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It is shown that scattering amplitudes and form factors have two-particle branch lines which connect two
Riemann sheets. For partial wave amplitudes and form factors the dispersive parts and, except for square
root factors, the absorptive parts are regular functions in the cut energy plane except for isolated poles,
physical inelastic cuts and left-hand branch lines. In order to show this it is assumed that, for particles
without composite structure, the amplitudes have only such singularities in the physical sheet which corre-
spond to absorptive processes. The analytic properties of absorptive parts are used for a general discussion
of structure singularities (anomalous thresholds). It is shown that these structure cuts are extensions of left-
hand branch lines in the second Riemann sheet. An example is given of a dispersion relation on the Riemann
surface in which the integral over the two-particle branch line is eliminated.

I. INTRODUCTION

ECENTLV, several authors' ' have considered the
continuation of propagators and other amplitudes

into second Riemann sheets, mainly with the aim to
explore the connection between unstable particles and
the isolated poles appearing in these sheets. ' In this note
we discuss the continuation of amplitudes through
branch lines corresponding to two-particle intermediate
states. We are interested in the character of these branch
lines and in the analytic properties of the corresponding
dispersive and absorptive parts. We explore the use of
these analytic properties for the description of reso-
nances, and we discuss their application to the treat-
ment of structure singularities' (anomalous thresholds)'
of form factors and production amplitudes.

In Sec. II we consider the partial wave projections of
a scattering amplitude. ' Ke assume analyticity in the
cut plane of the physical sheet and find, as a simple
consequence of the unitarity condition, that the two
particle branch line connects just two Riemann sheets.
The amplitudes can be written in the form
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where d(s) and tt(s) are regular functions except for cuts
z=s with s&0, s)s; Ls;)4tt' is the threshold for
inelastic processesj and isolated poles due to zeros of
the 5 matrix

In the region 4tts(s&s, on the real axis the function d(s)
coincides with the dispersive part and tt(s) l (s—4tt')/s)&
with the absorptive part of the amplitude the F(s+i0).
We use these properties of the amplitudes in Sec. III,
where we give an example of a dispersion formula on the
Riemann surface of (s—4tt')&. In this relation the ex-
plicite integral over the elastic region 4p'&s(s; has
been eliminated in favor of the contributions from poles
and branch lines in the second sheet.

Production amplitudes are discussed in Sec. IV along
the same lines as the scattering amplitudes in Sec. II. At
first we consider onIy particles which are sufficiently
compact to have no composite structure. ' Then we use
the analytic properties of the absorptive part as a func-
tion of the energy variable in order to study the appear-
ance of structure singularities in the physical sheet.
These results are used in Sec. V, where we consider form
factors of particles without and with composite struc-
ture. The analytic continuation of a form factor through
the two-particle branch line makes it possible to give a
clear description of the structure cut as an extension of
the left-hand branch line in the second Riemann sheet.

II. ELASTIC SCATTERING AMPLITUDES

We consider the scattering of neutral pions as an
example. The generalization to cases with spin and
isotopic spins, or with unequal masses, is straight-
forward. I.et us denote by M(s, t) the covariant, causal
amplitude, which has the Fourier representation

M(s, t) =2(pppp')ti d'a expL —-', s(k+k') x]

Xt)(*v)(p'lL j(*/2), j(—*/2)ll p)
+polynomial. (2.1)
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Here k+p=k'+p', s= —(k+p)' and t= —(k —k')' are and
the usual variables, and the transition amplitude in the
barycentric system is given by

(s—4tt') 1

p(z+tO) =+
I

s ) (2 1o)

T, (s, costi)= —s &M(s, t),
Sm.

