solids has been theoretically
studied under conditions where the currents are field-
driven and volume controlled, i.e., limited by space
charge which is distributed throughout the volume.5:8
These latter studies have been confined to insulators in
which there is a negligible density of free carriers in
thermal equilibrium and, further, in which there is
negligible trapping of injected carriers. Parmenter and
Ruppel® have rigorously derived the current-voltage
characteristic for two-carrier SCL (space-charge-lim-
ited) currents in a trap-free insulator assuming bimo-
lecular recombination. Lampert® has extended their
results, by an approximate analysis, to general recombi-
nation kinetics and arbitrary field-dependence of the
mobilities, but still holding to insulators and to the
assumption of a single lifetime for electrons and. holes
(the injected plasma case). The present paper extends
this latter work to semiconductors, and also puts the
theory on a more rigorous foundation.
Two outstanding features are revealed by the present
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State Phys. Acad. Sci. U.S.S.R. 1, 841 and 848 (1959), (Trans-
lation: Soviet Phys.—Solid State 1, 763 and 769 (1959)).
( 5R.) H. Parmenter and W. Ruppel, J. Appl. Phys. 30, 1548

1959).
6 M. A. Lampert, RCA Rev. 20, 682 (1959).

analysis: (i) an extended voltage range, following the
Ohm’s law region, over which the current is proportional
to the square of the voltage; (ii) depression of the
current, at fixed voltage, in this square-law region
through increase in the number of minority carriers in
thermal equilibrium. The latter behavior is remarkable
in that the addition of current carriers leads to a
reduction in current at large injection levels. It will be
seen in Secs. IV and V that this effect is a direct
consequence of recombination kinetics.

Recent experiments’? with germanium at this labora-
tory give the predicted square-law dependence of
current on voltage following an Ohm’s law region, and
also give strong evidence for the predicted depression
of the current by the minority carriers. A double-
injection “breakdown” of iron-doped germanium at
liquid nitrogen temperature was observed by Tyler® and
interpreted by him in terms of volume-controlled
currents, although a detailed theory has not, to date,

‘been presented. Also the recently observed “oscillistor”
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phenomena? (current oscillations produced in a rod of
semiconductor placed in a magnetic field) are known
experimentally to involve field-driven, volume-con-
trolled, double-injection currents.

The authors are confident that the systematic study,
both experimental and theoretical, of two-carrier
injection into solids will yield at least as great a wealth
of useful information about localized imperfection states
as has the study of one-carrier injection.?

II. ASSUMPTIONS

The assumptions on which our theory is based are as
follows:

(i) The injected (excess) carriers are free, i.e., not
bound in traps or recombination centers.

7 R. D. Larrabee, following paper [Phys. Rev. 121, 37 (1961)].
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¢ R. D. Larrabee and M. C. Steele, Bull. Am. Phys. Soc. 4, 421
(1959) and J. Appl. Phys. (to be published).

o M. A. Lampert, A. Rose, and R. W. Smith, J. Phys. Chem.
Solids 8, 465 (1959).



VOLUME-CONTROLLED, TWO-CARRIER CURRENTS IN SOLIDS 27

For well-purified semiconductors, in the temperature
region of extrinsic conductivity with the dominant
impurity completely ionized, and at higher tempera-
tures, the injected carrier densities, at injection levels
of interest, will be large compared to recombination and
trap state densities, and so will automatically be free.
Further, changes in occupancy of the recombination
centers under injection conditions are neglected. This
is justified (see Appendix A) so long as the recombi-
nation state density is less than the difference between
the thermal-equilibrium densities of majority and
minority carriers. Again this will generally be the case
for well-purified semiconductors in the current state of
the art.

For insulators, even if highly purified, except at very
high injection levels, quite generally at least one of the
injected carriers, electrons or holes, will be largely
trapped. Theory covering this case will be presented in
a later publication.

(ii) The current is volume-controlled, i.e., the con-
tacts impose no significant constraints on either the
entering or exiting currents.

(iii) Diffusion currents are negligible.

These two assumptions are closely related to each
other and therefore are discussed together. They mark
a complete departure from the existing theory on
double injection into semiconductors.—* Assumption
(iii), by definition, characterizes a “simplified” theory.
In such a theory, assumption (ii) is precisely formulated
in a pair of boundary conditions, namely that the
electric field intensity vanishes at the cathode and
anode. In practice such idealized contacts simply cannot
be realized since, in the absence of diffusion, they imply
infinite free-carrier densities at the contacts. Actually,
where the electric field vanishes the current is neces-
sarily a pure diffusion current. Nevertheless, so long
as the diffusion currents are large only over narrow
regions confined to the vicinity of the contacts, the
“simplified” theory, with assumption (ii), will give an
adequate description of the overall current flow, par-
ticularly of the current-voltage characteristic. Precisely
the same considerations arise in the problem of a
one-carrier SCL current injected via an ‘“Ohmic”
contact.!

In the case of double injection into a semiconductor
with an #-i-p structure a condition for the applicability
of the “simplified” theory is that the middle ¢-section
be at least several diffusion lengths long. (See the
discussion at the end of Sec. IV.) Such is the case in
Larrabee’s experiments.” Where the middle ¢ section is
less than a couple of diffusion lengths long, the assump-
tions (ii) and (iii) are no longer valid at practical
voltages, the appropriate theory then being that al-
ready available in the literature.'*

Although the #-i-p type of structure is indeed the
most suitable, in the current state of the art, for

11 M. A. Lampert, Phys. Rev. 103, 1648 (1956).

studying double injection under highly controlled
conditions, it is certainly not the only one available.*
The problem of injecting contacts is one requiring
considerably more experimental and theoretical study
if greater understanding and control are to be realized
for contacts other than those of the p-z junction type.

(iv) Low-field (field-independent) mobility condi-
tions obtain.

This assumption is made to make the mathematical
problem analytically tractable. Fortunately it will be
realized in most, if not all, cases of practical interest.
Where approximate arguments are employed it is, at
least sometimes,® not necessary to restrict the discussion
with this assumption. In the case of one-carrier SCL
currents it has been shown that the analytical problem
is tractable even with field-dependent mobilities, under
fairly general conditions.® It remains to be seen
whether such techniques can be applied to two-carrier
problems.

III. PHYSICAL ARGUMENTS

In this section we derive some of the major results of
the theory in a very simple manner, examining the
average behavior of the injected carriers from the
viewpoint of the underlying physical processes. The
reasoning employed is a straightforward extension of
that employed by Rose in his study of one-carrier
SCL currents.!

