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Double injection into semiconductors and insulators is studied under conditions where the injected
electrons and holes are free (injected plasma), the current is volume-controlled, i.e., determined by dis-
tributed space charge, and the current is field-driven (diffusion negligible). The major results are, assuming
a one-dimensional geometry and carrier lifetime independent of injection level, for extrinsic semiconductors,
(i) an extended voltage region over which J~ Us (J current density and U voltage), and (ii) dePression
of the current, at 6xed voltage, in the square-law region throughincrease in the number of thermal minority
carriers, Ja: ~nr —pr(, with Nr, pr the thermal-equilibrium densities of electrons and holes, respectively.
This unusual behavior is shown to be a direct consequence of recombination kinetic requirements. For
insulators, assuming trapping is negligible, J~ U3. A rigorous solution is obtained for the constant-lifetime
problem, valid for both semiconductors and trap-free insulators. This solution furnishes a good approxima-
tion also for variable-lifetime cases, e.g. , bimolecular recombination kinetics.

I. INTRODUCTION

&~OUBLE injection into solids, that is, the simul-
taneous injection of electrons from a negative

contact and holes from a positive contact, is a subject
of both considerable complexity and diversity. In the
theoretical studies of this subject over the past decade
by far the greatest attention has been given to double
injection into semiconductors, usually "short" n-i-P
structures, in which the current is controlled by one or
both contacts and the carrier density is determined by
the solution of a diGusion equation. ' ' More recently,
double injection into solids has been theoretically
studied under conditions where the currents are field-
driven and volume controlled, i.e., limited by space
charge which is distributed throughout the volume. '
These latter studies have been confined to insulators in
which there is a negligible density of free carriers in
thermal equilibrium and, further, in which there is
negligible trapping of injected carriers. Parmenter and
Ruppel' have rigorously derived the current-voltage
characteristic for two-carrier SCL (space-charge-lim-
ited) currents in a trap-free insulator assuming bimo-
lecular recombination. I.ampert' has extended their
results, by an approximate analysis, to general recombi-
nation kinetics and arbitrary Geld-dependence of the
mobilities, but still holding to insulators and to the
assumption of a single lifetime for electrons and. holes
(the injected plasma case). The present paper extends
this latter work to semiconductors, and also puts the
theory on a more rigorous foundation.

Two outstanding features are revealed by the present
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analysis: (i) an extended voltage range, following the
Ohm's law region, over which the current is proportional
to the square of the voltage; (ii) depression of the
current, at fixed voltage, in this square-law region
through increase in the number of minority carriers in
thermal equilibrium. The latter behavior is remarkable
in that the addition of current carriers leads to a
reduction in current at large injection levels. It will be
seen in Secs. IV and V that this effect is a direct
consequence of recombination kinetics.

Recent experiments~ with germanium at this labora-
tory give the predicted square-law dependence of
current on voltage following an Ohm's law region, and
also give strong evidence for the predicted depression
of the current by the minority carriers. A double-
injection "breakdown" of iron-doped germanium at
liquid nitrogen temperature was observed by Tyler' and
interpreted by him in terms of volume-controlled
currents, although a detailed theory has not, to date,
been presented. Also the recently observed "oscillistor"
phenomena' (current oscillations produced in a rod of
semiconductor placed in a magnetic field) are known
experimentally to involve field-driven, volume-con-
trolled, double-injection currents.

The authors are confident that the systematic study,
both experimental and theoretical, of two-carrier
injection into solids will yield at least as great a wealth
of useful information about localized imperfection states
as has the study of one-carrier injection. "

II. ASSUMPTIONS

The assumptions on which our theory is based are as
follows:

(i) The injected (excess) carriers are free, i.e., not
bound in traps or recombination centers.

r R. D. Larrabee, following paper LPhys. Rev. 121, 37 (1961)$.' W. W. Tyler, Phys. Rev. 96, 226 (1954).
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For well-purified semiconductors, in the temperature
region of extrinsic conductivity with the dominant
impurity completely ionized, and at higher tempera-
tures, the injected carrier densities, at injection levels
of interest, will be large compared to recombination and
trap state densities, and so will automatically be free.
Further, changes in occupancy of the recombination
centers under injection conditions are neglected. This
is justified (see Appendix A) so long as the recombi-
nation state density is less than the difference between
the thermal-equilibrium densities of majority and
minority carriers. Again this will generally be the case
for well-purified semiconductors in the current state of
the art.

For insulators, even if highly purified, except at very
high injection levels, quite generally at least one of the
injected carriers, electrons or holes, will be largely
trapped. Theory covering this case will be presented in
a later publication.

(ii) The current is volume-controlled, i.e., the con-
tacts impose no significant constraints on either the
entering or exiting currents.

(iii) Diffusion currents are negligible.
These two assumptions are closely related to each

other and therefore are discussed together. They mark
a complete departure from the existing theory on
double injection into semiconductors. ' 4 Assumption
(iii), by definition, characterizes a "simplified" theory.
In such a theory, assumption (ii) is precisely formulated
in a pair of boundary conditions, namely that the
electric field intensity vanishes at the cathode and
anode. In practice such idealized contacts simply cannot
be realized since, in the absence of diffusion, they imply
infinite free-carrier densities at the contacts. Actually,
where the electric field vanishes the current is neces-
sarily a pure diffusion current. Nevertheless, so long
as the diffusion currents are large only over narrow
regions confined to the vicinity of the contacts, the
"simplified" theory, with assumption (ii), will give an
adequate description of the overall current Qow, par-
ticularly of the current-voltage characteristic. Precisely
the same considerations arise in the problem of a
one-carrier SCL current injected via an "Ohmic"
contact. "

In the case of double injection into a semiconductor
with an e-i-p structure a condition for the applicability
of the "simplified" theory is that the middle i-section
be at least several diffusion lengths long. (See the
discussion at the end of Sec. IV.) Such is the case in
Larrabee's experiments. ~ Where the middle i section is
less than a couple of diffusion lengths long, the assump-
tions (ii) and (iii) are no longer valid at practical
voltages, the appropriate theory then being that al-
ready available in the literature. ' 4

Although the is-s-p type of structure is indeed the
most suitable, in the current state of the art, for

"M. A. Lampert, Phys. Rev. 103, 1648 (1956).

studying double injection under highly controlled
conditions, it is certainly not the only one available. ' "
The problem of injecting contacts is one requiring
considerably more experimental and theoretical study
if greater understanding and control are to be realized
for contacts other than those of the P-I junction type.