(2 2)

F(s, costi) = M(s, t)
16&

and its partial-wave projection

with costt= 1+2t/(s —4tt'). It is convenient to use the
function

(2.11)ImFi—'(s+iO) =%2p(s+i0),

whereas the unitarity condition implies

for s&4p'.
It follows from Eqs. (2.7) and (2.9) that at(z) is a real

analytic function which is regular in the cut plane except
for the isolated poles due to possible zeros of the de-
nominator. We note that this denominator cannot
vanish for z=s with 4pP&s&s;, because this would
require

ImF i '(s&i0) =W p(s+t'0). (2.12)
+1

Ft(s) =— I d(cos@)Fi(cos8)F(s, costi). (2.3) On the basis of Eq. (2.6), the function at(z) has been
2 ] constructed such that

In the physical region s)4p, ', and below the first
threshold s;= 16'' for inelastic processes, we may write

( $
Fi(s) =

I I
sin8t(s)e'"~'

k s—4tt')
(2.4)

with real phases 5t(s) and positive root.
The partial wave amplitude Ft(s) is the boundary

value of an analytic function Ft(z), which is regular at
least in some limited region R around the cut z= s) 4p,'.
It is sensible and convenient to assume that Fi(z) is
actually regular in the complex z plane except for the
absorptive branch lines (z=s)4tt' and s& 0 in our model),
although analyticity in the domain E. would in principle
be sufFicient for the continuation into the second sheet.

It follows from the well known reality properties of
the covariant amplitude M(s, t) that the partial wave
amplitude Fi(z) satisfies the condition

F*(*)=F() (2.5)

Furthermore, along the "elastic" cut 4p'& s &s; we have
the unitarity relation

A i(z) =p (z)ai (z), (2.14)

since At(s+i0)=ImFt(s+i0) for 4tt'&s&s;. We may
use the function Ai(z) in order to continue the partial
wave amplitude through the elastic cut into the second
Riemann sheet. Writing'

F()
FP(z) =Fi(z) —2iAi(z)=, (2.15)

1+2ip(z) Fi(z)
we find

and
F "*(z*)=F "(z) (2.16)

Ft"(s+iO) =F (svi0) (2.17)

for 4p,'&s&s;. We see that the elastic branch cut
connects just two Riemann sheets. This feature may be
exhibited by writing Fi(z) in the form

ai(s+i0) =at(s —iO) = IFt(s+i0) I' (2.13)

for 4tt'(s&s;. Hence at(z) is a regular function along
this section of the real axis, and its right-hand cut starts
at s=s;. It follows from Eqs. (2.6) and (2.13) that the
absorptive part of Ft(s+iO) is the boundary value of the
analytic function

ImF t (s+t,0) = L(s—4tt'/s) j'
I Ft (s+i0) I'. (2.6)

(z—4tt ) 1

Ft(z) =dt(z)+iI I ut(z),
z ) (2.18)

I,et us now consider the analytic function

Fis(z)
at(z) =

1+2'L(z—4& )/zj-:F, (.)
(2.7)

p*(z*)= —p(z) (2.9)

Here and in the following we define the roots (z—4tt')1
and is& such that their imaginary parts are nonnegative
in cut planes with the branch lines z=s&4p' and
z=s&0, respectively. If we then introduce the ab-
breviation

t'z —4tt') &

p(z) =I
z ) '

we have

where the root is given by p(z) in the first sheet and by
pii(z) = —p(z) in the second sheet. The function at(z) in
Eq. (2.18) is defined by Eq. (2.7), and di(z) is also a real
analytic function which is regular except for the cuts
s&0, s&s; and the isolated poles due to zeros of the
S matrix. We find

di(z) =Ft"(z)L1+ip(z)Ft(z) j, (2.19)

'Note added eN proof We note that E. q. (2.15) may be written
in the form S(q) =F(q)/F( —q), where q=q(z) = (s/4 —y')& is the
c.m. momentum. For potential scattering this relation is similar
to the familiar expression of S(q) in terms of Jost functions, but
it is not the same )see, for instance, R. Blankenbecler, M. L.
Goldberger, N. N. Khuri and S. B. Treiman, Ann. Phys. 10, 62
(1960), Zq. (5.14)g. We would like to thank Professor R. Karplus
for bringing these points to our attention.
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and in the region 4p,'&s&s, we have

di(s+i0)=di(s —i0)=ReFi(s+iO); (2.20)

di(z) is the analytic continuation of the dispersive part
of the partial wave amplitude. In the same way we can
construct the function

Ci(z) =d[(z)/ai(z) = L1+ip(z)F((»)]F[ '(z); (2.21)

it has no cut in the elastic scattering region, where it
coincides with the familiar expression

C~(s&i0) =p(s+i0) cotg5t(s). (2.22)

In the following sections we shall generally omit the
subscript l.

