HALF-LIVES OF

agreement with the 7.5-hr value originally reported
by the discoverers of the element.!® Our half-life for
Bi27 agrees well with the lower limit set by Neumann
and Perlman,? but is significantly greater than  the
values reported by Harbottle® and by Sosniak and
Bell.* The reason for this discrepancy is not immedi-
ately apparent. The 8-year half-life obtained by Cheng
et al? is completely out of line, and it is difficult to
believe that it pertains to the same isotope.

15D, Corson, K. MacKenzie, and E. Segre, Phys. Rev. 57, 459
(1940).
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The properties of 06, Ca®, and Zr% have been determined, using the Brueckner-Gammel-Weitzner theory
of finite nuclei. Self-consistent solutions of the Hartree-Fock equations as modified by Brueckner and
Goldman have been obtained. The properties computed include binding energy, mean proton and neutron
radii, separation energies, spin-orbit splittings, nonlocal and state-dependent single-particle potentials,
surface depth of density and potentials, potential-density relation. The predictions of the theory are in

semiquantitative agreement with experiment.

I. INTRODUCTION

N a series of previous papers,! methods have been

developed for the study of many-fermion systems
and applied in detail to the determination of the proper-
ties of nuclear matter. Approximate extensions of these
methods to the study of finite nuclei have also been
proposed? It is the purpose of this paper to review
briefly the formulation and present status of the
methods as applied to nuclear matter, to describe the
theory of finite nuclei, and to give the results of a
numerical study of the properties of finite nuclei.

II. NUCLEAR MATTER

In this section we shall not attempt to review the
basis of the procedures used in the study of nuclear

* Supported in part by a grant from the Atomic Energy
Commission.

1 See K. A. Brueckner and J. L. Gammel, Phys. Rev. 109, 1023
(1958), for a list of references.

2 K. A. Brueckner, J. L. Gammel, and H. Weitzner, Phys. Rev.
110, 431 (1958); R. J. Eden and V. TJ. Emery Proc. Roy. Soc.
(London) A248, 266 (1958); and R. J. Eden, V. J. Emery, and S.
Sampanthar, Proc. Roy. Soc. (London) A253 177 (1959)

matter, but give only a brief summary of the present
status of the methods.

The results of this paper are based on the K-matrix
approximation' for the ground-state energy of nuclear
matter, which is
i3,3)-

P
E=3% —+3 3 (Kij,ii—K (2.1)
i 2m

The K matrix determines the interaction of pairs of
nucleons moving in the nuclear medium, taking account
of the exclusion principle and the binding effects of the
average nuclear field. The determining equation for K is

K=v+1GK, (2.2)
in which the propagator G describes motion in the
nuclear field. Taking matrix elements of Eq. (2.2) with
respect to the eigenstates of the unperturbed medium,
we rewrite Eq. (2.2) as

Kkl,ijz'ukl,ij"*'Zmn vkl,mnGmn(ij)Kmn,ijy (23)
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with the propagator given by

Gmn('L]) = (Ez*"I_EJ*_Em*'—En*)l; pm, Png PF

=0, otherwise. (2.4)

The energies of virtual particle and hole excitations in
Eq. (2.4) are determined by the equations of the form

2

pi
Ef=—-+3 (Kijij— Kij, i)

—_— (2.5)

The energy as determined by these coupled equations
is a function of both the set of basis functions chosen
and the manner in which the states are filled. The
former problem is relatively simple in nuclear matter
since the eigenstates are plane waves and hence need
not be solved by a separate procedure such as will be
required in the finite nucleus. The problem of choosing
the optimum unperturbed state or equivalently the
manner of filling the states is, however, nontrivial. The
original assumption of Brueckner?® and of Goldstone,*
that the best choice was the fully degenerate Fermi
gas, can lead only to the lowest “normal state” of the
nuclear matter. The presence of attractive forces at the
Fermi surface leads to an alteration of level structure
and a slight increase of the mean binding energy.’
These effects may be very important in certain nuclear
properties such as the low-lying collective nuclear
states, but have a negligible effect on the total energy.
Thus in determining average nuclear properties, these
effects can be neglected. This approximation has been
adopted in the results of this paper.

Other sources of error in the K-matrix approximation
of Eq. (2.1) result from higher order corrections in
the linked cluster expansion? for the total energy. The
“ring diagrams,” which are essential in some of the other
applications of many-body theory,® perturb the nu-
clear system only very weakly. Numerical estimates
of the leading cluster corrections show that the mean
energy is shifted by a fraction of an Mev per particle.
Other more important corrections arise from improve-
ments in Eq. (2.5) for the single-particle energies. The
effects of ‘“‘off-energy-shell” propagation' change Eq.
(2.4) when the energies of virtual excitations are
determined. This effect has been introduced into Eq.
(3.3) and Eq. (2.1) only approximately so that a
residual error of a few tenths Mev probably remains in
the ground-state energy per particle. Another correction
to Eq. (2.5) arises from rearrangement effects in the
single-particle energy.” Explicit calculations of these
effects show that the ground-state energy is shifted

3 K. A. Brueckner, Phys. Rev. 100, 36 (1955).

4 Goldstone, Proc. Roy. Soc. (London) A235, 408 (1956).

M 4 ?) Bohr, B. R. Mottelson, and D. Pines, Phys. Rev. 110, 936

958).

8 Murray Gell-Mann and Keith A. Brueckner, Phys. Rev. 106,
364 (1957); K. Sawada, Phys. Rev. 106, 372 (1957); K. A.
Brueckner and K. Sawada, Phys. Rev. 106, 1117 (1957).

7K. A. Brueckner, Phys. Rev. 110, 597 (1958); N. M. Hugen-
holtz and L. van Hove, Physica 24, 363 (1958).