(iv) I.ow-field (field-independent) mobility condi-
tions obtain.

This assumption is made to make the mathematical
problem analytically tractable. Fortunately it will be
realized in most, if not all, cases of practical interest.
Where approximate arguments are employed it is, at
least sometimes, ' not necessary to restrict the discussion
with this assumption. In the case of one-carrier SCI.
currents it has been shown that the analytical problem
is tractable even with field-dependent mobilities, under
fairly general conditions. " It remains to be seen
whether such techniques can be applied to two-carrier
problems.

III. PHYSICAL ARGUMENTS

In this section we derive some of the major results of
the theory in a very simple manner, examining the
average behavior of the injected carriers from the
viewpoint of the underlying physical processes. The
reasoning employed is a straightforward extension of
that employed by Rose in his study of one-carrier
SCL currents. "

Except where otherwise noted, the discussion through-
out this paper refers to a one-dimensional, current-Row
geometry and all formulas are expressed in mks units.
In the following definitions of symbols, subscript e or

p on a quantity indicates that the quantity refers to
electrons or holes, respectively. J is the total current
density; e is the electronic charge, P and X are the
total number of injected, excess holes and electrons,
respectively, per unit area, between cathode and anode;
t„ is the "average" hole transit-time, t„=l.'/IJ~V, with
I the cathode-anode spacing, p„ the hole mobility, and
V the applied voltage between anode and cathode, and

similarly for t„and ti„; Q is the magnitude of charge,
per unit area, of one sign between cathode and anode
(see Appendix 8); C is the geometric capacitance, per
unit area, C= e/I with e the static dielectric constant;
7- is the common, "average" lifetime for injected
carriers; to,„ is the so-called Ohmic (or dielectric)
relaxation time for electrons, to, „=e/emzp, „with nr
the thermal equilibrium density of electrons, and
similarly for tti, „and p&.

In order to highlight the difference between one- and
two-carrier injection, under field-driven conditions, we
first review one-carrier injection (of holes) into a
perfect insulator (pr ——0 and no trapping)":

J=eI'/t, . (1)
"R. W. Smith, Phys. Rev. 105, 900 (1957).
'3 M. A. Lampert, J. Appl. Phys. 29, 1082 (1958).
"A. Rose, Phys. Rev. 97, 1538 (1955).
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Charge and voltage are related in the usual manner,

e=«= (/L) V

It has been shown, " under very general conditions,
that the distortion, by injected, distributed space
charge, of the capacitance away from its geometric
value is less than a factor of two. Correspondingly, an
error of less than a factor of two is made by using the
geometric value of the capacitance in Eq. (2). A similar
situation is expected to obtain generally with two-
carrier injection (see Appendix B).

Since all free carriers in the insulator are excess
carriers,

(3)

Combining Eqs. (1), (2) and (3),

The exact, analytical solution" for this problem
differs from Eq. (4) only in that it is larger by the
multiplicative factor 9/8.

The essential difference between one- and two-carrier
injection is that in the latter case the injected carriers
of one sign of charge can be largely neutralized through
the accompanying injection of carriers of the opposite
sign of charge. Thus, with double injection we are
dealing basically with an injected plasma, so long as
the injected carriers are mostly free /assumption (i)] of
Sec. II). Nevertheless the small, residual space charge
is of great importance in that it is precisely this space
charge that limits the buildup of plasma density at
any 6xed voltage.

We consider specifically the case of double injection
into an e-type semiconductor in the extrinsic region,
pr(&nr. Because of finite lifetime against recombination
with electrons, the injected hole density necessarily
decreases going from anode toward cathode. As pointed
out above, the space charge associated with the injected
holes can be largely "relaxed, "i.e., neutralized, through
the concomitant injection of electrons. However, since
the motion of the electrons which "relax" the holes is
in the opposite sense from the hole motion —ultimately,
the "relaxing" electrons must come from the cathode,
whereas the holes are injected at the anode —there will

be a 6nite time delay, or relaxation time t„&, associated
with the neutralization process, as a result of which
complete neutralization will clearly be impossible. So
long as t,.~((r we would expect the ratio t„~/r to
provide a measure of the incompleteness of the relax-
ation; i.e., of the residual space charge. Hence we write,
for this case of double injection into an n-type semi-
conductor:

f„)((r.' Q= ePt„)/r.

Since Q/e((P, it follows automatically that P=P,
i.e., that the double injection corresponds to an injected

"N. F. Mott and R. W. Gurney, Flectronic Processes in Ionic
Crystals (Oxford University Press, New York, 1940), p. 172.

In order to complete the picture we must identify
t,.~. Two relaxation modes are available: (i) the
"Ohmic" relaxation by the electrons distributed
throughout the solid in thermal equilibrium; this has
the characteristic relaxation time te, „=5.5 &&10'E/
erg„ in practical units (E the dimensionless, relative
dielectric constant, Nr in cm ', p„ in cm'/volt sec, and
ta „in seconds), and (ii) the transit time t„for electrons
individually to traverse the solid after injection at the
cathode. Whichever of tg, „, t„ is the shorter time will
determine the actual mode of relaxation. Thus we have
two different cases, for each of which the appropriate
substitution for t„~ in Eq. (6) gives the desired current-
voltage relationship:

tg, „(t„)r)
t~«a, ~, ~;

t„i=to,„.' J'=cry, p„erV'/L', (7')

(8)

In both cases it is also necessary that t~(~. If t~&7.,
Ohm's law holds.

From the derivation, it is appropriate to refer to the
square-law characteristic, Eq. (7'), as the "Ohmic
relaxation regime. " If w(t&, „ there will be no square-
law portion in the current-voltage characteristic. At
suSciently high voltages where t, which varies as 1/V,
is less than tg, „, the carriers e~, initially present ther-
mally, no longer play the dominant role in determining
the current. Therefore the solution, Eq. (8), is essentially
the same as that previously obtained' for double
injection into a perfect insulator (nr =Pr 0), and——it is
appropriate to refer to the cube-law characteristic, Eq.
(8), as the "insulator regime. "Actually there is missing
from the right side of Eq. (8) a multiplicative, numerical
factor =8. The missing factor is easily recovered by
noting that in the insulator regime, as shown in Ap-
pendix A, there is almost complete symmetry between
electrons and holes (unequal mobilities can sightly
disturb this symmetry). Therefore, in concentrating on
the injected holes in our derivation we have looked only
at the right half of the solid, the anode half, and
counted only half the current. Upon replacing J, V,
and L in Eq. (8) by J/2, V/2, and L/2, respectively,
the "correct" numerical factor appears.