III. REPRESENTATIONS ON THE
RIEMANN SURFACE

Here the root f(»—4p')(» —s,)$' is defined in a plane
with the cut a=s, 4p'&s&s;, and in the sheet indicated
by the index I it is negative for s&4p'. We can solve
Eqs. (3.3) and (3.4) for F' and Fi', and in this way we
obtain a representation of F (z) on the Riemann surface.
It may be written in the form

P+(»,s) ImF'(s+i0) jP (z,s) ImF" (s+i0)
Xds

S—3

b b„"'

+Q P (z,z ) +P (z,z„*), (3.5)
n Sn S S*—S

The analytic continuation of F (z) through the elastic
branch line can be used in order to write dispersion
formulas involving both sheets. ' For instance, we may
consider the contour integrals

where the projection functions I'+ are defined by

1 (z—4p, ') (z—s,)
P~(z, »') =— 1W

- ("—4p') ("—s')
(3.6)

and'

1 F(z')
ds

27ri Z' —3

They satisfy the reality condition

P~*(z*,»'*) =P~ (z,z') (3 &)

F(z')1
dz' (3.2)

2iri [(z' 4p')—(z' s,)]l—(z' z)—

F'(z)+F"(z)

1
1 (

" ImF'(s+i0)+ImF" (s+iO)+
S—8

on the Riemann surface with two sheets, which are ana-
lytically connected along the cut s=s with 4p'&s&s;.
Ignoring subtractions, we obtain from Eqs. (3.1) and
(3.2) the following relations by deforming the contours
on the Riemann surface:

In cases where stable one-particle states are possible,
the corresponding poles appear only in the first
(physical) sheet for 0(s(4p'.

We note that in the dispersion formula (3.5) the
integral over the elastic cut 4p, '&s&s; has been elimi-
nated in favor of the sum of the contributions from all
singularities in the second sheet. These consist of the
meromorphic parts due to the zeros of the 5 matrix in
the denominator of Eq. (2.13) and the integrals over the
inelastic cut as well as the left-hand branch line. The
weight functions along these cuts in the second sheet
are not determined by ImF'(s+i0) alone, but they
involve also ReF'(s). For s(0 and for s) s;, we have the
relation

ImF" (s+ i0)
(3 33

and

{F'(z)—F"(z) }L(z —4p') (z—s')3r '

1 (' t
" ImF'(s+i0) —ImF" (s+iO)+~ ds

L(s—4p') (s—s') 3 '(s —z)

—b

L (z.—4p') (z.—s;)ir-'*(z„—z)

(3 4)
L(z.*—4p') (»-*—s') ji'(»-*—s)

' For similar considerations in Schrodinger theory with zero
range potentials see: R. E. Peierls, Proc. Soc. (London) 253, 16
(1959).

This is, of course, a special choice. For instance, we could also
nse the expression L(s—4y'l/s7& instead of the root in the de-
nominator of Eq, (3.2).

ImF'(s+i0) —2p(s+i0)
~
F'(s+i0)

~

'

1+4p(s+iO) fp(s+i0)
~
F'(s+iO)

~

'—Iml' (s+iO) }
(3.8)

A dispersion formula like Eq. (3.5) could be useful for
systems where the low-energy region is dominated by a
pole term in the second sheet representing a resonance.
In a first approximation it may then be possible to
neglect the contribution from the cuts and to retain only
the resonance term. The Breit-Wigner type formula
obtained in this way could be used in connection with
the crossing relations in order to compute correction
terms.