BRUECKNER, LOCKETT, AND ROTENBERG

by the order of an Mev.? The rearrangement corrections
to the single-particle energies are much larger and
cannot be neglected. It has been shown by Brueckner
and Goldman,? however, that these corrections can be
included in the treatment of finite nuclei so that the
first-order error is eliminated.

To summarize: The K-matrix approximation of Eq.
(2.1) for the total energy gives a result for the mean
energy per particle with an error of about one Mev.
If the same order of approximation could be maintained
in finite nuclei, a similar error might be expected. We
shall see, however, that certain additional approxi-
mations introduce further errors into the actual
calculations for finite nuclei.

III. METHOD FOR FINITE NUCLEI

The detailed discussion of the theory of finite nuclei
has been previously given.? We only summarize the
theory here. We consider Eq. (2.2) for the K matrix.
The form of Eq. (2.2) does not depend on the represen-
tation except through the implicit dependence of the
propagator G on the energies of the single-particle
states. To obtain a self-consistent solution in the sense
of the nuclear matter calculations, in which the coupled
equations [Eq. (2.3), Eq. (2.4), Eq. (2.5)] were solved
by iteration, it is therefore necessary to redetermine the
single-particle energies appropriate to the eigenstates
of the finite system. These in turn can be determined
only by a method similar to the self-consistent Hartree-
Fock procedure. Consequently, a double self-consistency
problem arises. To avoid this extremely difficult and
probably at present insoluble problem, the approxi-
mation described previously has been adopted in this
paper. This is based on the relative insensitivity of the
propagator G of Eq. (2.4) to the representation. The
energy differences entering into Eq. (2.4) are typically
of the order of 50 to 100 Mev and not appreciably
different in the finite system or nuclear matter. Thus
the K-matrix dependence on G can be expressed only
through the dependence of K on the local density of
the finite nucleus, the self-consistent propagator G as
determined in nuclear matter at the local density being
used to evaluate K. This approximation would introduce
a vanishing error if the correlation range in the K
matrix were small compared to the distance over which
the density changes appreciably. The correlation range
is somewhat less than 10~ cm, while the nuclear
density drops at the nuclear surface from 909, to 109,
of the central value in about 2.4X107 cm. Thus the
correlation range is considerably less than the nuclear
surface depth, and our basic approximation cannot be
qualitatively in error, at least in determining mean
properties. The error is probably more important in the

8 K. A. Brueckner, J. L. Gammel, and J. T. Kubis, Phys. Rev.
118, 1438 (1960).
( 9 K.) A. Brueckner and D. T. Goldman, Phys. Rev. 117, 207
1960).
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surface properties and surface energy ; we shall return to
this point in the discussion of our results.

Without giving more details of the K-matrix evalua-
tion for the finite nucleus problem (we refer to the
original papers for further discussion), we assume that
the coordinate space operator

(7’17’2IK(P) Iﬁ"’z');

is given. This has been derived, starting from the
Gammel-Thaler two-body potentials with parameters
given in Table I. The numerical values of K are tabu-
lated in reference 2. Our problem is to determine a
set of single-particle energy functions so that Eq. (2.1)
gives the lowest energy for the finite nucleus. We start
from a set ¢;(r;) and the product function for the N
nucleons of the nucleus,

V(1 N)=Aei(r): - en(rn).
The operator 4 is the usual antisymmetrizing operator,
A=3, (=1)7, 3.3)

with the sum carried out over all pair permutations of
the identical nucleons. The appropriate modification
of Eq. (2.1) then is

N pi2
E=f‘1,*(17’ * 'yN) Z —"“I/(l, . ',N)dl']' . 'dl’N
=1 2m

(3.1)

(3.2)

! v(1 N K Iy
+5f - M) T sl K@) rin))

X1, -+ N')dry- - -deydry - - -dry’.  (3.4)

This is the basic equation which we use to determine
the optimum form of the single-particle energy functions
@:. To do this, we ask that E be stationary with respect

to variations of the form of ¢*(7), i.e.,
SE/50*(r)=0 (for all 7). (3.5)

To carry out this variation, we first simplify Eq. (3.4)
to the form

i-x [ w*(f)j—mw(f)dr-l-%izj o) ot (r2)

X (rira| K (o) |11'r"Y (1= PoP.) os(ry) i(rs)

X dr 1ldrzldr1d1'2, (36)

with P, and P, the spin and isotopic spin exchange
operators. The variation with respect to ¢.*(r) then
gives the result

2

Eisoi(’):zzn;%(")

+ f Var(er) oi(r )+ V@ o), (.7)
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TaBLE I. Parameters of the Gammel-Thaler potentials. The
potentials all have the Yukawa form outside of a repulsive core
of radius 0.4X107% cm.

Strength Inverse range
State (Mev) (1018 cm™1)
Triplet central even —8717.39 2.0908
Tensor even —159.40 1.0494
Spin-orbit even — 5000 3.70
Singlet even —434.0 1.45
Triplet central odd —14.0 1.00
Tensor odd 22.0 0.80
Spin-orbit odd —17315 3.70
Singlet odd 130.0 1.00

with the two interaction terms Vur and Vg the Hartree-
Fock and rearrangement potentials. The former is
given by the expression

Var(ry) =% f drydry’ o *(r1) (rr1| K (o) |#'r)")
X (I“PvPr)‘Pj(rll) (3~8)

which is a generalization of the usual Hartree-Fock
potential.

The rearrangement potential Vg results from the
dependence of the K matrix on the density. The density
is related to the single-particle functions:

p(R)=2": ¢*(R) ¢i(R),

3p(R)/d¢:*(r)= i(r)3(x—R).