Finally Eq. (7') should be corrected for the presence
of minority carriers pr thermally generated in the

plasma (the free thermal electrons, of total number
egL, per unit area, are neutralized by the positive
donor ions).

We still use Eq. (1) for the total current. , since we
regard the electron motion as simply neutralizing the
holes over their current path. This is, of course, valid
only at high injection levels, P)rirL. (For P&nrL
we get simply Ohm's law. ) Combining Eqs. (1), (2),
and (5), we get

vCV e7 p„V'J=
tr city trel
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n-type material. It is shown in the following Sec. IV,
and more rigorously in Appendix A, that the corrected
equation is,

and the particle conservation equations,

(11a)
J= ertz„p, „(zzr pr)—V'/L'. (7)

Precise conditions for the validity of Eq. (7) are
given in Appendix A. As shown there, the inequalities
characterizing the different current-voltage regimes are
slightly different than those given in Eqs. (7') and (8).

It is seen in Sec. IV that the factor Nr —Pr appears
naturally in the analysis upon simple manipulation of
particle conservation (recombination) equations —a
matter explored further in Sec. V C. In the context of
the physical arguments of the present section, Eq. (7)
can also be interpreted as indicating that, in Ohmic
relaxation, say by electrons, ader double irijectio~z
coeditioes, the effective density of electrons available
to "relax" the injected holes is Nr —pr, and that the
corresponding, effective Ohmic relaxation time is
to„'= c/, e(zzr pz)—tz Rep.lacing t„i by to,„' in Eq. (6)
then gives Eq. (7). However, we wish to stress that
this behavior is very unusual and derives from recombi-
nation requirements. In the more usual charge-relax-
ation situation, e.g., if an excess charge were suddenly
introduced into the injected plasma, the electrons and
holes in the plasma would aid in the charge relaxation,
i.e., their (mobility-weighted) sum, rather than differ-
ence, would be involved in the relaxation process.

Equation (7) would predict J—+0 as pr —+ zzr, which
is, of course, a sp'urious effect. Actually when pr is very
close to ep the approximations characterizing the ohmic
relaxation regime are no longer valid. In this case,
with diffusion neglected, there is simply no voltage
range over which J~ V'. The Qhm's law regime, valid
at "low" voltages, is then followed directly by the in-
sulator regime, J~ V'.

IV. APPROXIMATE ANALYTICAL ARGUMENTS

Additional insight is gained into the double-injection
problem by somewhat more analytical, yet still simple,
derivations. The complete equations, including diffu-

sion, which define the problem are: the electron and
hole current-Row equations,

1 ds
J„=tz„(zz+rzr) 8 D„— —

e dx

(9b)

the Poisson equation (neglecting changes in occupancy
of localized, e.g., recombination, centers),

In the above equations, J„ is the electron current
density; similarly for J„; zz and P are the injected,
excess electrons and holes, respectively; 8 is the electric
field intensity; D„ is the electron diffusion constant,
D =kTtz /e with k=Boltzmann's constant and T the
temperature in degrees Kelvin; similarly for D„; x is
the position coordinate; r is the recombination-rate
density; r„ is the electron lifetime, and similarly for r„.
Other symbols have been previously defined in Sec. III.

Equation (12) is particularly useful for comparison
of the different current-Row regimes. Of the three terms
on the left-hand side of Eq. (12), previous theories' '
ignore the first two, take I=p in the third term (hence
r =r~=r), and thereby obtain what we may call the
"diffusion solution, " with an effective diffusion length

f f (2D r/(b+ 1))&. Note that in obtaining this
"diffusion solution" the Geld terms are neglected only
in Eq. (12). The field terms are retained in Eqs. (9a)
and (9b) and indeed, in references 1—4, these equations
are used, in conjunction with the "diffusion solution"
to Eq. (12), to obtain the electric fmld intensity.
Interestingly enough, the "diffusion solution" yields a
square-law regime at higher voltages, following the
exponential current-voltage regime valid at low volt-
ages. ' This square law is unrelated to that characterizing
the Ohmic-relaxation regime, Eq. (7).

The Geld-driven current regimes are determined
neglecting the third (diffusion) term on the left-hand
side of Eq. (12) as well as the diffusion terms in Eqs.
(9a) and (9b). Now, it is obvious, and is verified. in the
exact solution of Appendix A, that until relatively high
injection levels are reached, i.e., until n=P) zzr, Pr, the
current-voltage characteristic is simply Ohm's law. In
the non-Ohmic portions of the characteristic, i.e., at
the high injection levels, it is permissible to neglect the
thermal carrier densities zzr, pr in the current expres-
sions (9a) and (9b). The total current density can then
be written, replacing h by the average field V/L,

J e(b+1)tz„rzV/L, (13)

Multiplying Eq. (11b) by b=tz„/tz„and adding to
the result Eq. (11a) gives, using Eqs. (9a) and (9b),

d8 kT d'—P(p —~) &j—(~r—p~) + (~+p)
Zx Qx 8 dx

(5+1)r (5+1)zz (9+1)p
(12)

(e/e) (d h/dx). = zz —p, (10) where n denotes the average value of zz over the volume.
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The Ohmic relaxation regime corresponds to keeping
just the middle term on the left-hand side of Eq. (12):

p—(&r pr—) (d8/dx) = (b+1)n/r„. (14)

A simple dimensional analysis of Eq. (14) gives the
result immediately; namely replace —d8/dx by V/L'
and m/r„by n/r Th.is gives the useful relation,

(b+1)r7 = rp„(er pT ) V—/L', (15)

which, substituted into Eq. (13), gives Eq. (7). (Note
that, for the sake of definiteness, we are assuming e-type
material, nr) pr ).

A somewhat more fastidious procedure for deriving
Eq. (15) consists of replacing dh/dx in Eq. (14) by its
value from Eq. (10), giving e~m —

p~ = e(b+1)e/
p„r„(ei pr), s—ubstituting this into the relation,

~Q~ =eJ'.i~I p~dx —eV/L (see Appendix 3), and
replacing J',irrdx/r by nL/r.