In the E/D formulation of elastic»-ir scattering, ' the

"G.F. Chew and S. Mandelstam, Phys. Rev. 119,467 (1960).
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p2

FIG. 1. Amplitude for the reaction ~'+~2 ~ x+x

explicit integral over the two particle branch line has
also been removed by use of the unitarity condition.
We have, for instance in the case of p-wave scattering,
the integral equation

s—4p, '
Di(z) = 1+ ) ds(s —4p')-'

7r 00

FxG. 2. The amplitude p,'+x —+ p,'+x. Ke assume that the
particles with masses M and x& are baryons. As an example one
may identify them with A and Z particles.

for z=s&g(x). The function g(x) is determined by the
lowest mass intermediate state of the scattering process
p'+x-+ p2+x (we indicate particles by their mass
variables); it is given by' "

1
g( ) = —

L
—(M+t )'][ —(M—p)'] (4 1)

M'

where

with

z E(s,z) =

XE(s,z) ImF i(s+iO) D, (s),
Note that g(x) attains its maximum value of 4p, ' at
x= M'+p, '. The next branch point on the left-hand side
is at s=g, (x), where

fz(z) = ds
Ls( -4p')]' s-z

4p' —2z+ 2[z (z —4p') ]'
ln

[z(z—4p')]'*

In the physical sheet (I), f(z) has only the branch line
s&4p, ', which connects just two Riemann sheets. In all
other sheets there is in addition a left-hand cut for
s&0, which also connects two sheets only. Ke obtain
the complete surface by continuing alternatively
through right- and left-hand branch lines. The Riemann
surface of

Fi(z) =Si(z)/D, (z)

does not in general have the simple structure described
above. In the first sheet there is a left-hand branch
line for s&0, and the character of the 1.eft-hand cut
in the second sheet depends upon the properties of
IrnFi'(s+i0) for s&0. Only in the pole approximation
do we have a structure corresponding to that of f(z).
We note that the poles for s= s„&0 are present only in
the first sheet.

IV. PRODUCTION AMPLITUDES

Let us discuss the partial wave projection G(s) of a
production amplitude G(s, t) corresponding to the graph
in Fig. 1. It is reasonable to assume that G(s) is the
boundary value of an analytic function G(z), which is
regular except for cuts along the real axis. From the
reality properties of G(s, t) we find then that G~(z*)
=G(z). As long as the mass variable x is sufficiently
small' [x&(M'+p') for the amplitude described in
Figs. 1 and 2], the corresponding particle has no
composite structure, and we have only the branch lines
due to absorptive processes, namely for s=s&4p, ' and

gi(x) = — [x—(M+2@)'][x —M']. (4.2)
(M+p)'

On the right-hand side we have an unphysical region
4p'&s&4x, where the absorptive part is due to inter-
mediate p, -particle states. We are mainly interested in
the interval 4p,'&s(s; of the two-particle branch line.
For x&M'+p' and. x&M'+p' we have s, =16p,' for
larger values of x there will appear structure singularities
associated with the inelastic threshold at 16'', and
hence s,;(16@'.In this paper we shall not consider these
higher order structure effects. At least for x&M'+p',
we assume that the absorptive part of G(z) is given in

this region by the unitarity relation"

ImG(s+i0) = p(s+iO)G(s+i0)F (s i0), —(4.3)

where F(s) is a scattering amplitude of the type we have
discussed in Sec. II and p(z) is given by Eq. (2.8). It
follows from Eqs. (4.3) and (2.13) that

G(s+i0)F (s—iO) =G(s—i0)F (s+i0),

for 4p'&s&s;. This relation assures the reality of
ImG(s+i0). Furthermore, we find, on the basis of these
relations, that G(z) may be written in the form

G(z) =d a(z)+i[(z 4p'/z)]*"«(z)— (4 4)

where ag(z) and do(z) are real analytic functions which
are regular except for the cuts z=s&g(x), z=s&s, , and
poles at points where the S matrix,

S(z) = 1+2ip(z)F(z),

vanishes. The functions uo and dz may be expressed in

"S. Mandelstam, Phys. Rev. Letters 4, 84 (1960)."A proof would require analytic continuation of the amplitude
G in the mass variable x from x&@2 toward larger values. This can
be done at present only for some simple cases within the framework
of perturbation theory
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terms of the amplitudes 6 and Ii. We find