The density as it appears in the K matrix is evaluated
at the center-of-gravity point, so that R in Eq. (3.10) is

R=2%(t;+r,). (3.11)

We further have used the approximation that the range
of interaction in the density-dependent part of the K
matrix is sufficiently short so that we can set r;=r, in
Eq. (3.11). In this approximation the variation of E
with respect to ¢;(r) gives the rearrangement term,

(3.9)
so that
(3.10)

3
V()= f dradn it (1))~ K ) |ri)
P

X(A=P,P;)pi(r) oi(rs). (3.12)
The evaluation of Eq. (3.12) has been given by
Brueckner and Goldman,® who show that a good
approximation to Vg(r) is

Ve(r)=240[p(") 2 Mev(10-5 cm)s.  (3.13)

We shall describe the effect of this term in discussing
our results.

The single-particle functions are finally determined
from Eq. (3.7) and Eq. (3.8). The method of solving
these coupled equations is described in the following
sections.
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IV. SOLUTION OF THE MODIFIED
HARTREE-FOCK EQUATIONS

~ The details of the angular momentum reduction of
Eq. (3.7) have been given by Brueckner, Gammel, and
Weitzner? (we refer to this paper as BGW). We sum-
marize the relevant formulas and refer to this paper for
further discussion.

To determine the Hartree-Fock term in the potential
of Eq. (3.7), an expression of the form [see Eq. (77)
of BGW]

(1. Vr!)
=Z fdrgdrz' @i*(r) (11| K| 11d) 0 (rd), (4.1)

must be evaluated. To do so, we first separate the
angular dependence of the wave function; writing

Ry (7’2)

72

¢i(ty)= F rism(rs), (4.2)

where F ;" (15) is an eigenfunction of the total angular
momentum. The sum over azimuthal quantum numbers
then gives for a filled shell

2 F i (02)*F gy™(xy) = (

241\
) Ylo(l'g,l'gl). (4.3)
4

The remaining sum over 7, I, J is used to introduce new
functions, i.e.,

2+1y1
H(ror))= 3 ("—“) Vi (ra,r2)
nJl 4
Runi(r2) Ruyi(ry)
X —_—

[0 7’2'

, (44)
so that Eq. (4.1) becomes

(l‘ll V' 1‘1,) = fdl‘gdl‘z’ (l‘u l K l 1'12,)H(l'2,1‘2,). (45)

To evaluate Eq. (4.5), we first make use of the delta
function in the K-matrix representing conservation of
the center of mass, so that the integration over r,’

can be carried out and the replacement
r2’=r1—|—r2——r1', (46)

made. We then change variable from r; to r;» and define

x=r/—r,. 4.7
Equation (4.5) then becomes
(] V%) = f dras(e1s] K [122--25)
XH(I'1_I'12, rl-—rlg-x). (48)

To evaluate Eq. (4.8), the space and time limitation
set by the computing capacity of the IBM 704 require
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certain simplification. This was done by retaining only
the first two terms in the dependence of (r;|V|r;+x)
on the angle between r; and x, i.e., by assuming that the
dependence can be represented approximately as

XTI
(11| V]ertx) = Vo(ri,x)+ Vilr,0)—.

Xr1

(4.9)

This approximation is based on the short range of the
nonlocality in the nonlocal potential (r;|V|ry’). The
term V) represents the spherically symmetric part and
V' the part resulting from the variation of the nuclear
density over the nonlocal range.

To determine V, and V1 in Eq. (4.9), it is sufficient
to evaluate (r;| V|r;+x) for x parallel and antiparallel
to r;. Calling these two values

Vi(ryw)= (| V]rtary),

V_(ri,x)= (11| V| r1—aty), (4.10)

we find
Vo(?’l,x) = %[V—}- (rl7x) + V- (7’1,.’)0) ]7
Vl (7’1,3’3) = %[V—}- (rlix) - V—- (7’1,36):’.

For this restricted choice of the relative direction of x
and r;, we can also replace r; in Eq. (4.8) by sxr1/x
with the sign determined by the choice of parallel or
antiparallel orientation.

We now return to Eq. (4.8). We choose x as the
polar axis and can immediately carry out the integration
over the azimuthal angle of r;, since for our choice of
the direction of x, the integral is independent of the
azimuthal angle. We then introduce a new variable by
the transformation

l l‘12+2X[ =71},

(4.11)

(4.12)
or
2427105 —4a?
cosf=—————,
4001’12

(4.13)

with 6 the angle between r;; and x. We also introduce
the angular momentum decomposition of the K matrix,
which is

(l’m!Kl I'12+2X) 22 (2l+ 1) (712‘K1| 712+5)

4x?—s?
XPz(l—*-—), (4.14)
2712(712+S)

where we have used Eq. (4.12) and Eq. (4.13). Equation
(4.8) then becomes

(r:] V]r1+x)

T 0 2z
=—f f’wd”mf (rigFs)ds(21+1)
XYYy |r12 —22| —r12

4y2—s?

X (712] Kt[?’m‘f‘é‘)Pz(l—m). (4.15)
12(712
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The variables 13, 15/, and the angle between these are,
in terms of x and s,

[12] = [r2+712*F 2r1r15 cosd |2,
|1y’ | = [ (xFr2)2+r12+2r12 cosd (xFr;) T
T r2'= 71 (rEFx) +7’122+7’12 cos (x:FZn),

with cos? given by Eq. (4.13).

In evaluating Eq. (4.15), we encountered consider-
able difficulty with the D-state contributions. The rapid
variation of P, with s was difficult to represent ac-
curately with the finest spacing of mesh points used in
the calculation. We therefore replaced the /=2 part
of the K matrix by a local approximation, i.e.,

(r12] Ka| r12+5) — F(r12)8(s).