Except where otherwise noted, the discussion through-
out this paper refers to a one-dimensional, current-flow
geometry and all formulas are expressed in mks units.
In the following definitions of symbols, subscript # or
p on a quantity indicates that the quantity refers to
electrons or holes, respectively. J is the total current
density; e is the electronic charge, P and N are the
total number of injected, excess holes and electrons,
respectively, per unit area, between cathode and anode;
¢, is the “average” hole transit-time, ¢,= L?/u,V, with
L the cathode-anode spacing, u, the hole mobility, and
V the applied voltage between anode and cathode, and
similarly for ¢, and p.; Q is the magnitude of charge,
per unit area, of one sign between cathode and anode
(see Appendix B); C is the geometric capacitance, per
unit area, C=¢/L with ¢ the static dielectric constant;
7 is the common, “average” lifetime for injected
carriers; fg,, is the so-called Ohmic (or dielectric)
relaxation time for electrons, fq,.=e¢/enru, with ny
the thermal equilibrium density of electrons, and
similarly for fo,, and pr7.

In order to highlight the difference between one- and
two-carrier injection, under field-driven conditions, we
first review one-carrier injection (of holes) into a
perfect insulator (pr=0 and no trapping)¥:

J=¢P/t,. )
12 R. W. Smith, Phys. Rev. 105, 900 (1957).

13 M. A. Lampert, J. Ap;7JI. Phys. 29, 1082 (1958).
14 A. Rose, Phys. Rev. 97, 1538 (1955).
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Charge and voltage are related in the usual manner,
Q=CV=_(¢/L)V. 2

It has been shown,"* under very general conditions,
that the distortion, by injected, distributed space
charge, of the capacitance away from its geometric
value is less than a factor of two. Correspondingly, an
error of less than a factor of two is made by using the
geometric value of the capacitance in Eq. (2). A similar
situation is expected to obtain generally with two-

- carrier injection (see Appendix B).

Since all free carriers in the insulator are excess

carriers,

Q=eP. . 3)
Combining Egs. (1), (2) and (3),
J=CV/ty=eu,V?¥/L3. 4)

The exact, analytical solution'® for this problem
differs from Eq. (4) only in that it is larger by the
multiplicative factor 9/8.

The essential difference between one- and two-carrier
injection is that in the latter case the injected carriers
of one sign of charge can be largely neutralized through
the accompanying injection of carriers of the opposite
sign of charge. Thus, with double injection we are
dealing basically with an injected plasma, so long as
the injected carriers are mostly free [assumption ()] of
Sec. II). Nevertheless the small, residual space charge
is of great importance in that it is precisely this space
charge that limits the buildup of plasma density at
any fixed voltage.

We consider specifically the case of double injection
into an n-type semiconductor in the extrinsic region,
pr<nr. Because of finite lifetime against recombination
with electrons, the injected hole density necessarily
decreases going from anode toward cathode. As pointed
out above, the space charge associated with the injected
holes can be largely “relaxed,” i.e., neutralized, through
the concomitant injection of electrons. However, since
the motion of the electrons which “relax” the holes is
in the opposite sense from the hole motion—ultimately,
the “relaxing” electrons must come from the cathode,
whereas the holes are injected at the anode—there will
be a finite time delay, or relaxation time #.1, associated
with the neutralization process, as a result of which
complete neutralization will clearly be impossible. So
long as K7 we would expect the ratio #r/7 to
provide a measure of the incompleteness of the relax-
ation; i.e., of the residual space charge. Hence we write,
for this case of double injection into an n-type semi-
conductor:

bre1<lT: Q=ePlf,el/'r. (5)

Since Q/eKLP, it follows automatically that N=P,
i.e., that the double injection corresponds to an injected

15 N. F. Mott and R. W. Gurney, FElectronic Processes in Ionic
Crystals (Oxford University Press, New York, 1940), p. 172.
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plasma (the free thermal electrons, of total number
nrL, per unit area, are neutralized by the positive
donor ions).

We still use Eq. (1) for the fofal current, since we
regard the electron motion as simply neutralizing the
holes over their current path. This is, of course, valid
only at high injection levels, P>nzL. (For P<nrL
we get simply Ohm’s law.) Combining Egs. (1), (2),
and (5), we get

TCV  eru, V2
Je— =TT (6)
trelf‘p trcl L3

In order to complete the picture we must identify
lrei. Two relaxation modes are available: (i) the
“Ohmic” relaxation by the electrons distributed
throughout the solid in thermal equilibrium; this has
the characteristic relaxation time fg,,=5.5X10%K/
nuy in practical units (K the dimensionless, relative
dielectric constant, #z in cm™3, u, in cm?/volt sec, and
ta,» in seconds), and (ii) the transit time ¢, for electrons
individually to traverse the solid after injection at the
cathode. Whichever of tg,,, ¢, is the shorter time will
determine the actual mode of relaxation. Thus we have
two different cases, for each of which the appropriate
substitution for ¢.; in Eq. (6) gives the desired current-

voltage relationship:
ton<tn, 7; @)

J=erunu,V3/ L5, (8)

Lre1=ta,n: ]=eTﬂnﬂpnTV2/L3)

In<to,n, T;

bre1=1n:

In both cases it is also necessary that t,<7. If {,> 1,
Ohm’s law holds.

From the derivation, it is appropriate to refer to the
square-law characteristic, Eq. (7'), as the “Ohmic
relaxation regime.” If 7<{g,, there will be no square-
law portion in the current-voltage characteristic. At
sufficiently high voltages where {,, which varies as 1/V,
is less than fg,,, the carriers ny, initially present ther-
mally, no longer play the dominant role in determining
the current. Therefore the solution, Eq. (8), is essentially
the same as that previously obtained® for double
injection into a perfect insulator (ny=pr=0), and it is
appropriate to refer to the cube-law characteristic, Eq.
(8), as the “insulator regime.” Actually there is missing
from the right side of Eq. (8) a multiplicative, numerical
factor ~8. The missing factor is easily recovered by
noting that in the insulator regime, as shown in Ap-
pendix A, there is almost complete symmetry between
electrons and holes (unequal mobilities can slightly
disturb this symmetry). Therefore, in concentrating on
the injected holes in our derivation we have looked only
at the right half of the solid, the anode half, and
counted only half the current. Upon replacing J, V,
and L in Eq. (8) by J/2, V/2, and L/2, respectively,
the “correct”” numerical factor appears.