G(s)F (s)
ag(s) =

1+2ip(s)F(s)

G()L1+'.()F()j
dg(s) =

1+2ip(.)F(.)
(4.6)

and in the interval 4p2&s&s; on the real axis we have

ag(s) = p '(s+i0) ImG(s+i0),

dg(s) =ReG(s).
(4.7)

So far we have assumed that x& (M'+p'), but now
we want to consider larger values of x in order to see how
the structure singularities (anomalous thresholds)
emerge. Ignoring subtractions, which may be required,
we represent G(s) for x&(M'+p') by the dispersion
formula

1 t
&'*& ImG(s+i0) 1 t

" p(s+i0)ag(s)
G(s) =— ' ds +— ds-

S—Z 7l ~4 2 S—Z

The continuation of G(s) through the two-particle
branch line into the second Riemann sheet may be
written in the form

G(s)
GI I (s)

1+2ip(s)F (s)

we find, for instance for the s-wave amplitude, "
ImG(s+i0) =

A 0(s)= 2s I'(x)/$(s —4p, ') (s—4x)$'.
(4.12)

1 t
«'& A(s')

dz
x ~ g&(x&

(4.14)

where A (s) is given by Eq. (4.12). As g(x+iy) moves
around the point z=4p2 the path of integration in
Eq. (4.14) dives into the second sheet of the root in
the denominator of A (s). We finally obtain for
x) (M'+p') the contributions

The root in Eq. (4.12) is defined such that it is negative
for s&4p2 and has a cut for 4@2&s&4x.

Let us now continue Eq. (4.9) in the mass variable x
from x&(M'+p') to x) (M'+p') Lbut x& (M+@)'$.
We assume that this continuation is possible and
straightforward for the integrals from s; to ~ and from
—~ togi(x). Notethatg&(x)&4p'becauseofthestability
condition x& (M+p)'. In order to continue the remain-
ing integrals in Eqs. (4.10) and (4.9) we take the
mass variable slightly oG the real axis. Then we have

g(x+iy) = Lg(x)+y'/M'j
—2i(y/M') (x—M' —p') (4.13)

and g(x) describes a curve in the complex z plane which
encircles the point s=4p' as x passes through x= M'+ p'.

The relevant portion of the first integral in Eq. (4.9) is

1 p" ImG(s+i0)
ds . (4.9)

S—Z

1 t'" A (s) 1 t
"" A" (s)

ds +- ds
x' ~ g~(x) S—Z x' ~ ~&~ S—Z

(4.15)

1 t
«*& A (s')F"(s')

dZ
~ "aj.(~) Z' —Z

(4.16)1 t
«*& Imag(s+i0) 1 r" Imag(s+i0)

ag(s) =—, ds +— ds
X' 4s;

where g(x) &4tt' and A" (s) = —A(s). In a completely
Similarly the function ag(s) may be expressed in the analogous way the integral
form

+P + —. (4.10)
Z —Z Z*—Z

Since F"(s) is real for 0&s&4tt', we have in this
interval

Imag(s+i0) = ImG(s+i0)F" (s), (4.11)

r2 r2
G(s, t)= —+ +, (8=2''+2x —s —t))

3f2—t M2 —8

except for 6-function contributions due to possible
poles of F"(s). The resulting real poles in Eq. (4.10)
are represented explicitly by the last term. In the
interval gi(x) &s&g(x), the absorptive part of G(s) is
given by the partial wave projection of the one-particle
terms in G(s, t). If these terms are of the form

in the representation (4.10) for ag(s) gives rise to the
expression

1 )'&' A (s)F"(s) 1 (
«*& A" (s)F (s)

ds +— ds (4.17)

for x) (M'+p').
Finally we consider the second integral in Eq. (4.9).