This is a very good approximation since for the range
of K, for which the D state contributes appreciably, the
K matrix is nearly local.

To complete the angular momentum reduction of the
Hartree-Fock equation, the spherical harmonic ex-
pansion of (r:|V|r/) is required [see Eq. (92) of
BGW]. This is

(| V) =21 QIAD)Vi(r,r)Pi(P1-7),  (4.16)

or
1 1
Vi) =~ f WP | Ve,  (417)
-1

with

}szl'fll. (4.18)
Since (r;| V|ry’) is given in Eq. (4.15) as a function of
r1 and x, it is convenient to make the transformation

rir?2—a?

p= (4.19)

2r 17 1I
In these variables, we also have the relation

I1"X=TI7- (rl'——rl)

=1(r2—r2—2a?).

(4.20)
Equation (4.17) then becomes, using Eq. (4.9),

1 ritr1’ xdx r12+r1’2—x2
oL (P
|

r—r’] 7171 2ryry

71'2__7. 2_x2

—]. (4.21)

X [VO (rl,x) + V1 (r;,x)

71X

To summarize the procedure used in determining the
nonlocal potential Vur, the following steps are required :
(a) Starting from an initial set of eigenfunctions,
determine H (ry,ry) from Eq. (4.4); (b) for each value
of r; and x=-rx/r1, evaluate the s and 7, integrals
in Eq. (4.15); (c) evaluate the x integral in Eq. (4.21)
to determine the matrix elements V,(ry7,'). To this
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nonlocal potential must be added the local rearrange-
ment potential Vg and the Coulomb potential. These
are functions of the density and do not present any
problem.

The second problem encountered in the numerical
calculations is the solution of the eigenvalue equation
[Eq. (3.7)] for the eigenvalues and eigenfunctions.
This is complicated by the nonlocal potential which
changes the usual Schrodinger equation into an integro-
differential equation. A simple iterative method for
solving such an equation is described by BGW. We
again only give the required formulas.

The equation for the radial function Ry of Eq. (4.2)
is of the form '

R(r)

(E;—Hy) =41rfr’dr’ V(g )R(). (4.22)

4

The BGW procedure is to evaluate the right-hand side
of Eq. (4.22) using a solution resulting from a previous
iterate or from an initial guessed input. The result is to
replace Eq. (4.22) for the (n+41)st iterate by the
differential equation

R (r)

(Ei—Hy)

R™i(r)  G™(r) dR™
=P(r) 0, &0 © (4.23)

r 7 dr

The functions F»(r) and G"(r) are. defined by the
equations

) ,V(r,r’)
F (r)—41rrfr dr )
dR"(v') dR"(r)
x|romor=TE T
Vo (4.24)
G™(r)=4ma* f r'dy’ > rgr)
dR" dR*(y'
X[R"(r') (r R () d( )]
ith
" dR*(r)
D"(r)=[R"(r)]2+a2[ - ] . (4.25)

The constant ¢ was chosen in the numerical calculations
to be 10~ c¢m, which is the order of the range of the
nonlocality of V (r,7).

The form chosen for Eq. (4.23) and Eq. (4.24) is
based on the two important features that the form is
exact if the (n-+1)st iterate is equal to the nth or if the
range of the nonlocality in V(r,7’) is reduced to zero. A
more detailed discussion of the derivation of Eq. (4.23)
is given bv BGW.
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V. COMPUTATIONAL DETAILS

The program which performed the calculation on
the IBM 704 consisted of two parts called HI and HII.
HI takes a given set of radial wave functions R.;;(7)
together with the K-matrix tables given in BGW for the
attractive part [as well as the core contribution which
itself depends on the local density and therefore on the
R.1i(r)] and carries out the integrations described
previously to produce the Vi;(ry,ri"). HII takes the
potentials V(r1,7)") and the wave functions R,
generates the local equivalent-potentials F.,;;(r1),
Gnij(r1) [the Coulomb and rearrangement potentials
being added into F.;;(r1)] and solves the BGW equa-
tion, [Eq. (4.23)] for a new set of wave functions
Un1;(71).

The solutions of the modified Schrédinger equation
[Eq. (4.23)] were obtained as follows. For a given trial
energy, a Runga-Kutta scheme was used to integrate
the wave function outward from the origin and inward
from an external point (. far outside the nucleus
(10-12 fermis). The logarithmic derivatives were then
compared at a point (7) which was outside the range
of the nuclear forces (6-8 fermis). The initial conditions
at 7, for the outer wave function were a small arbitrary
value R,;;(r.) and a logarithmic derivative equal to
that which the appropriate Hankel function solution of
the Schrédinger equation without Coulomb interaction
would have. (Actually this refinement was not really
necessary; a vanishing logarithmic derivative suffices.)
The integration inward of the outer wave function was
then carried out with the Coulomb interaction included.
The comparison point 7 was sufficiently far out so that
the logarithmic derivative of the inner wave function
was a very steep function of the trial energy in contrast
to the logarithmic derivative of the outer wave function
which is a slowly varying function of the trial energy.
It is therefore necessary to have the trial energy search
pattern converge quite accurately to the energy which
matches the inner and outer logarithmic derivatives.
After the energy eigenvalue has been found, the outer
wave function is then renormalized to join smoothly
to the inner wave function and then the entire wave
function is normalized.