The insulator regime corresponds to keeping just the
first term on the left-hand side of Eq. (12), and replacing
(p-e) by its value in Eq. (10),

(16)

Again, a simple dimensional analysis, replacing
—(d/dh)$8(d8/dx) j by V'/L' and n/r„by 8/ g.rives
the useful result,

Evp„V
(b+1)8=

e 1.4
(17)

"D.O. North (private communication).

which, substituted into Eq. (13), gives the final result,
Eq. (8). More detailed examinations of the insulator
regime are given elsewhere. ' '

The present treatment of double injection, in which
we neglect the diffusion term and retain the field terms
in the particle conservation equation (12), is applicable
to semiconductor structures of the I-i-p type if the
middle i section is sufficiently long compared to a
diGusion length. The reason for this requirement is that
the e-i (p-i) junction blocks the exit of holes (electrons),
whereas our theory assumes that there are no con-
straints on currents at the contacts. Consequently at
each junction there is needed an accommodation region
in the i section over which a diffusion-dominated solu-
tion adjusts to our Geld-dominated solution. At the
onset of the Ohmic relaxation regime the length of each
of the accommodation regions is approximately one
diffusion length. ' At higher currents their length grows
logarithmically with current. " In Larrabee's experi-
ments, ' at the highest currents the total length of the
two accommodation regions is small enough compared
to the specimen length that we expect at least a quali-
tative check of his results with our predictions, and
indeed this check is provided.

V. RECOMBINATION KINETICS

It is clear from the entire discussion of Sec. III, and
from the appearance of the lifetime r in the final results,
Eqs. (7) and (8), that recombination kinetics play a
crucial role in double injection currents. We discuss in
this section three aspects of recombination: the vari-
ation of lifetime with position, the variation of lifetime
with injection level, and the connection of recombina-
tion with the "nr—pr effect, "Eq. (7).

A. Variation of Lifetime with Position

We recall that the "physical" arguments of Sec. III
and, to some extent, also the approximate mathematical
arguments of Sec. IV, were based on an examination of
the average properties of the injected plasma. The
reason why the study of average quantities yields
accurate results for the current-voltage characteristic
is that, in truth, the various quantities of interest, such
as carrier densities and electric field intensity, vary
only weakly with position over most of the solid, as
demonstrated by the "exact" solutions in Appendix A.
The "exact" solutions, in turn, are derived making the
approximation that either the electron or hole lifetime
is constant with position. Now even where this approxi-
mation is poorest, namely with bimolecular recombi-
nation, the carrier lifetimes have only the same degree
of positional variation as the free carrier densities.
Since the calculated free-carrier densities have, indeed,
only weak positional dependence, the approximation of
constant lifetime is mathematically a self-consistent
one, even in this "worst" case. This explains why the
rigorous solution for the case of double injection into an
insulator with bimolecular recombination' is reproduced
with considerable accuracy by the constant-lifetime
calculation of Appendix A.

Actually, in the more usual circumstance of recombi-
nation through localized centers the approximation of
lifetime constant with position will be an extremely
good one for either electrons or holes, so long as the
recombination cross sections, 0-„and 0-„ for electrons
and holes, respectively, are very unequal in magnitude.
For we may write r '= Vo pit, r„'=Bo „nz, pit
~o„lV~/(o„+o„), and eg o~g/(a+o„). Here 8 is. .

the thermal velocity of the free carriers (taken equal
for electrons and holes, for the sake of simplicity), air
and pz are the density of 611ed and empty recombina-
tion centers, respectively, and n~+pz=Eir, the total
density of recombination centers (of a single class
dominating recombination). If, for example, o„))o„,
then eg=E~ irrespective of modest variations of
carrier densities with position, and r~ will be constant
with position to a high degree of approximation. In
this case, 7. will be "constant" with position to a lower
degree of approximation, namely it will vary with
position to the same degree as the "almost-constant"
ratio m/p. If o~))o, the situation is reversed and r„
is the lifetime most constant with position.
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B. Variation of Lifetime with Injection Level

The major results of the theory, Eqs. (7) and (8),
express the current in terms of the average, common,
carrier lifetime 7 as well as the voltage V and other,
fixed parameters. At injection levels where the common
lifetime is independent of injected carrier density this
is a suitable manner in which to express the current-
voltage characteristic. However, where the lifetime
varies with injection level it follows, e.g., from Eqs.
(15) or (17), that the lifetime is also a function of
voltage, r = r(V), and the complete voltage dependence
of the current is known only when r(V) is specified.
Double injection into insulators with bimolecular
recombination, described by Eq. (8), is a case in point.
Here r ~ 1/V, so that Anally J~ V', not V'.

The numerous possibilities for dependence of 7 on
injection level, hence on t/, and the consequent effects
on the current-voltage characteristic are a subject for
further, detailed investigations. Ke con6ne our re-
marks here to two observations.

First it will be true quite generally that the depend-
ence of lifetime on injection level in double injection
experiments on a given material will be exactly the
same as the dependence of lifetime on excitation level
in bulk photoconductivity experiments on the same
material using bandgap excitation. The lifetimes are,
of course, to be compared at the same carrier densities.
The only difference in the two types of experiments
relates to the method of introducing excess carriers.
The bulk photogeneration of excess carriers will, or
can, be quite uniform, whereas in the electrical experi-
ment excess carriers are introduced at contacts or
electrodes. However, as we have already discussed, the
injection of excess carriers from contacts nonetheless
leads to a fairly uniform distribution of the carriers
throughout the volume —hence the equivalence of the
two types of experiments for lifetime studies. Photo-
conductive lifetime variations with excitation level are
discussed in two recent review articles. '~"

The second remark pertains to the use of the func-
tional form rt/r or p/r„ to express recombination rates.
The use of this form implies that the thermal re-
emission rate from the recombination center to the
corresponding carrier band is negligible, since net
recombination is equal to the difference between the
capture rate, as expressed above, and the re-emission
rate. It is easily seen" that for a single, dominant
recombination center, at the high injection levels of
interest, rs= p& red, pr, although the thermal re-emission
rate can indeed be substantial to one band, it will then
be negligible to the second band. For the recombination
centers would have to be close, energetically, to the
former band if re-emission is to be substantial, and
hence they would be too far away, energetically, from
"A. Rose, Progress srs Semscoadsictors (Heywood and Company,

Ltd. , London, England, 1957), Vol. 2, p. 111.' A. Many and R. Bray, Progress irI, Semiconductors (Heywood
and Company, Ltd. , London, England, 1958), Vol. 3.

the latter band for re-emission to this band to be

significant. Since recombination for one sign of carrier,
say holes, can be written properly in the form p/r„,
we can use the "equation, " rt/r =p/r„, as a, formal
means for de6ning the lifetime 7„of the other sign of
carrier. This mode of definition automatically sifts out
the "capture-followed-by-thermal-re-emission" events
from the recombination lifetime. These observations
justify the use of the simple, "capture"-type functional
form above in the theoretical analysis.