The function ag(s) in the integrand is given by Eq.
(4.10), and it is regular in the neighborhood of the point
s=4p' as long as x&(M'+p'). There could, of course,
be isolated poles due to resonances or virtual states, but
these can always be avoided in the following deforma-

' It can be proven that the vertex function r(() is a real
analytic function which is regular for (((M+@)', if we have on
the mass shell x=m2(M2. Such a proof can be given using the
methods of R. Oehme, Nuovo cimento 4, 1316 (1956); see K.
Symanzik, Phys. Rev. 105, 743 (1957), also A. M. Bincer, Phys.
Rev. 118, 855 (1960).
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tion of integration paths. Note that the position of these
poles is independent of the mass variable x. Kith
increasing x the point g(x+iy) circles the point S=4fss
and then moves back on the opposite side of the real
axis. In ord.er to avoid the branch line ending in g(x+iy)
we have to deform the contour of the integral in Eq.
(4.9), and, in the limit as y —+ 0, we find the expression

1 I's' +p(s) {Wh(s+iO)ah(s —i0))
ds where

Fro. 3. Vertex for ps particles (mesons).

«(z) =G(z)F" (z)

where

1 f
" p(s+i0)ag(s)

ds (4.1g)
7f 4p S—S

1 t
s(*) Aii(s)F(s)

h(z) =— ds
7r~4 2 $—S

G"(z) =G(z) (1—2ip(z)F" (z) ), (4.21)

is regular along this stretch of the real axis.
It is of interest to compare Eq. (4.20) with the corre-

sponding relation for G"(z). We may write

and hence

h(s+i0) h(s —iO) =——2iA" (s)F(s) (4.19)

for g(x) (s&4pP. The two sign combinations in the first
integral of Eq. (4.18) correspond to the choice y&0 or
y&0, respectively Lsee Eq. (4.13)7. We note that for
y&0 the deformed path of the integral in Eq. (4.9)
remains in the first sheet of the root (s—4p,')1, whereas
for y&0 the contour is dragged into the second sheet
through the branch line s&4p,'. The deformation of the
contour is possible because of the analytic properties of
the function ug(z), which have been exhibited in Eqs.
(4.10) and (4.17).

Taking all pieces together we have for x& (M'+fs'),
instead of Eq. (4.9), the dispersion formula'4

1 f
"f 1 ImG(s+iO) 1 t's' A (s)

G(z) =— ds +— ds

and, for x& (M'+fs'), we have a representation corre-
sponding to Eq. (4.9) with G replaced by G" and ag(s)
in the second integral by —gg(s). The continuation to
x&(M'+p') is analogous to the one leading to Eq.
(4.20). We find

1
I
"i'1 ImG" (s+i0)

Gii(z) =— ds
s—s

A(s)I:1—»p(s)F" (s)j+— ds
& "gs(~)

1 ('&' —A" (s) 1 r
" —p(s+i0)ag(s)

+— ds +— its
m "0() s—s m~4' S—S

1 1
" ImGii(s+i0)

ds +pole terms. (4.22)
s—z 7F' ~ gy(x) $—S m 4si

1 t
4s' —A" (s)I 1+2ip(s)F(s)j

ds In the interval g(x) &s&4fs' the production amplitude
6 has the absorptive part

(4.23)A (s) —A" (s)L1+2ip(s)F (s)j1 1
" p(s+i0)G(s+i0)F" (s+i0)

ds
X'"4„'

—A (s)+A (s)I 1—2ip(s)F (s)j. (4.24)

$—S in the first sheet )for x& (M'+fs')], whereas in the
second sheet we find from Eq. (4.22) for the corre-

+— ds
™(+ sponding interval(4.20)

where A (s) is given by Eq. (4.12) for the case of s-wave
amplitudes. " The limits g(x) and gi(x) have been
defined earlier. We see that the absorptive part of G(z)
for 4p,'&$&si is again given by

ImG(s+i0) = p(s+iO)ag(s),
"If only two-particle singularities are retained and if

ImG(s+i0) is replaced by A(s) (as given in Eq. (4.12)g for
s&gi(x), then Eq. (4.20) agrees with the result of Mandelstam
(reference 9). See also R. Blankenbecler and Y. Nambu, Nuovo
cimento (to be published); R. E. Cutkosky, J. Math. Phys, 1, 429
(1960); Phys. Rev. Letters 4, 532 (1960).