Since the initial wave functions were not those
appropriate to the potentials V;; this process, which
we call minor iteration, is repeated several times using
the same V;; until the F,ij, Guij, Rar; have converged
to their proper values. In preliminary calculations in
which the rearrangement energy was not included, the
minor iterations converged quite well without any
additional help. The rapid density dependence of the
rearrangement energy caused the convergence to
become much slower and sometimes to fail entirely.
Therefore, the input and output wave functions in each
minor iteration cycle were averaged and rapid con-
vergence was obtained once again. The effect of the
rearrangement energy on the convergence of the major
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cycles was not marked and no averaging was done
between wave functions of consecutive major iterations.

After convergence of the minor iteration cycle, the
R.;; are then fed back into KT to produce a new set of
nonlocal potentials V;;. (This is called major iteration.)
The whole procedure is started by introducing an
essentially arbitrary local equivalent-potential F;;(r:)
= Vinit(r1) (with Gn;;=0 usually) into HIT and gener-
ating an initial set of wave functions R,;;. The only
requirement on Vi (71) is that it accommodate the
appropriate number of wave functions as bound states.
The number of major iterations necessary to obtain
convergence naturally depends on how close the initial
set of wave functions is to a self-consistent set. It was
found that even if this initial set was rather far away
(say corresponding to a nuclear radius 1% times as
large) not more than about 8 major iterations were
necessary for self-consistency. On the other hand, if
one had a self-consistent solution for one set of param-
eters and wished to vary one or more of these slightly
(for instance vary the strength or slope of the core
contribution to the K matrix), only two or three
iterations were necessary.

The machine time required for these operations was
as follows for the case of Zr® the largest nucleus
studied. Each minor cycle took approximately 10
minutes, of which most of the time was used not in
solving for the 21 wave functions but rather in a large
amount of data shuffling on magnetic tapes due to lack
of space in the fast memory of the machine (32 000
words in the 704). Most of the time was spent in the
calculation of the V;;(HI), the amount depending on
the fineness of the meshes used in the integrations.
Original hopes of being able to study many nuclei had
to be abandoned when it was found that the meshes
had to be considerably finer than those used in some
of the earlier calculations. With the mesh finally
settled upon, the time required for a single major
iteration in the case of Zr® became 41 hours.

TaBiE II. Variation of calculated quantities in O with
iteration of major and minor Hartree-Fock cycles.

Neutron Proton
energy energy Binding Rms
Major Minor in 1sy in 1p3  energy per radius
iteration iteration  state state particle  (fermis)
I 1 —38.18 —6.69 —2.18 2.51
2 —37.74 —6.75 —2.24 2.52
3 —37.72 —6.80 —2.24 2.52
4 —37.74 —6.82 —2.24 2.52
1I 1 —37.03 —6.30 —2.08 2.55
2 —37.19 —06.41 —2.07 2.55
3 —37.22 —6.44 —2.07 2.55
111 1 —36.87 —6.36 —2.03 2.56
2 —36.96 —6.40 —2.02 2.56
3 —36.97 —6.41 —2.02 2.56
4 —36.97 —6.42 —2.02 2.56
5 —36.97 —6.42 —2.02 2.56
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As an indication of the rate of convergence of the
minor and major iteration cycles, we give in Table II
for O the variation of two of the energy eigenvalues,
of the total energy, and of the rms radius through
several minor and major cycles. The convergence is
clearly very rapid.

A large amount of experimentation was necessary in
order to find a mesh which was both accurate and kept
the time within reason. The necessity for a fine mesh is
due to the detailed structure of the K matrix and the
rapid dependence on the angle between 712 and 72’
in the relative D-state contribution. The final choice
of mesh was set by the structure of the K-matrix tables
and by the requirement that the results be unaffected by
the coarseness of the mesh. The values taken were as
follows (in fermis):

s mesh 17 points —0.60(0.05)0.20

remesh 13 points  0.4(0.1)1.0(0.3)1.6(0.5)3.6
x mesh 43 points 0.0(0.5)2.1

7’ mesh 161 points —2.0{0.025)2.0

r; mesh up to 40 depending on nucleus, interval (0.2).

VI. RESULTS

Before discussing the results, we shall describe some
of the difficulties encountered in the calculations. The
first problem was that we found it impossible to obtain
values for the total energy which agreed with observed
values. To see if this was due to a possible error in the
K matrix obtained by BGW by transformation of the
operator determined in the study of nuclear matter,
the BGW procedure was inverted and the energy of
nuclear matter redetermined. This involved evaluating
the single-particle potential energy using Eq. (3.8)
with plane waves for the single-particle eigenstates,
and then taking appropriate matrix elements of
(r| V|#"). The results for the potential energy agreed
within a few percent with those obtained by Brueckner
and Gammel! and also gave the correct binding energy
for nuclear matter at a density corresponding to
70=1.02X107* cm. Additional checks also verified both
the strength of the repulsive core contribution and its
density variation. Consequently, the incorrect values
obtained for the energy of the finite nucleus could not
be attributed to an incorrect K matrix. It is instead
probable that the basic approximation made by BGW,
that the correlation structure of the wave function is
unaffected by density gradients (see Sec. III), is
quantitatively in error. This affects most strongly the
repulsive core contribution, apparently overestimating
the many-body enhancement of the core energy. We
have, therefore, slightly adjusted the parameter
determining the core contribution, a decrease in
strength of 10 to 209, being necessary to increase the
binding energies to more reasonable values. (The actual
changes made will be given below in discussing the
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numerical results.) We shall not attempt to give here
any further justification for this change.

We also found it essential to include the rearrange-
ment potential Vg of Eq. (3.12) in the single-particle
potential. The effect appears first through a considerable
shift in the single-particle energy, the inclusion of Vg
being necessary to bring the energy eigenvalue of the
last particle into approximate agreement with the
separation energy. Another effect, which was not
expected before the calculations were carried out, was
that the nuclear density became much too high when
the rearrangement potential was omitted. It was found
that in the absence of this term, the nuclear density
failed to stabilize near the density for which the
energy of nuclear matter was a minimum, correspond-
ing to 7,=1.02X107% cm.