Finally Eq. (7') should be corrected for the presence
of minority carriers pr thermally generated in the
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n-type material. It is shown in the following Sec. IV,
and more rigorously in Appendix A, that the corrected
equation is,

J: ETlhnllp (nT*“ PT) V2/L3. (7)

Precise conditions for the validity of Eq. (7) are
given in Appendix A. As shown there, the inequalities
characterizing the different current-voltage regimes are
slightly different than those given in Egs. (7') and (8).

It is seen in Sec. IV that the factor nr— pr appears
naturally in the analysis upon simple manipulation of
particle conservation (recombination) equations—a
matter explored further in Sec. V C. In the context of
the physical arguments of the present section, Eq. (7)
can also be interpreted as indicating that, in Ohmic
relaxation, say by electrons, wunder double injection
conditions, the effective density of electrons available
to “relax” the injected holes is #r—pr, and that the
corresponding, effective Ohmic relaxation time is
to,n'= ¢/e(nr— pr)un. Replacing tre1 by fa,’ in Eq. (6)
then gives Eq. (7). However, we wish to stress that
this behavior is very unusual and derives from recombi-
nation requirements. In the more usual charge-relax-
ation situation, e.g., if an excess charge were suddenly
introduced into the injected plasma, the electrons and
holes in the plasma would aid in the charge relaxation,
i.e., their (mobility-weighted) sum, rather than differ-
ence, would be involved in the relaxation process.

Equation (7) would predict J — 0 as pr — nr, which
is, of course, a spurious effect. Actually when pr is very
close to 7 the approximations characterizing the ohmic
relaxation regime are no longer valid. In this case,
with diffusion neglected, there is simply no voltage
range over which J« V2. The Ohm’s law regime, valid
at “low” voltages, is then followed directly by the in-
sulator regime, J « V3,

IV. APPROXIMATE ANALYTICAL ARGUMENTS

Additional insight is gained into the double-injection
problem by somewhat more analytical, yet still simple,
derivations. The complete equations, including diffu-
sion, which define the problem are: the electron and
hole current-flow equations,

1 dn
~Jn=pn(n+nr)E—D,—, (9a)
e dx

J=Jnt+JTp;
1 ap
~Jp=np(p+pr)E+Dy—, (9b)
e dx

the Poisson equation (neglecting changes in occupancy
of localized, e.g., recombination, centers),

(¢/€)(d8/dx)=n—p, (10)
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and the particle conservation equations,

1dJ.
———=7, (11a)
e dx / y
r=n/T.=p/Tp
1dJ, ?
—-—=7, (11b)
e dx

Multiplying Eq. (11b) by d=pa./s, and adding to
the result Eq. (11a) gives, using Egs. (92) and (9b),

I ( 8 (184— ! d2( +9)
d*x[j) n)&]— (nr PT)E —e-dxz nip

@D @D (6+1)p

Mn MnTn

(12)

MaTp

In the above equations, J, is the electron current
density; similarly for J,; # and p are the injected,
excess electrons and holes, respectively; & is the electric
field intensity; D, is the electron diffusion constant,
D,=kTu,/e with k=Boltzmann’s constant and T the
temperature in degrees Kelvin; similarly for D,; % is
the position coordinate; 7 is the recombination-rate
density; 7, is the electron lifetime, and similarly for 7.
Other symbols have been previously defined in Sec. IIL.

Equation (12) is particularly useful for comparison
of the different current-flow regimes. Of the three terms
on the left-hand side of Eq. (12), previous theories'™
ignore the first two, take #=p in the third term (hence
To=7p=7), and thereby obtain what we may call the
“diffusion solution,” with an effective diffusion length
Leti= (2D,7/(b+1))%. Note that in obtaining this
“diffusion solution” the field terms are neglected only
in Eq. (12). The field terms are retained in Egs. (9a)
and (9b) and indeed, in references 1-4, these equations
are used, in conjunction with the ‘“diffusion solution”
to Eq. (12), to obtain the electric field intensity.
Interestingly enough, the ‘“diffusion solution” yields a
square-law regime at higher voltages, following the
exponential current-voltage regime valid at low volt-
ages.3 This square law is unrelated to that characterizing
the Ohmic-relaxation regime, Eq. (7).

The field-driven current regimes are determined
neglecting the third (diffusion) term on the left-hand
side of Eq. (12) as well as the diffusion terms in Egs.
(9a) and (9b). Now, it is obvious, and is verified in the
exact solution of Appendix A, that until relatively high
injection levels are reached, i.e., until n=p>nr, pr, the
current-voltage characteristic is simply Ohm’s law. In
the non-Ohmic portions of the characteristic, i.e., at
the high injection levels, it is permissible to neglect the
thermal carrier densities #r, pr in the current expres-
sions (92) and (9b). The total current density can then
be written, replacing 8 by the average field V/L,

Jve(b+1)p,AV/L, (13)

where 7 denotes the average value of # over the volume.
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The Ohmic relaxation regime corresponds to keeping
just the middle term on the left-hand side of Eq. (12):

—pn(nr—pr)([dE/dx)= (b+1)n/rn. (14)

A simple dimensional analysis of Eq. (14) gives the
result immediately; namely replace —d&/dx by V/L?
and #/7, by 7/7. This gives the useful relation,

(b+1)2=rpn(nr— pr)V/I2, (15)
which, substituted into Eq. (13), gives Eq. (7). (Note

that, for the sake of definiteness, we are assuming n-type

material, ny> pr.)

A somewhat more fastidious procedure for deriving
Eq. (15) consists of replacing d§/dx in Eq. (14) by its
value from Eq. (10), giving e|n—p|=e(d+1)n/
unTn(nr—pr), substituting this into the relation,
|Q| =eSeo1| n—p|da~eV/L (see Appendix B), and
replacing Jfyomdx/ s by #L/7.

The insulator regime corresponds to keeping just the
first term on the left-hand side of Eq. (12), and replacing
(p-n) by its value in Eq. (10),

e dys d& n
- —un——(é’—) — (D (16)

e dx\ dx/. Tn

Again, a simple dimensional analysis, replacing
—(d/dx)[8(d&/dx)] by V*/L* and n/7, by /T, gives
the useful result,

€Ty V?
It

€

)

which, substituted into Eq. (13), gives the final result,
Eq. (8). More detailed examinations of the insulator
regime are given elsewhere,56

The present treatment of double injection, in which
we neglect the diffusion term and retain the field terms
in the particle conservation equation (12), is applicable
to semiconductor structures of the #n-i-p type if the
middle ¢ section is sufficiently long compared to a
diffusion length. The reason for this requirement is that
the #n-7 (p-i) junction blocks the exit of holes (electrons),
whereas our theory assumes that there are no con-
straints on currents at the contacts. Consequently at
each junction there is needed an accommodation region
in the ¢ section over which a diffusion-dominated solu-
tion adjusts to our field-dominated solution. At the
onset of the Ohmic relaxation regime the length of each
of the accommodation regions is approximately one
diffusion length.!® At higher currents their length grows
logarithmically with current.! In Larrabee’s experi-
ments,” at the highest currents the total length of the
two accommodation regions is small enough compared
to the specimen length that we expect at least a quali-
tative check of his results with our predictions, and
indeed this check is provided.