There is an additional question as to whether the
net recombination rate should include the thermal-
equilibrium density of carriers, i.e., whether the electron
recombination rates, for example, should be written as
rt/r„or (rt+rtr)/r Actu. ally this depends on the
details of the recombination kinetics. For example, if
the recombination centers are essentially full in thermo-
dynamic equilibrium, and essentially empty under
double injection (because o)o)o.„), then clearly the net
electron recombination rate is given by (rt+rtr)/r~.
This situation obviously involves a change in electron
lifetime as a function of injection level. In the analytical
formulation of the problem in Appendix A both possi-
bilities for the functional form of the recombination
are considered. At high injection levels, e&e~, the
results obviously will not depend strongly on the
particular choice between the two functional forms.

C. Recombination and the Role of Minority
Carriers in Ohmic Relaxation

The appearance of (rsvp pr) in —Eq. (7) is so unusual
that further understanding of its origin is desirable.
Some insight can be gained by concentrating on the
requirements imposed by particle conservation, i.e., by
the recombination Eqs. (11a) and (11b). For the sake
of simplicity we consider the case of equal mobilities,
ts =ts„=tt. From (9a) and (9b), neglecting diffusion,
we can write: B=E/(rt+nr+p+pz) with E=J/ets
= constant. Putting this into Eq. (11a), we obtain

st+ std
(18)

dx 2(rs+rtr) —(rs P) (rsvp
——Pr) —Ets

For the insulator case, rtr pz =0, we——see that double-
injection (JWO, rWO) requires a finite, if small, devi-
ation from neutrality, rsv p. This leads to the insulator
regime characteristic, Eq. (8). Obviously for semi-
conductors with Ns =pr a similar situation obtains;
particle conservation, i.e., a nonvanishing current
divergence in Eq. (18), requires that std p for significant
injection to occur, with a concomitant deviation from
Ohm's law. Further, the insulator regime, Eq. (8), will
describe the high-injection-level situations in this case.

However, for extrinsic semiconductors, std Apr, it is
clear that the term (rsvp

—pr) in the denominator of the
current term in Eq. (18) can also lead to nonvanishing
current divergence, even with rt p in Eq. (18). Indeed
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this is the case in the Ohmic relaxation regime, Eq. (7).
Further, in an expansion of the left-hand side of Eq.
(18) in powers of (nr pr)/2(n+—nr) (taking p —e=0),
the lowest order, nonvanishing term is proportional to
(nr —pr). Thus the recombination rate, and hence the
current, are proportional to (nr —pr), as in Eq. (7).
The same conclusions are reached if p„~p„, only the
algebra is more involved.

It is also instructive to consider the contributions to
recombination of the individual terms in the Eqs.
(11a) and (11b), rewritten here, neglecting diffusion, as:

d dh r——(eB) + —e.
dx q dS 2 p„

(19a)

d dh
(p@) + pr—

I dS 3 dS 4 p&

(19b)

For insulators, nz =pr ——L ]s——$ ]4——0 and
and $ ]s are the sole contributors to recombination.
In lowest order, n8= p 8=constant. ln the next order,
which gives the lowest order and dominant, contribution
to recombination, n8 and pB vary in opposite senses
with position, namely decreasing and increasing mono-
tonically, respectively, from cathode to anode. For
extrinsic semiconductors, say nr))pr, in the Ohmic
relaxation regime, the situation is different. Qualitative
plots of h, e, p, nh and ph, determined from the
solution in Appendix A, are given in Fig. 1. %e are
interested in the region between cathode and anode
which begins at a distance on the order of x~ to the
right of the neutrality plane at s~, i.e., slightly to the
right of the plane where e8 has its minimum. This
region comprises most of the volume of the solid,

I

0 X

Fro. 2. Qualitative plots of several variables of interest for
double injection into an extrinsic semiconductor in the Ohmic-
relaxation regime. x~ is the position of the electric Geld maximum,
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APPENDIX A. THE RIGOROUS SOLUTION

The current-Qow, Poisson, and particle-conservation
equations defining the problem are:

J
(n+nT)pm@+ (p+pr)IJyS —constant, (A1)

edS
n p+sg~

e dx
(A2)

—lr —L(n+nr) 8]=r, (A3a)

Equation (A1) is the sum of Eqs. (9a) and (9b) with
diffusion neglected. Equation (A2) is the Poisson Eq.
(10) with an additional term sg allowing for a change
in occupancy of the recombination centers. Note that
s~ can be either positive or n.egative. Equations (A3a)
and (A3b) are the same as Eqs. (11a) and (11b),
respectively. The appropriate functional form for r
depends on the detailed properties of the localized

absorbs most of the applied voltage and hence deter-
mines the current-voltage characteristic. Our remarks
are confined to this region. Again in lowest order
nB=pB= constant; in the next order n8~p8 still, both
increasing monotonically towards the anode in the
region of interest, as shown in Appendix A. From Fig. 1
it is clear that the term L ]& in Eq. (19a) is now, in a
mathematical sense, opposing recombination and the
sole contribution to electron recombination is provided
by the thermal-carrier term L ]s. Since in lowest
(nonvanishing) order, $ ]r= —

L ]s, it follows, add-
ing Eqs. (19a) and (19b), and neglecting [ ]4, that

]s (b+1)r/blr~(b+1)t ]s/b. including the small
term L ]4, it opposes recombination, and on adding
Eqs. (19a) and (19b) L ]& is replaced by

]4= (nr—pr)—d 8/dx

I. The above considerations bring out the crucial role
played by the thermally present carriers in the Ohmic
relaxation regime. Although, to be sure, the separation
of currents into those carried by thermal and injected
carriers respectively is only a mathematical artifact,
it is, as the above analysis shows, a useful one for
understanding the final results.
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TABLE I. Parameters dependent on the details of
recombination kinetics. ' From Eqs. (A7) and (AS), v and m. are given by

I/
P/r~
(n+nr)/r„
(P+Pr)lrr

rr/nr
V

v+1
%+1

1—C —g+0
1—c —t- —bO

|-+,O~

1—C —|-—bO

tt/o
b+C +g
b+C —bp
C+g —1
C —bg —1

1 5 dQ
v= —+ —(ti+4+t ),

b+1 u dw

1 b dQ
——b —(9+4 —b| )

5+1 u dw

(A11a)

(A11b)

a The letters designating rows are used as identifying subscripts on the
symbols designating columns; thus r& ——n/~n, rer/nr =v+1, etc.

defect states in the semiconductor. The four possi-
bilities, discussed in Secs. VA and VB, are listed in
the first column of Table I,

The particle-conservation equation most useful for
the analytical discussion is that obtained by adding
Eq. (A3b), multiplied by b= p,/ti~, t,o Eq. (A3a):

d8 (5+1)
L(P n—) &7 —(nr P—r)—

dx dx p„
(A4)

It is convenient to obtain the solution in terms of the
dimensionless position, field, and potential variables of
reference 11, Appendix A:

w=e'nz'p~ x/eJ, u=enzy„S/J, , a=e'nr'p„'V/eJ' (AS.)