This can be easily understood since the single-
particle potential energy, if the rearrangement potential
is absent, is too large and the wave functions are pulled
toward the origin. This effect, which occurs only in the
finite nucleus where the form of the wave functions
must be determined, offsets the tendency of the system
to adjust itself to minimize the energy. Another way of
stating this result is that the Hartree-Fock self-
consistency requirement in the wave functions and
potentials is not necessarily the same as the requirement
of minimum total energy in the sense of the nuclear
matter calculation. Consequently, the rearrangement
potential has a large effect on the results although the
effect is only through the change of the wave functions,
the energy still being given by the K-matrix expression
of Eq. (2.1). '

A. Energy Eigenvalues and Binding Energy

We first give the results for the energies of O'¢, Ca¥,
and Zr* in Table ITI. The modification of the repulsive
core contribution is indicated for each case. We also
include the expectation value of the potential energy,
including the rearrangement energy and Coulomb
energy for each case. These tables show that even with
the adjusted core strength the magnitudes of binding
energies and separation energies are too small.® It is
interesting to note, however, that the calculated
differences between separation energies show better
agreement with experiment. This is shown in Table IV.
This agreement shows that the Coulomb and symmetry
energies have reasonable values.

The spin-orbit splitting we find is due almost entirely
to the odd-state spin-orbit force in the Gammel-Thaler
potential. As was shown by BGW, this gives a single-
particle spin-orbit potential which is not of Thomas
form, although the potential does reduce to this form
if the range of the two-body L-S potential is assumed
to be very small. Figure 3 shows that the actual L-S
potentials do not appear to be limited to regions of
density gradient so that a Thomas form is incorrect.

10 A, H. Wapstra, Physica 21, 367 and 385 (1955).
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TasLE III. Calculated and experimental energies for O, Ca®, and Zr%. The core strength has been reduced to 0.825 of the
normal value for O, and to 0.90 of the normal value for Ca® and Zr%. The energies are in Mev.

Experimental Total energy
Potential energy Eigenvalue separation energy per particle
Element State Neutron Proton Neutron Proton Neutron Proton Calc. Expt.
O1e 1s1/2 —58.0 —53.0 —44.3 —39.6
1pss2 —40.1 —35.2 —19.0 —14.6 —4.41 —7.98
1p1s2 —34.4 —29.7 —14.9 —10.7 —15.60 —12.11
Cat 1s1/2 —82.4 —72.1 —70.1 —60.0
1ps2 —65.2 —55.1 —44.7 —35.1
1p12 —59.2 —49.3 —38.6 —29.2 —6.12 —8.55
1ds/2 —48.3 —38.2 —20.6 —11.6
25172 —40.5 —30.0 —16.0 -7.3
1d3/2 —39.6 —29.6 —13.4 —49 —15.98 —8.34
Zr% 1s1/2 —87.7 —720 —179.5 —64.0
1p32 —77.8 —62.3 —62.8 —47.7
1p12 —75.5 —60.2 —59.8 —449
1dsss —66.6 —51.4 —44.5 —29.9
2s1/2 —62.2 —46.5 —38.6 —23.8 —5.80 —8.67
1d32 —63.7 —48.6 —40.2 —25.7
1fu2 —55.4 —40.2 —26.2 —12.0
1fs2 —51.2 —36.0 —20.5 —6.6
2pus —47.5 —31.0 -17.0 —-3.2 —8.80
1go2 —44.1 -85 —12.37

The calculated Z-S splittings are given in Table V.
It is not easy to compare these directly with experiment
although the order of magnitude is certainly correct. A
more direct comparison with experiment can be made
by using the separation energy in Zr*. In this case the
difference of 5.3 Mev between the last neutron in a
1gy/2 state and the last proton in a 2py/, state is largely

(=3

POTENTIAL ENERGY (MEV)

KINETIC ENERGY (MEV)

F16. 1. Potential energy as a function of kinetic energy for the
neutrons in Zr®, The straight line corresponds to an effective
mass of 0.39.

a result of the shift of these levels due to the spin-orbit
force. In the absence of this force, the 2py/s level would
drop about 1.0 Mev and the 1gy/, level would rise about
4.1 Mev, so that the separation energies would now be
nearly the same, in disagreement with the observed
difference of 3.57 Mev.

We have investigated in some detail the effects on
the energy and mean radius of changes in the core
repulsion. We changed not only the core strength but
also the rate of variation of the core energy with
density. The core contribution has a density dependence?

1—0b/7
K oore=constant X (6.1)
1— b, 7o
with
smrd=p7, (6.2)

where p is the density, and #, the mean spacing in

Tasie IV. Difference in separation energy for
neutrons and protons. The energies are in Mev.

Calculated Experimental
018 4.2 3.49
Cat0 8.5 7.64
Zr% 5.3 3.57

TasiE V. Spin-orbit splitting in Mev.

(O Ca® . Zx%
Neutron Proton Neutron Proton Neutron Proton
1pua—1pan 4.1 3.9 6.1 5.9 3.0 2.8
1d3i2—1ds/2 7.2 6.7 4.3 4.2
1fsia—1f12 5.7 5.4
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nuclear matter, i.e., 7o=1.07X10"% cm. The density
variation of Keore can therefore be changed by varying
the parameter b in Eq. (6.1). We give in Table VI the
mean binding energy and also the rms radius for several
cases. These results show that the answer is only
slightly changed by variations in the core density
dependence, but that the mean energy and rms radius
change quite appreciably with change in the core
strength. The increase in binding energy as the core
is weakened is accompanied by a decrease in rms radius,
the greater attraction associated with larger binding
energy pulling in the wave functions. This tendency
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F16. 2. Nonlocal potential for the /=0 state. (a) Ca®, r=1.0
fermi; (b) Ca®, »=2.0 f; (c) Ca®, r=3.0 f; (d) Ca%, r=4.0f; (e)
Zr0, r=1.01; (f) Zr%, r=2.01; (g) Zr*, r=3.0f; (h) Zr*%, r=4.01;
(i) Zr%, r=>5.0 f. The function plotted is 4w—+7" Vo (r,’).