16 D. O. North (private communication).

V. RECOMBINATION KINETICS

It is clear from the entire discussion of Sec. III, and
from the appearance of the lifetime 7 in the final results,
Egs. (7) and (8), that recombination kinetics play a
crucial role in double injection currents. We discuss in
this section three aspects of recombination: the vari-
ation of lifetime with position, the variation of lifetime
with injection level, and the connection of recombina-
tion with the “nr— pr effect,” Eq. (7).

A. Variation of Lifetime with Position

We recall that the “physical” arguments of Sec. ITI
and, to some extent, also the approximate mathematical
arguments of Sec. IV, were based on an examination of
the average properties of the injected plasma. The
reason why the study of average quantities yields
accurate results for the current-voltage characteristic
is that, in truth, the various quantities of interest, such
as carrier densities and electric field intensity, vary
only weakly with position over most of the solid, as
demonstrated by the “exact” solutions in Appendix A.
The “exact” solutions, in turn, are derived making the
approximation that either the electron or hole lifetime
is constant with position. Now even where this approxi-
mation is poorest, namely with bimolecular recombi-
nation, the carrier lifetimes have only the same degree
of positional variation as the free carrier densities.
Since the calculated free-carrier densities have, indeed,
only weak positional dependence, the approximation of
constant lifetime is mathematically a self-consistent
one, even in this “worst” case. This explains why the
rigorous solution for the case of double injection into an
insulator with bimolecular recombination® is reproduced
with considerable accuracy by the constant-lifetime
calculation of Appendix A.

Actually, in the more usual circumstance of recombi-
nation through localized centers the approximation of
lifetime constant with position will be an extremely
good one for either electrons or holes, so long as the
recombination cross sections, &, and &, for electrons
and holes, respectively, are very unequal in magnitude.
For we may write 7, '=06.pr, 7, '=0G,%R, PR
~g,Ng/(62+6p), and ng~5,Ng/(5,+5,). Here 7 is
the thermal velocity of the free carriers (taken equal
for electrons and holes, for the sake of simplicity), #z
and pg are the density of filled and empty recombina-
tion centers, respectively, and #g+pr=Ng, the total
density of recombination centers (of a single class
dominating recombination). If, for example, ,>&,,
then nr~Npg irrespective of modest variations of
carrier densities with position, and 7, will be constant
with position to a high degree of approximation. In
this case, 7, will be “constant” with position to a lower
degree of approximation, namely it will vary with
position to the same degree as the ‘‘almost-constant”
ratio n/p. If ,>Ga, the situation is reversed and 7,
is the lifetime most constant with position.
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B. Variation of Lifetime with Injection Level

The major results of the theory, Egs. (7) and (8),
express the current in terms of the average, common,
carrier lifetime 7 as well as the voltage ¥ and other,
fixed parameters. At injection levels where the common
lifetime is independent of injected carrier density this
is a suitable manner in which to express the current-
voltage characteristic. However, where the lifetime
varies with injection level it follows, e.g., from Egs.
(15) or (17), that the lifetime is also a function of
voltage, 7=17(V), and the complete voltage dependence
of the current is known only when 7(V) is specified.
Double injection into insulators with bimolecular
recombination,’ described by Eq. (8), is a case in point.
Here 7« 1/V, so that finally J« V2, not V3.

The numerous possibilities for dependence of 7 on
injection level, hence on V, and the consequent effects
on the current-voltage characteristic are a subject for
further, detailed investigations. We confine our re-
marks here to two observations.

First it will be true quite generally that the depend-
ence of lifetime on injection level in double injection
experiments on a given material will be exactly the
same as the dependence of lifetime on excitation level
in bulk photoconductivity experiments on the same
material using bandgap excitation. The lifetimes are,
of course, to be compared at the same carrier densities.
The only difference in the two types of experiments
relates to the method of introducing excess carriers.
The bulk photogeneration of excess carriers will, or
can, be quite uniform, whereas in the electrical experi-
ment excess carriers are introduced at contacts or
electrodes. However, as we have already discussed, the
injection of excess carriers from contacts nonetheless
leads to a fairly uniform distribution of the carriers
throughout the volume—hence the equivalence of the
two types of experiments for lifetime studies. Photo-
conductive lifetime variations with excitation level are
discussed in two recent review articles.17:18

The second remark pertains to the use of the func-
tional form #/7, or p/7, to express recombination rates.
The use of this form implies that the thermal re-
emission rate from the recombination center to the
corresponding carrier band is negligible, since net
recombination is equal to the difference between the
capture rate, as expressed above, and the re-emission
rate. It is easily seen' that for a single, dominant
recombination center, at the high injection levels of
interest, n= p=>nr, pr, although the thermal re-emission
rate can indeed be substantial to one band, it will then
be negligible to the second band. For the recombination
centers would have to be close, energetically, to the
former band if re-emission is to be substantial, and
hence they would be too far away, energetically, from

17 A. Rose, Progress in Semiconductors (Heywood and Company,
Ltd., London, England, 1957), Vol. 2, p. 111.

18 A. Many and R. Bray, Progress in Semiconductors (Heywood
and Company, Ltd., London, England, 1958), Vol. 3.

the latter band for re-emission to this band to be
significant. Since recombination for one sign of carrier,
say holes, can be written properly in the form p/7,,
we can use the “equation,” n/7,=p/7,, as a formal
means for defining the lifetime 7, of the other sign of
carrier. This mode of definition automatically sifts out
the ‘“capture-followed-by-thermal-re-emission” events
from the recombination lifetime. These observations
justify the use of the simple, “capture”-type functional
form above in the theoretical analysis.