Here V is the potential at position x, U= V(x), and the
applied potential is Vl, ——U(J). (In the main body of
this paper, Ul, is written simply as V, since the potential
distribution is not discussed there. ) It is convenient,
in the definitions (A5), to use the majority-carrier
thermal density; thus the choice eT would refer to an
e-type or intrinsic semiconductor.

Further dimensionless variables and constants are:

P=B ST 7l = 'ST =g ST
O= ta,./r, e =p,/nr,

(A6)

1/u= v+1+ (1/b) (~+4), (A7)

du/dw = v —m+f', (AS)

d dQ r7
L(~—.)u7 —(1—C) = O(t+1)—. (A9)

O'N ST

Equations (A7), (AS), and (A9), with rr/nr taken
from Table I, define our problem, subject to the
boundary conditions 8=0 at x=O (the cathode) and
at @=I.(the anode), i.e. :

u=O at w=0 and at w=wi, ——e'ni'ti„L/eJ. (A10)

with ta „e//enrti„——; r is the appropriate, constant
lifetime, r„or 7„, appearing in r in the first column of
Table I, and 4 &1.

Equations (A1), (A2), and (A4) become, respectively,

Substitution of Eqs. (A11a) and (A11b) into Eq. (A9)
gives finally:

d ( du) du
u

]
u /+nu

dw E dwi dw

—pu+y=0, (A12)

where y= Q~b and the appropriate expressions for n and

p are given in Table I. Note that we have taken l' to
be a constant (positive or negative), independent of

position; this will be true generally to a high degree of
approximation for constant-lifetime situations such as
discussed here.

Equation (A12) is reduced to a differential equation
which is integrable by inspection by the substitution:

d O'N

Q — =—or Q=
dm dy cfy

dQ dQ
+n——Pu+y =0.

Qly2 dy

(A13)

(A14)

O,'=&~=Ay= 1 4')Oj

p=p, =pg=0(b+4); y=Ob.

From (A16) it follows that

A, &0, A, & —+&0, —A,&A, .

(A17)

(A1S)

From the manner in which the variable y is introduced,
(A13), it is clear that only differences in y, and not the
absolute values of y, are significant in the solution.

The solution to this equation is written as

u= 8' expA iy+C' expA2y+y/p, (A15)

where 8' and C' are arbitrary constants, to be deter-
mined, and

A = —-'n+-'(n'+4P)& A = —-'n —-'(n'+4P)". (A16)

In writing the solution in this form we are assuming
that n'+4P) 0. From Table I it appears that there may
be some unusual situations where this inequality does
not hold. However it is not our intention to present
here an exhaustive treatment of all possible cases.

From this point on we confine the discussion to
recombination possibilities a and b in Table I. At high
injection levels, n, P)nr, Pr cases c and d are sub-

stantially the same as c and b, respectively, as already
pointed out in Sec. VB. Further we assume that both

t and O~ are sufficiently small to be neglected in n and

P/O. Thus,
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Equations (A24) yield

expAg —18—
expA g

—expA g

Therefore, to simplify the algebra we set

y=0 at w=O; also let y=yi, at @=I., w=wi, . (A19)

the following useful relations:

expA y
—1

C=—,(A27)
expA ~

—expA~Further simplification results from the following changes
of variables and parameters:

W=y/y~, ~= (P/V)~, w= (Pixy~)w,

V= (0 / Y yL)v) A1=A lyLy A2=A 2yL.

with D then given by Eq. (A24b).
Carrying out the integration in Eq. (A26), and using

(A20) Eq. (A27), we obtain

Equation (A15) can now be rewritten as

n,=BexpAig+C expA~y+1,

with 8 and C constants to be determined.
Integration of Eq. (A13) gives

(A21)

vt, = 2 (expAi —exp'. ) ' (expAI —1)'(exp2A& —1)
Ag

+ (expAi —1)'(exp2A2 —1)
A..

w = expA, y+ expA ~y+ y+D,
Ag

(A22)
(exp A i—1)(exp A 2

—1)
Ai+A2

f 1
wi. —1=

i

EAj

1 y (expA. i—1)(expA2 —1)
(A25a)3,) expA g

—expA g

This is more clearly seen as an equation relating the
unknowns m I, and yL, by re-writing it as

—'l8g —$1
7

with D a constant of integration.
The bounds. ry conditions (A10), with subsidiary

condition (A19), are re-written as follows:

At y=O, N=O and w=O;

p pe'nI'II, „L (A23)
at y=1, N=O and to=wI. = mz, =

%pl. Yp«J

Applying these boundary conditions to Eqs. (A21) and
(A22) yields the following four equations for the five
unknowns 8, C, D, ml. , yg.'

O=B+C+1, (A24a)

0= (B/Ai)+ (C/A2)+D, (A24b)

O=B expA, +C expA2+1, (A24c)

wi, ——(B/A, ) expAi+(C/A, ) expA, +1+D. (A24d)

Elimination of 8, C, and D yieMs the following char-
acteristi c equation:

)& (exp(Ai+Aq) —1) +2wi, 1.—(A28)

r 1
wi 1—

1( 1
8I.-2w» —1+-i

2&A,

1 7
I
=1~ wi,=' —yi, (A29a)

2,) p

vI, !
—! yI, . (A29b)

The various regions of the solution are determined by
the relative magnitudes of A~ and —A~ with respect
to unity. These regions are:

(i) A i))1, hence —A2))1:
Ohm's-law regime, Eq. (A30b),

(ii) A,(&1, —A,))1:
Ohmic-relaxation regime, Eq. (A33b),

(iii) —A ~((1, hence Ai((1:
Insulator regime, Eq. (A38b).

Where A& or —A2 passes through unity as a function
of applied voltage, we obtain a transition from one
regime to another. In such transition regions the
current-voltage characteristic cannot be expressed in a
simple, analytical form.