TasLeE VI. Effects on mean energy and rms radius of changes
in core strength, core density variation, and rearrangement
energy.

Core
strength? b» Eav Rims
(02 1.00 1.00 —2.02 2.56
0.825 1.00 —4.41 240 f
Ca% 1.00 1.00 —3.89 3.01
0.90 1.00 —6.12 2.88
1.00 1.30 —4.13 3.04

& Measured in units of normal values.
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with j=I—3in Zr%; (1) G for the protons with j=I43 in Zr®; (m) G for the neutrons with j=I—1% in Zr%; (n) G for the neutrons with

j=I4% in Zr%. The plotted functions are rF(r) and rG(r).

can be offset by an increase in the rearrangement energy
which is repulsive and acts to prevent increase of the
density. We have not, however, explored this possibility
further.

Another interesting feature of the single-particle
energies is the variation of the expectation value of the
potential energy as the state is changed. In Fig. 1, we
plot the potential energy including the rearrangement
energy and eigenvalues against the kinetic energy for the
neutrons in Zr®. The straight line which gives an
approximate fit to the computed values corresponds to
an effective mass of m*/m=0.39 which is much less

than the value of about 0.65 found in nuclear matter.?
This difference is an effect of the finite nucleus and of
the greater extension of the wave functions of the more
weakly bound nucleons.

Before we end our discussion of the energy, we wish
to re-emphasize the quite indirect connection between
the energy eigenvalues and the total energy. Not only
half of the potential energy but also the rearrangement
energy must be subtracted in going from the eigenvalues
to the total energy. This is apparent from a comparison
of Eq. (3.4) for the total energy with Eq. (3.7) for the
single-particle eigenvalue.



266

B. Single-Particle Potentials and
Wave Functions

We now turn to a discussion of the structure of the
nonlocal potential in which a particle moves. We choose
the same K-matrix parameters as in Table III. The
nonlocal potential is most easily given in terms of the
angular momentum decomposition of Eq. (4.16).
Except for the effect of the spin-orbit force, the succes-
sive terms V;(r,7) depend only weakly on ! since the
distance over which the spherical harmonics vary
rapidly as in general large compared to the range of the
nonlocality in V (r,r'). If for example, V (r,t') is a local
potential, then V(r,7") is independent of I. Thus we
content ourselves with giving on the case /=0.

To express the form of the nonlocal potential most
simply, we give Vo(r,7’) in Fig. 2 for Ca® and Zr* for
several values of 7. The values of 7 are chosen to give
representative points in the density variation, including
central and surface points for which the potential has
quite different structure.

The nonlocality in V,(r#") is due to two quite
different effects. First, even for a local two-body
potential, the effects of exchange can be most easily
represented in the Hartree-Fock equations as a non-
locality. This is evident from Eq. (3.8) since even for a
local interaction, the single-particle potential is non-
local. This effect has a range of the order of the full
range of the two-body interaction. Added to this effect
is that due to the nonlocality in the K matrix. This is
due to the great strength of the two-body interaction
which strongly polarizes the wave function at small
distances, this appearing in the K matrix as a non-
locality. The range of this effect is less than 107 cm
and in this region contributes more strongly to the
nonlocality of V;(r") than the exchange effect.

The nonlocal character of the single-particle po-
tential also can be exhibited in a way analogous to the
“effective mass” concept of nuclear matter,? where it is
known that the nonlocality manifests itself through the
velocity dependence of the single-particle potential
energy. In the finite nucleus, this is most easily exhibited
by making a local replacement of the nonlocal single-
particle potential. We first give in Fig. 3(a) through
(m) the functions F and G which appear in Eq. (4.23).
The equivalent potential F plays the same role in the
Schrédinger equation as the usual shell-model potential
with which it is most directly compared. It is apparent
from these figures that both F and G change consider-
ably as either J or » the principal quantum number, is
changed.

TasLE VII. Root-mean-square radii in fermis.

Nucleus Neutron Proton Total Experiment
0O 2.38 241 2.40 2.57
Ca® 2.84 291 2.88 3.49
Zr% 3.64 3.56 3.60 4.24

BRUECKNER, LOCKETT, AND ROTENBERG

The radial functions determined by solution of the
eigenvalue problem are given in Fig. 4. These differ
from conventional wave functions largely as a result
of the state dependence of the potential. The inner-shell
wave functions are pulled in more strongly than for a
conventional shell model and also fall off more rapidly
near the nuclear surface since the eigenvalues are much
lower than for a static potential.

C. Density

In Table VII we give the rms radii for neutrons,
protons, and for the total density, together with the
values deduced from experiment.! The computed values
are too small by 69, in O and 209, in Ca%® and Zr®.
It was found to be very difficult to eliminate this error
by any simple changes in the K matrix, considerable
variations in core structure and in rearrangement
energy having only slight effect on the mean radius.
This difficulty is particularly marked when it is realized
that our binding energies were also too small, and that
attempts to increase the binding led to further decrease
in radius. It is likely that this problem can be partially
attributed to the short range of the Gammel-Thaler
two-body potentials and possibly to our treatment of
the correlation structure in the surface.