There is an additional question as to whether the
net recombination rate should include the thermal-
equilibrium density of carriers, i.e., whether the electron
recombination rates, for example, should be written as
n/Ta or (n+nr)/r, Actually this depends on the
details of the recombination kinetics. For example, if
the recombination centers are essentially full in thermo-
dynamic equilibrium, and essentially empty under
double injection (because ,3>7,), then clearly the net
electron recombination rate is given by (n-+#nr)/7a.
This situation obviously involves a change in electron
lifetime as a function of injection level. In the analytical
formulation of the problem in Appendix A both possi-
bilities for the functional form of the recombination
are considered. At high injection levels, #>#ngz, the
results obviously will not depend strongly on the
particular choice between the two functional forms.

C. Recombination and the Role of Minority
Carriers in Ohmic Relaxation

The appearance of (nr—pr) in Eq. (7) is so unusual
that further understanding of its origin is desirable.
Some insight can be gained by concentrating on the
requirements imposed by particle conservation, i.e., by
the recombination Eqgs. (11a) and (11b). For the sake
of simplicity we consider the case of equal mobilities,
En=pp=p. From (9a) and (9b), neglecting diffusion,
we can write: §=K/(n+nr+p+pr) with K=J/eu
= constant. Putting this into Eq. (11a), we obtain

r
= (18)

nt+nr
]~Ku

d
N ﬁ[zwrm— (n—p)— (12— pr)

For the insulator case, nr=pr=0, we see that double-
injection (J#0, 75£0) requires a finite, if small, devi-
ation from neutrality, #>p. This leads to the insulator
regime characteristic, Eq. (8). Obviously for semi-
conductors with nr=~pr a similar situation obtains;
particle conservation, i.e., a nonvanishing current
divergence in Eq. (18), requires that #s< p for significant
injection to occur, with a concomitant deviation from
Ohm’s law. Further, the insulator regime, Eq. (8), will
describe the high-injection-level situations in this case.

However, for extrinsic semiconductors, nr# pr, it is
clear that the term (#zr— pr) in the denominator of the
current term in Eq. (18) can also lead to nonvanishing
current divergence, even with #~p in Eq. (18). Indeed
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Fic. 1. Qualitative plots of several variables of interest for
double injection into an extrinsic semiconductor in the Ohmic-
relaxation regime. xy is the position of the electric field maximum.

this is the case in the Ohmic relaxation regime, Eq. (7).
Further, in an expansion of the left-hand side of Eq.
(18) in powers of (nr— pr)/2(n+nr) (taking p—n=0),
the lowest order, nonvanishing term is proportional to
(nr—pr). Thus the recombination rate, and hence the
current, are proportional to (nr—pr), as in Eq. (7).
The same conclusions are reached if p,7u,, only the
algebra is more involved.

It is also instructive to consider the contributions to
recombination of the individual terms in the Egs.
(11a) and (11Db), rewritten here, neglecting diffusion, as:

d a8 r

[—- —d;(ng)]l-l—[_%T;x—L:;n, (19a)
[Leo]+[p-] = aom
dx 3 dxly py

For insulators, nr=pr=[ Jo=[ Js=0 and [
and [ s are the sole contributors to recombination.
In lowest order, n8=p8E=constant. In the next order,
which gives the lowest order and dominant, contribution
to recombination, #& and p& vary in opposite senses
with position, namely decreasing and increasing mono-
tonically, respectively, from cathode to anode. For
extrinsic semiconductors, say #nr>>pr, in the Ohmic
relaxation regime, the situation is different. Qualitative
plots of &, #n, p, n8 and p&, determined from the
solution in Appendix A, are given in Fig. 1. We are
interested in the region between cathode and anode
which begins at a distance on the order of x; to the
right of the neutrality plane at xy, i.e., slightly to the
right of the plane where #8 has its minimum. This
region comprises most of the volume of the solid,
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absorbs most of the applied voltage and hence deter-
mines the current-voltage characteristic. Our remarks
are confined to this region. Again in lowest order
n8=p&=constant; in the next order nE~p& still, both
increasing monotonically towards the anode in the
region of interest, as shown in Appendix A. From Fig. 1
it is clear that the term [ 7J; in Eq. (19a) is now, in a
mathematical sense, opposing recombination and the
sole contribution to electron recombination is provided
by the thermal-carrier term [ Jo. Since in lowest
(nonvanishing) order, [ Ty=—[ s, it follows, add-
ing Egs. (19a) and (19b), and neglecting [ s, that
[ Je=4+1)r/bp,~b+1)[ Js/b. Including the small
term [ 74, it opposes recombination, and on adding
Eqgs. (19a) and (19b) [ 7] is replaced by

[ T+l Je=— (nr—pr)d8/dx.

}*The above considerations bring out the crucial role
played by the thermally present carriers in the Ohmic
relaxation regime. Although, to be sure, the separation
of currents into those carried by thermal and injected
carriers respectively is only a mathematical artifact,
it is, as the above analysis shows, a useful one for
understanding the final results.
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APPENDIX A. THE RIGOROUS SOLUTION

The current-flow, Poisson, and particle-conservation
equations defining the problem are:

J
—= (n+nr)u.8+ (p+ pr)u,8=constant,

(A1)
e
ed§
-—=n—p+z, (A2)
e dx
a
—pi— (ntnr)&]=r, (A3a)
dx
d
po— (pt+pr)E]=r. (A3b)
dx

Equation (A1) is the sum of Egs. (9a) and (9b) with
diffusion neglected. Equation (A2) is the Poisson Eq.
(10) with an additional term zg allowing for a change
in occupancy of the recombination centers. Note that
zr can be either positive or negative. Equations (A3a)
and (A3b) are the same as Egs. (11a) and (11b),
respectively. The appropriate functional form for »
depends on the detailed properties of the localized
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TaBiLE I. Parameters dependent on the details of
recombination kinetics.?

r r7/nr a B/©
a n/7n v 1—-®—¢+06 b+d+¢
b ?/7p T 1—@—¢—b0 b+o—b¢
c (n+nr)/70 v+1 1—-d—-¢+0 b+¢—1
d (o+p1)/70 r+1 1-9—¢—b0O ®—bt—1

2 The letters designating rows are used as identifying subscripts on the
symbols designating columns; thus 7a =n/7a, rer/nr =v-+1, etc.

defect states in the semiconductor. The four possi-
bilities, discussed in Secs. VA and VB, are listed in
the first column of Table I.