We consider the different regions separately.
Ohms's-law regime: A&&)1, hence —A2))1. ExpA2

«1 is neglected everywhere. Equations (A25a) and
(A28) become respectively, using (A20):

~ 1 1 l (expA&yi —1) (expA, yi, —1)
(A25b) Dividing Eq. (A29a) by Eq. (A29b), we obtain, using

~Al A2) expAlyI expA&yI (A5) and (A17)

with A i, A & constants given by (A16).
The final equation determining the solution to the

problem is:

)I pvt, 1

Vi. ——
, hdh, or vI, ——

,

' u'dy, or Vi. = u'dg. (A26)

ol
J e(Ivy„+ prII, „)Vi/L,

which is just Ohm's law.

(A30a)

(A30b)
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Ohmic-relaxation regime: A i«1, —A2))1. These
conditions on Ai and A2 require that p&(e, hence y«n,
in (A17), or from (A17) that 0=/ii, ,/r«(1 —C)/(b+C').
Equation (A16) can then be written:

cube-law current-voltage dependences, g~(1 since
uyz))1, namely nyz =3n'vz/2&i', =4(1 C—') Vo, ~/3 Vz,
=SV, ,/Vz, from (A32a), (A32d), (A33b), and (A39).
lt remains to show that giz&(1 implies Co~/iaz, =xiz/L
&(1. From (A22), (A24b), and (A32b) it follows that

P«n: 2 i P/n, A2 —e, 2 i«—A 2. (A31)
m Agy ——.,'Agy'. (A35)

Again exp' 2 is neglected everywhere. Equations
(A25a), (A27), (A21), and (A26) become, respectively,
using (A20) and (A31):

Note that (A35) checks (A32a), taking g=1. Thus
eiz Aiy'~ and eiz/ez 2g3z&&1, as asserted above.

We next show that the density-field product e8 or
vu (i) is constant with position to a good approximation,
and (ii) has a slight monotonic increase from somewhat
beyond the position x~ of the fieM maximum to the
anode, x=L From (A11a) (taking |=0), (A13), and
(A20), (3+1)vu=b+yP iQz 'du/dy (b+C—)u]. From
(A32c) and (A30a) this gives vu= constant —A,b(b
+1) '(1—g) where the constant is approximately
b/(9+1). This approximation is inadequate (higher
order terms must be included) in the immediate vicinity
of position x~, roughly within a distance of order x~.
Beyond this distance, up to the anode, it is valid. Since
A&(&1 and y increases monotonically from 0 to
between the cathode and anode, both assertions (i)
and (ii) above are proved. These same assertions are,
of course, likewise valid for the product pS or mu.

Finally we note that the free-carrier densities do not
vary strongly with position over most of the solid.
Denoting e(x~) by e~, viz/u (x) = v~/v~u/uM~ 1—g
from (A32c). From (A35), x/L= ie/wz 2g g. Taking-
g=-'„u(x)/n~ 2 where x/L=~3; i.e., I varies by less
than a factor of 2 over 'I5% of the solid, or, taking

g 3, by less than a factor of 3 over approximately
90% of the solid.

Insulator regime: —A2((i, hence A~((i. Expanding
expAi and expA2, (A25a) gives, in lowest order:

(1
tVz~Ai( —+ [~~c4.i ~

(2 A2)
iv , iv ,fez= —A iyz,'= —yz', (A32a)
2P 2u

(A32b)

u 1—exp —Ai(1—y) A. i(1—g), (A32c)

Sz~ A i'(1—y)'dy =-'3 i' —+
Jo

1 (y q
' 1 (vl '

"=-I -~i
I y"=-I —

I
yz' (A32d)

3&P ) 3Ezz)

Dividing the cube of Eq. (A32a) by the square of Eq.
(A32d), we obtain, using (A5) and (A17):

or
J~(9/8) e7 IJ,„Izv(uT pz) Vz'/L'. —(A33b)

The transition from the Ohm's-law regime to the
Ohmic-relaxation regime occurs approximately at the
voltage Vi 2 where the curves (A30b) and (A33b)
intersect, namely where

fez ——,', AiA2~wz, ————,', (y/p)AiA2yz'. (A36)

From (A26) and (A21), Hz=Zi'/3+ZiZ2/4+(Z2'/4
+ZiZq/3)/5+ with Z„=M.i"+CA~", @=1,2, ~

From (A27), to the lowest order, Zi —AiA. 2/2 = —Z2/2
and Z3, Z4, etc. are negligible. Thus,—T

u„Vi 2 1+(C/b)
or

wz' L'J 9n 9 1—4 9 eurIJ, „v(1 4')—
(A33a)

zz,' eu~Vz' 8 y 8 0" ft 8

1+(C'/&)
Vg 2 V„~ with V, ~=

The inherent asymmetry of the Ohmic-relaxation
regime is brought out by calculation of the position x~
where the electric Geld intensity is a maximum: dh/dx
=0 at xiz and h(xiz) is a maximum, i.e., du/de=0 at
ur~ corresponding to xiz, and u(w~) is a maximum.

We Grst find y~ at which u is a maximum: du/dy=0
at y=yiz. From (A21), BAi exp&igm+C~2exp&z'gm
=0; using (A27) and (A31) this gives giz in~22~/
~
A2

~
lnnyz/nyz. For voltages Vz, well below the

transition voltage V2 3 from the squa, re-la, w to the

(&
(A37)

120 120 &P

J= (125/18) erg„pvVz'/L'. (A38b)

The transition from the Ohmic-relaxation regime to
the insulator regime occurs approximately at the
voltage Vq q where the curves (A33b) and (A38b)

Dividing the Gfth power of Eq. (A36) by the cube of
Eq. (A37) we obtain, using (A5), (A17), and (A16):

fez' elrL'J 125 P 125
(A38a)

pe, „VL,' i8 7A gA2 isy
or
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r or C &1).''mes dou e in~ec ion inDi
' t 'nto an e-type semi. conductor. ez& pTABLE II.Domains of va i i y or1'd t f r the several current-voltage regiin (

Regime

Ohm's law

Ohmic relaxation

Insulator

Current-voltage
characteristic

Eq. (A30b)

Eq. (A33b)

Eq. (A38b)

Domain of hole transit-time t~

1—c
4&T—--

1+(C/b)

1-e 500 b

&t,)———~n, .
1+(C/b) 81 1—C

500 b
-- ——

~Q, n~~p
81 1—C

Domain of applied voltage VI.