We give the densities as a function of the radius in
Figs. 5(a), (b), (c). These results together with the
rms radii show that there is very little separation
between the neutron and proton densities, the rms
proton radius exceeding the rms neutron radius by
0.03 fermi in O' and 0.07 fermi in Ca® due to the
Coulomb repulsion. In Zr® the reverse is true, the
neutron radius being the larger by 0.08 fermi. These
differences are very small, the neutron and proton
densities being kept together by the effects of the
symmetry energy. This result agrees with experimental
measurements of the neutron and proton distribution.'?

From Fig. 5 we can determine the surface depth, i.e.,
the distance over which the density falls off from 909,
to 109 of the central value. This is 1.7 fermis in O,
2.8 fermis in Ca®, and 2.2 fermis in Zr®, These are to be
compared with the value of (2.44-0.2) fermis deduced
from experiment.!

One other comparison of interest is between the
density and the potential. We give this in Fig. 6 for
Ca® and Zr*, taking the total density and the equivalent
potential F(r) defined by Eq. (4.24) for the highest
neutron state, 1dse for Ca® and 1gy/, for Zr®. In both
cases the potential radius is about 0.75 fermi greater
than the density radius. This difference is largely due
to two effects previously discussed,® which are: (a)

11 D, G. Ravenhall, Revs. Modern Phys. 30, 414 (1958).

12 A, Abashian, R. Cool, and J. W. Cronin, Phys. Rev. 104, 855
(1956). .

13K, A. Brueckner, Revs. Modern Phys. 30, 561 (1958).
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finite range of interaction; (b) nonlinear variation of
potential energy with density. The computed separation
between density and potential is about equal to that
observed experimentally.

14§, Fernbach, Revs. Modern Phys. 30,7414 (1958).
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Fi1c. 4. The radial wave functions (a) for the neutrons and
protons in O%; (b) for the protons in Ca%; (c) for the neutrons in
Caf0; (d) for the protons with j=I—}% in Zr®; (e) for the protons
with j=I4+% in Zr%; (f) for the neutrons with j=I—3% in Zr%; (g)
for the neutrons with j=I14-% in Zr%,

VII. DISCUSSION
The results of this paper show that the BGW theory
of finite nuclei, based on the K-matrix theory of
nuclear matter, does not give fully quantitative results
for the properties of the nuclei studied, O'¢, Ca®, Zr*,



268

28 T T T T T T T T T

DENSITY (0% oM™)

DENSITY (1% ou™%)

107cH
(b)

Since this theory already has given accurate results for
nuclear matter, it is clear that the finite systems prevent
problems not fully taken into account by the BGW
theory. We have already suggested that the difficulty
may lie in the approximation which treats the nuclear
correlation as independent of the density gradient.
The rearrangement energy also has a fundamental role
in the finite nucleus in contrast to nuclear matter, and
our treatment of the rearrangement effects may not be
sufficiently quantitative.

The difficulties of our calculations lie mainly in our
inability to obtain sufficient binding energy and large
enough radii. It should be emphasized, however, that
the error we find in binding energy is the result of about
an 89, error in potential energy so that the discrepancy
is in this sense small. The problem with the radii is,
however, more interesting in that attempts to decrease
the radius tend to lead further decreases in binding
energy. The only obvious solutions to this problem lie
in the direction of increase in the range of the two-body
interaction or of increase in the repulsive effects of the
rearrangement energy. The former change seems
inacceptable since the range of the interaction is
determined by two-body scattering data; the latter
change may be correct but was not justified by the
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DENSITY (10% ¢ %)

F16. 5. Proton, neutron, and total densities, (a) in
01%; (b) in Ca?®; (c) in Zr%,

results obtained from the K-matrix studies of nuclear
matter. We therefore must regard this question as
unresolved by our studies.

Our results, aside from the quantitative questions of
binding energy and radius, do give insight into many
other nuclear properties. The level sequence we find,
which is largely fixed by the spin-orbit interaction, is
in good agreement with experiment. This is also true
of the relationships among our calculated separation
energies for neutrons and protons and the mean
binding energy. This agreement also shows that our
nuclei are properly beta-stable so that we correctly
follow the line of nuclear stability.

The general features of the single-particle potential
which we have determined are also new and of interest.
The marked nonlocality of the potential manifests itself
clearly in the strong state dependence of the equivalent
potential. The nonlocality also is evident in the wave
functions which have appreciable curvature at their
nodes, this being possible only because of the finite
nonlocal range. We also find a difference of about 0.75
fermi between the potential and density radius, this
explaining a feature deduced from experiment which
was not before theoretically understood.

The details of the density distribution are also new
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F16. 6. (a) F(r) for the highest neutron state in Ca% and the
total density as a function of radius. (b) F(r) for the highest
neutron state in Zr® and the total density as a function of radius.

and interesting. They are characterized by the tendency
of neutrons and protons to maintain a uniform density
ratio so that there is very little separation in mean radii.

269

We also find density surface thicknesses which agree
well with experiment. The surface density is fixed
partially by the finite force range, but also by the
strong state dependence of the single-particle potentials.
This effect increases the rate of fall off of the inner shell
wave functions near the surface and so decreases the
surface depth.

In conclusion we summarize the applications which
have been made of the many-body theory to nuclear
matter and finite nuclei. These are:

Nuclear matter:
volume energy
symmetry energy
density
compressibility
effective mass
optical potential.

Finite nuclei:
binding energy
spin-orbit splitting
separation energy
density distribution
neutron-proton density relation
surface depth
potential-density relations
state dependence of single potential
nonlocality of single-particle potential.

The theory gives quantitative predictions for nuclear
matter and semiquantitative predictions for finite nuclei.
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