The particle-conservation equation most useful for
the analytical discussion is that obtained by adding
Eq. (A3b), multiplied by b=p,/u,, to Eq. (A3a):

d d&  (b+1)
—[(p—n)&]— (nr—pr)—= 7.
dx dx M

(A4)

It is convenient to obtain the solution in terms of the
dimensionless position, field, and potential variables of
reference 11, Appendix A:

w=enru.x/eJ, u=enru.8/J, v=enr’u2V/eJ? (AS)

Here V is the potential at position x, V="V (x), and the
applied potential is V,=V(L). (In the main body of
this paper, V1 is written simply as V, since the potential
distribution is not discussed there.) It is convenient,
in the definitions (AS), to use the majority-carrier
thermal density; thus the choice #zr would refer to an
n-type or intrinsic semiconductor.
Further dimensionless variables and constants are:

v=n/nr, w=p/nr, (=sr/nr,
Al
®:tﬂ,n/7'7 ‘I’:PT/”Ty ( 6)
with fo.=¢/enru,; = is the appropriate, constant
lifetime, 7, or'7,, appearing in 7 in the first column of
Table I, and #<1.
Equations (A1), (A2), and (A4) become, respectively,

1/u=v+14(1/0) (r+P), (A7)
du/dw=v—mr-+¢, (A8)
d du rT
—L(r—v)u]— (1—®)—=00+1)— (A9)
dw dw nr

Equations (A7), (A8), and (A9), with r7/ny taken
from Table I, define our problem, subject to the
boundary conditions §=0 at x=0 (the cathode) and
at x=L (the anode), i.e.:

=0 at w=0 andat w=wr=enr’u.L/eJ. (A10)
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From Egs. (A7) and (A8), v and = are given by

1 (6 du
. [—+———<b+¢+;>}, (Atta)
b+1lu dw
1 b du
7r=——’- —b— — (b+P—0bf) } (A11b)
b+1lu dw

Substitution of Egs. (Al1a) and (A11b) into Eq. (A9)
gives finally :

d ( du du
u—(u———) +ou— —Bu+y=0,

dw\ dw W

(A12)

where y= @b and the appropriate expressions for a and
f are given in Table I. Note that we have taken { to
be a constant (positive or negative), independent of
position; this will be true generally to a high degree of
approximation for constant-lifetime situations such as
discussed here.

Equation (A12) is reduced to a differential equation
which is integrable by inspection by the substitution:

d d dw
U—=— or u=-—, (A13)
dw dy ay
namely:
du  du
—+a— —But+y=0. (A14)
dy*  dy
The solution to this equation is written as
u=B' expAy+C’ expAsy++/8, (A15)

where B’ and C’ are arbitrary constants, to be deter-
mined, and

A= —}at+3(@+48)}, d2=—}a—3(*+4B)1 (Al6)

In writing the solution in this form we are assuming
that a24+48>0. From Table I it appears that there may
be some unusual situations where this inequality does
not hold. However it is not our intention to present
here an exhaustive treatment of all possible cases.

From this point on we confine the discussion to
recombination possibilities ¢ and b in Table I. At high
injection levels, n, p>nr, pr cases ¢ and d are sub-
stantially the same as a and b, respectively, as already
pointed out in Sec. VB. Further we assume that both
¢ and O are sufficiently small to be neglected in « and
B/ 0. Thus,

a=o=ap=1—9>0;

(A17)
B=Ba=PFr=0(0+2); v=00.
From (A16) it follows that
A1>0, Ay<—a<0, —A:>4.. (A18)

From the manner in which the variable ¥ is introduced,
(A13), it is clear that only differences in vy, and not the
absolute values of y, are significant in the solution.



34 M. A. LAMPERT AND A. ROSE

Therefore, to simplify the algebra we set
y=0 at w=0; also let y=y, at ¥=L, w=w.. (A19)

Further simplification results from the following changes
of variables and parameters:

g y/yL7 U= (/8/7)M7 w= (,3/73’L)w; (AZO)
= (B/vyL)v, A1=Awyr, As=Awyr.
Equation (A15) can now be rewritten as
=B expA§+C expA,§+1, (A21)
with B and C constants to be determined.
Integration of Eq. (A13) gives
B C
(A22)

W=-— eprI 1.77+AT CXPJ‘I2Z7+g+D;
2

1

with D a constant of integration.
The boundary conditions (A10), with subsidiary
condition (A19), are re-written as follows:

At §=0, 2=0 and w=0;
B

wr=

Betnr*u,L (A23)
at §=1, #=0 and w=w,= —_—

YyL vyreJ

Applying these boundary conditions to Egs. (A21) and
(A22) yields the following four equations for the five
unknowns B, C, D, wy, y.:

0=B+4C+1,

0= (B/A1)+(C/A)+D,

0=DB expA;+C expA,+1, (A24c)
wy= (B/A;) expA:+(C/A,) expAy+1+D. (A24d)

Elimination of B, C, and D yields the following c/ar-
acleristic equation:

wL—1=( 1 1 )(eXPfIl—l)(eijz_D.

(A24a)
(A24b)

A A4,

(A25a)

eXpA 1— CXpA 2

This is more clearly seen as an equation relating the
unknowns wz, and ¥z, by re-writing it as

B
—WL—yL
Y

(expAryr—1)(expAayr—1)
A, expAyr—expAayr,

. (A25b)

with 4, 4. constants given by (A16).
The final equation determining the solution to the
problem is:

1

L vy,
Ve=} &dx, or vL=f u*dy, or 77L=f a2dy. (A26)
0 0 0

Equations‘ (A24) yield the following useful relations:

eXpA~1—1
C=————— (A27)
expAd1—expd,

expA,—1
h CXPA— 2,
with D then given by Eq. (A24b).

Carrying out the integration in Eq. (A26), and using
Eq. (A27), we obtain

expfi —

~ - 1 - -
U, =% (expAd1—expA g)“2[:{—(eXpA 2—1)2(exp24,—1)
1

1 - -
—{—AT(eXpA] —1)%(exp24,—1)

———(expA;—1) (expA,—1)
Aq+A4,

X(exp(fL—}—/Ig)—l)]—}—Zu')L—l. (A28)

The various regions of the solution are determined by
the relative magnitudes of A; and —A4, with respect
to unity. These regions are:

(i) A>1, hence —A>1:

Ohm’s-law regime, Eq. (A30b),
(i) A1, —A>1:

Ohmic-relaxation regime, Eq. (A33b),
(iii) —A,K1, hence A;K1:

Insulator regime, Eq. (A38b).

Where A, or — A, passes through unity as a function
of applied voltage, we obtain a transition from one
regime to another. In such transition regions the
current-voltage characteristic cannot be expressed in a
simple, analytical form.