1+(C/b)
Vl, &V,, „

1+ (C/b) 81
V„„— —&Vc&—(1—C') Vn, „

1—C 500

81—(1—C)Vo, &Vs
500

500/81) (5+1}tg„/r l&, the Ohmic-relaxation regime no longer exists.a T/'S P =L~/pyr' , Vg =L2/Ijnlg . FOr 1 —4'~ {(500/81 g „rrl

intersect, namely where

or

I.' 500
~o„

p„V23 Si i —C

Si
V& s (1—4) Vn, „, with Vu, „——

500

(A39)

~ ~

Usin (A34) and (A39), the conditions characterizing
the various current-voltage regimes

Using an
can be specified as

in Table II. Setting V& 2=V2 3, it .o..owsfollows that for C

such that 1—I&(500(b+1)tn, /81r)& there will be no
Ohmic-relaxation regime.

i eisbrou htThe basic symmetry of the insulator regime is broug t
out by calcu ation o e1

'
f th position x~ where the electric

i.e. where dh de=0 orfield intensity is a maximum, i.e., w

ponentials, dn/dg=0 at ysr given by Zi+, ttsr—
/Z =—', dependent of the mobility ratio to

this lowest order. On the other hand, expan ing t e
exponentials in (A22) and using (A24a) and (A24b),
ter' Zitt'/2+Zstts/6= —Zs(g'/4 —tt'/6). Taking tt= 1

=—Z /12, checking (A36); taking tt=gsr
=-,' the corresponding tosr is —Zs/24=ter/ . us
field maximum is located, to lowest order, exactly at
the center of the solid.

APPENDIX B. THE RELATION Q=CV

3 inte ration of the Poisson equation (10), it follows
that there can be no eel charge betweeneen the cathode and

ith 8=0 at both electrodes. Letting the electricanode wit = a o
curve such asfield distribution be represented by a curve suc

(the particular curve might be appropria e or
insulator regime, eth region between @=0 an x=x~
is one in w ic ereh' h th is everywhere excess negative
charge, of total amount (Q (, and the region between

d x=I correspondingly one of excess positive
charge, of total amount Q+ ——(Q (. The quan i y
the relation Q=CV is defined by

Q=Q =(Q (=. (n —p)d*=.a~, (ai)+ J

I g ML
p M

'
ed from the convexity of the electricFxc. 2. An inequality denve rom

l' ' 'd h b d d

~ ~ ~

e convexit is a su csen,.".at the triangle j.e inset e e.necessary, cond'. tion that t
ine ualit of area yieldsb the 8 curve and the x axis. The znequa i y o.

directly the inequality: V/L& G~ &2V, L.

i0.wl e a'th the last equality following from Eq.
ecs. III and IVIn the approximate arguments of Secs.

we have used the relation Q =CV taking for C the
1 f the capacitance: C= e/L. From 81

it is evident that this is equivalent to using for 8~ e
e field V/L. Since Bsr) V/L, it is important toaverage e

h that the relation Q eV/L, is not s y
't seriousl in

ish to make iserror. The principal observation we wis o

is ever whereSo long as the electric field distribution is everyw ere
convex the relation Q~eV/L is correct to within a factor)

of two.
r is basedT eplooq wn f, hich is geometric in character,

'
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simply on a comparison of areas, and is given in Fig. 2.
It remains to prove that the electric Geld distribution

is indeed convex. For the set of Eqs. (Al), (A2), (A3a),
and (A3b) in their full generality and with the boundary
conditions: 8=0 at @=0 and at @=I., we can only
conjecture at this point that the 8 curve has the
postulated convexity. For the class of cases studied
analytically in Appendix A it can be verified algebrai-
cally that the field is convex, and 8'/(V/I) can be
directly computed and shown to be less than two.
However, for investigation of the more general cases a
combination of geometrical and analytical methods"
will likely prove more fruitful.

We illustrate here the application of this technique
to the case of the perfect insulator, Nr =pr = sit =0.
Substituting for p-e from Eq, (A2) in Eq. (A4),
(d/dx)L8(d8/dx)]= e(b+1—)r/ep„and is therefore
everywhere negative. Assuming a single maximum in
8, say at x~, then the plot of 8 vs x must be convex.
If it were not, say it was as plotted in Fig. 3, then the
plot of d8/dx would have to be as shown. Taking two
positions, say xi, and xs) xi, such that (d8/dx) i
= (d8/dx)s, it follows from Fig. 3 that L8(d8/dx)js)L8(d8/dx) $r, whence d/dxL8(d8/dx) ) must be posi-

Q Xi Xp XM

FIG. 3. Proof, by contradiction (see text), that the electric-Geld
distribution must be convex for double injection into a perfect
insulator.

tive somewhere between x1 and x2, and we have reached
a contradiction. In like manner it is shown that 8 can
have only a single maximum between g=0 and x=L.
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Current-Voltage Characteristics of Forward Biased Long p-i-n Structures
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The current-voltage characteristics have been observed in several germanium p-i-I structures in which the
n side was biased negative and the p side positive so as to cause a double injection of electrons and holes

into the structure. The middlei section was constructed of good quality germanium (approximately 2X10"
donors/cm') and was many minority carrier diffusion lengths long. The observed I Vcharacteristics d-isplay

a low-6eld region in which the current is proportional to the voltage followed by a higher held region in

which the current is proportional to the square of the voltage. In the square-law region, the current is a
function of the difference, rather than the sum, of the thermal densities of the electrons and holes. These
observations lend experimental support to the basic theories of Lampert and Rose regarding volume-

controlled double injection into a semiconductor.

HE preceding paper' outlined a theory regarding
the current-voltage characteristics of long semi-

conductor specimens provided with one contact which

injected electrons and another which injected holes.
This paper mill describe some relatively simple experi-
ments in which the measured current-voltage char-
acteristics of suitable specimens lend support to these
theoretical considerations.

Germanium was selected as the most suitable ma-
terial for study since its technology is so far advanced
compared to the other semiconductors. Since it was
desired to measure the sample characteristics in the

' M. Lampert and A. Rose, preceding paper t Phys. Rev. 121,
26 (1961)g.

presence of double injection in which the density of
injected carriers was large compared to the extrinsic
density, it was necessary to utilize the highest resistivity
material available. A germanium crystal with an ex-
trinsic density of about 2X 10"electrons/cm' and. a low
level bulk. lifetime of approximately 600 @sec was
selected. It shouM be noted, however, owing to the
perturbing inQuence of the surfaces of the specimens
utilized and the high injection levels employed, it is
not certain that this low-level bulk lifetime should be
used in the quantitive comparison of theory and
experiment.

Since the theoretical considerations were concerned
with the case in which the diBusion length could be