We consider the different regions separately.

Ohms’s-law regime: A1>>1 hence —A>>1. Epr2
<1 1is neglected everywhere. Equations (A25a) and
(A28) become respectively, using (A20):

1 1 ¥
—_ “_—)Nl g ‘ng—yL, (A29a)
A4 A4 8

’U—)Lgl‘—

171 1
vL#ZwL——H— _— —‘—)Nl—>
2\A4; A,

(2 )yL (A29)

Dividing Eq. (A29a) by Eq. (A29b), we obtain, using
(A5) and (A17):

wL
L @nTﬂnVL Y

Je (7’1'/T.U/n+ PT,U'II) VL/L:

which is just Ohm’s law.

(A30a)

or

(A30Db)
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Ohmic-relaxation regime: A;&1, —Ay>1. These
conditions on A4; and 4, require that <, hence y<e,
in (A17), or from (A17) that @ =tg /K (1—®)/(b+3).
Equation (A16) can then be written:

B<<Ot1 All’ﬁ/a, Azﬁ—a, A1<<—A2 (A31)
Again expA, is neglected everywhere. Equations
(A25a), (A27), (A21), and (A26) become, respectively,

using (A20) and (A31):

11
i )i
2 A,
Y Y
wpr——Ayia~——y2 (A32a)
2 2a
B~—exp—A~—1; C=—1—B~0, (A32b)
e~ —exp— A (1—§)~A,(1—7), (A32¢)

1
A~ f Ap(i—grdg=3Ae—
0

()»~()
v~ —A4 I~ — 3. (A32d
I 3\3 1) VL \o VL ( )

Dividing the cube of Eq. (A32a) by the square of Eq.
(A32d), we obtain, using (AS) and (A17):

wd I3 Oa 9 1—® 9 enrupt(1—)
——— e = . (A33a)
112 euVi2 8y 8 Ob 8 €
or
J~(9/8)erpnpp(nr— pr)V 12/ L3 (A33b)

The transition from the Ohm’s-law regime to the
Ohmic-relaxation regime occurs approximately at the
voltage V.. where the curves (A30b) and (A33b)
intersect, namely where

12 1—®
ip,1->2—-
MpV1->2 1+ (qb/b)
or (A34)
14 (®/b) 2
V1—>2Q LY ) Wlth V¢ p=—.
-2 KpT

The inherent asymmetry of the Ohmic-relaxation
regime is brought out by calculation of the position %
where the electric field intensity is a maximum: d§/dx
=0 at xy and 8(xy) is a maximum, ie., di/dw=0 at
Wy corresponding to xa, and ﬂ(wM) is a maximum.

We first find §a at which 4 is a maximum: dé/dj=0
at g= yM From (A21), BA, eprlyM—l—CAz eprgyM
=0; using (A27) and (A31) this gives Fuc~In|A4,|/
[AzINInayL/ayL For voltages V5 well below the
transition voltage Va3 from the square-law to the

cube-law current-voltage dependences, #»<<1 since
ay>1, namely ayr=230%:/2vwr=4(1—®)Vq,./3V L
~8Voss/ V1, from (A32a), (A32d), (A33b), and (A39).
It remains to show that §,<<1 implies /W =2%y/L
<1. From (A22), (A24b), and (A32b) it follows that

(A35)

Note that (A35) checks (A32a), taking §=1. Thus
Wy~A17y and W/ Wr~27u<<1, as asserted above.

We next show that the density-field product #8 or
vu (i) is constant with position to a good approximation,
and (ii) has a slight monotonic increase from somewhat
beyond the position %y of the field maximum to the
anode, x=L. From (Alla) (taking {=0), (A13), and
(AZO), &+ V)vu=>b+vB [y di/dj— (b+®)i]. From
(A32¢) and (A30a) this gives vu=constant—Ab(b
+1)(1—%) where the constant is approximately
b/(b+1). This approximation is inadequate (higher
order terms must be included) in the immediate vicinity
of position %, roughly within a distance of order wxy.
Beyond this distance, up to the anode, it is valid. Since
A<<1 and § increases monotonically from 0 to 1
between the cathode and anode, both assertions (i)
and (ii) above are proved. These same assertions are,
of course, likewise valid for the product & or wu.

Finally we note that the free-carrier densities do not
vary strongly with position over most of the solid.
Denoting #(xy) by nar, nar/n(%)=vu/v>i/iy~1—7F
from (A32c). From (A35), x/L=w/wr~2§— 7% Taking
j=3%, n(x)/ny~2 where x/L=2%; i.e., n varies by less
than a factor of 2 over 759, of the solid, or, taking
7=2%, by less than a factor of 3 over approximately
909, of the solid.

Insulator regime: — A,<1, hence 4,<1. Expanding
expA; and expA,, (A25a) gives, in lowest order:

’U_).’l’A_ 1@ - %A— 1?72.

Wi~ —15 A1 Ay — wi=—15(v/8)4:14y1%  (A36)
From (A26) and (A21), 9.=21/3+2:2:/4+ (22/4
+2123/3)/5+ -+« with 2n=BA1n+CA2",_7L= 1, 2, ce.
From (A27), to thelowest order, 21~—A414,/2=—32,/2
and Z3, 24, etc. are negligible. Thus,

1 _ 1 /v 2
Ip~e—AP2AZ— vL=—(—A1A2) yib.  (A37)
120 120\
Dividing the fifth power of Eq. (A36) by the cube of

Eq. (A37) we obtain, using (AS5), (A17), and (A16):

wL5 enTL5J

eu Vi 18 yA1A42
or
J=(125/18) erpnn,V 13/ L5 (A38b)
The transition from the Ohmic-relaxation regime to
the insulator regime occurs approximately at the

voltage V.3 where the curves (A33b) and (A38b)
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TasLE IT. Domains of validity for the several current-voltage regimes (double injection into an #-type semiconductor: #nr> pr or #<1).»

Current-voltage

Regime characteristic Domain of hole transit-time £, Domain of applied voltage V,
1-o 14 (®/0)
Ohm’s law Eq. (A30b) ty>T———— Vi<V, yp
14 (®/b) 1-2
1-o 500 & 14 (®/0) 1
Ohmic relaxation Eq. (A33b) T Stpy>———ton "o <Vp<—(1—-®)Vqn
1+ (@/0) 81 1—@ 1-o 500

500 & 81
Insulator Eq. (A38b) — g, >4y —(1=®) V<V

81 1—-& 500

aVyp=L2%upr; ng =L2/Ilnt9’n. For 1 —% § {(500/81) (b +1)tﬂ,n/f}%' the Ohmic-relaxation regime no longer exists.

intersect, namely where

500 1
tn,2->3= = "/Q,n
unVoss 81 1—@
or (A39)
81 12
Vz_*gﬁ—(l—@) Vﬂ'n, with Vg_nz .
500 Hnlﬂ,n

Using (A34) and (A39), the conditions characterizing
the various current-voltage regimes can be specified as
in Table II. Setting Vise= Va3 it follows that for &
such that 1—®<{500(b+1)tq,,/817}} there will be no
Ohmic-relaxation regime.

The basic symmetry of the insulator regime is brought
out by calculation of the position #x, where the electric

e
|
€ |
|
|
: |
! |
|
|
|
|
|
|
0 X— X L
ASEAE
%é’ML v éuL

Fi1G. 2. An inequality derived from the convexity of the electric
field distribution. The convexity is a sufficient, though not
necessary, condition that the triangle lie inside the area bounded
by the & curve and the x axis. The inequality of area yields
directly the inequality: V/L< &y <2V/L.

field intensity is a maximum, i.e., where d§/dx=0 or
di/dw=0 or, from (A13), di/dij=0. From (A21),
dii/dj=BA; expA1§+CA; expAqj. Expanding the ex-
ponentials, di/dj=0 at §y given by Z1+Zs7xr=0 or
Jar=—21/Z2=1%, independent of the mobility ratio to
this lowest order. On the other hand, expanding the
exponentials in (A22) and using (A24a) and (424b),
WZ G/ 242,78/ 6= —Z,(72/4—7%/6). Taking F=1
this gives W= —25/12, checking (A36); taking =7
=1 the corresponding Wy is —Z/24=101/2. Thus the
field maximum is located, to lowest order, exactly at
the center of the solid.

APPENDIX B. THE RELATION Q=CV

By integration of the Poisson equation (10), it follows
that there can be no #ef charge between the cathode and
anode with §=0 at both electrodes. Letting the electric
field distribution be represented by a curve such as
shown in Fig. 2, with a maximum &, at position %
(the particular curve might be appropriate for the
insulator regime), the region between x=0 and x=w
is one in which there is everywhere excess negative
charge, of total amount |Q_[, and the region between
x=2xy and x=L correspondingly one of excess positive
charge, of total amount Q.= |(Q_|. The quantity Q in
the relation Q=CV is defined by

Q=Q+=IQ—I=ef (n—p)dz=cBu, (B1)

with the last equality following from Eq. (10).

In the approximate arguments of Secs. IIT and IV
we have used the relation Q=CV taking for C the
geometric value for the capacitance: C=¢/L. From (B1)
it is evident that this is equivalent to using for &, the
average field V/L. Since 8 >V/L, it is important to
show that the relation Q~¢V/L is not seriously in
error. The principal observation we wish to make is
the following :

So long as the electric field distribution is everywhere
convex, the relation Q~<eV /L is correct to within a factor
of two.

The proof, which is geometric in character, is based
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simply on a comparison of areas, and is given in Fig. 2.

It remains to prove that the electric field distribution
is indeed convex. For the set of Egs. (A1), (A2), (A3a),
and (A3b) in their full generality and with the boundary
conditions: =0 at x=0 and at x=L, we can only
conjecture at this point that the & curve has the
postulated convexity. For the class of cases studied
analytically in Appendix A it can be verified algebrai-
cally that the field is convex, and &,;/(V/L) can be
directly computed and shown to be less than two.
However, for investigation of the more general cases a
combination of geometrical and analytical methods!
will likely prove more fruitful.

We illustrate here the application of this technique
to the case of the perfect insulator, nr=pr=2=0.
Substituting for p-n from Eq. (A2) in Eq. (A4),
(d/dx)[8(d8/dx)]=—e(b+1)7/eun and is therefore
everywhere negative. Assuming a single maximum in
&, say at xy, then the plot of § vs x must be convex.
If it were not, say it was as plotted in Fig. 3, then the
plot of d&/dx would have to be as shown. Taking two
positions, say =3, and x:>x;, such that (d8/dx),
= (d&/dx);, it follows from Fig. 3 that [§(d8/dx)].
>[8(d8/dx) s, whence d/dx[ §(d8/dx)] must be posi-
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Fi16. 3. Proof, by contradiction (see text), that the electric-field
distribution must be convex for double injection into a perfect
insulator.

tive somewhere between x; and x,, and we have reached
a contradiction. In like manner it is shown that & can
have only a single maximum between x=0 and x=L.
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Current-Voltage Characteristics of Forward Biased Long p-i-n Structures

R. D. LARRABEE
RCA Laboratories, Princeton, New Jersey

(Received August 12, 1960)

The current-voltage characteristics have been observed in several germanium p-i-» structures in which the
n side was biased negative and the p side positive so as to cause a double injection of electrons and holes
into the structure. The middle ¢ section was constructed of good quality germanium (approximately 2X10%
donors/cm3) and was many minority carrier diffusion lengths long. The observed I-V characteristics display
a low-field region in which the current is proportional to the voltage followed by a higher field region in
which the current is proportional to the square of the voltage. In the square-law region, the current is a
function of the difference, rather than the sum, of the thermal densities of the electrons and holes. These
observations lend experimental support to the basic theories of Lampert and Rose regarding volume-

controlled double injection into a semiconductor.

HE preceding paper! outlined a theory regarding
the current-voltage characteristics of long semi-
conductor specimens provided with one contact which
injected electrons and another which injected holes.
This paper will describe some relatively simple experi-
ments in which the measured current-voltage char-
acteristics of suitable specimens lend support to these
theoretical considerations.

Germanium was selected as the most suitable ma-
terial for study since its technology is so far advanced
compared to the other semiconductors. Since it was
desired to measure the sample characteristics in the

1 M. Lampert and A. Rose, preceding paper [Phys. Rev. 121,
26 (1961)7].

presence of double injection in which the density of
injected carriers was large compared to the extrinsic
density, it was necessary to utilize the highest resistivity
material available. A germanium crystal with an ex-
trinsic density of about 2X 10 electrons/cm? and a low
level bulk lifetime of approximately 600 usec was
selected. It should be noted, however, owing to the
perturbing influence of the surfaces of the specimens
utilized and the high injection levels employed, it is
not certain that this low-level bulk lifetime should be
used in the quantitive comparison of theory and
experiment.

Since the theoretical considerations were concerned
with the case in which the diffusion length could be