'5 For higher partial waves the relevant features of A (s) are the
same as for s waves.

I

Note that, except for a change in sign, Eq. (4.24) is just
the continuation of Eq. (4.23) through the branch cut
s&4fss of the root (s—4fs')f.

z f
" ImV (s+i0)

V(z) = 1+—)' ds
4y s(s—z)

V. VERTEX FUNCTIONS

The vertex function or form factor of a p' particle
(see Fig. 3) satisfies a dispersion relation of the form
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PIG. 4. Vertex for x particles (baryons).

write Eq. (5.8) in the form

1 t
" p(s+iO)as (s)

W(s) =— ds
~ ~4„ s—s

1 l
" 1mW(s+i0)ds, (5.13)

sj s—3

Along the two-particle cut the absorptive part is given where we can exPress the function as (s) by the dis-

by persion formula

Im V(s+i0) =p(s+iO) av (s),

«(s) = V(sV" (s)

(5.2)

(5 3)

1 t "& Imaw (s+i0) 1 r" Imaa (s+iO)
issr (s) =— ds +— ds

s—s s —3

is again regular for 4)s'& s&s;. The continuation of V(z)
into the second Riemann sheet is

(5.14)

V(s)
VII (s)

1+2sp(s)F(s)
(5 4) According to Eqs. (5.10) and (5.4) we have, except. for

6 functions,

and, with
dU(s) = U" (s)L1+s (s)~(s)j (5.5) Imaa (s+i0) =ImG(s+i0) V"(s) (5.15)

we can write
(s—4lts2 ) i

V(s) =dr(s)+il I av(s).
s

(5 6)

We may use these properties of the vertex V(s) in
order to discuss the form factor of x particles (see
Fig. 4):

for 0(s&4p, ', and from Sec. IV we know that for
gi(x) &s&g(x) ImG(s+iO) =A (s); for s-waves A(s) is
given by Eq. (4.12). With the help of Eqs. (4.18), (4.13)
etc. the first integral in Eq. (5.13)may now be continued
to values of x above M'+ls', but below (M+p)'."The
situation is completely analogous to the one encountered
in Sec. IV. 4Ve obtain the relation

W(s) =2(popo')'(p'I J(0)
I p (5.7)

1 t'" p(s+i0)G(s+s0) V"(s+i0)
+—

i
ds

1 t'&' —2ip(s) A" (s) V (s)
W(s) =—

i
ds

where J is a "scalar" photon current operator and jl g(~) s
p"=p'= x, (p' p)'= s- — —

We take first x& (M'+p') and assume that W(s) is
the boundary value of an analytic function, which,

7l 4y s—s
except for subtractions, may be represented in the form

1 r
" ImW(s+iO)

7t 4p s—s
(5.8)

1 t'" ImW(s+i0)
dS (5.16)

X~S; s—s

where

ImW(s+i0) =p(s+i0)G(s+i0) V(s —i0) (5.9)
and as (s) is now given by a relation corresponding t,o
Eq. (5.14) with the first integral replaced by

for 4p'&s&s;. Using Eq. (5.4) we construct the real
analytic function

1 t
""' Imas (s+i0) 1 l

'&' A (s) U" (s)
ds + ds

s—2' ~ gi(&l s s
as (s) =G(s) V"(s),

which is easily seen to satisfy the relation

(5.10)
1 l

'&' —A"(s)V(s)
ds . (5 17)

0(~) s—3

as (s+s'.0)= air (s—s'.0)=G(s+s'.0)V (s—fO)
=G(s—i0) V(s+i0). (5.11)

As before, the two-particle cut connects two Riemann
sheets. The continuation into the second sheet is here

W" (s) = W(s) —2ip(s)G(s) U" (z), (5.12)

and we see that W" (s) has a left-hand branch line for

s&g(x), where g(x) is given by Eq. (4.1). Let us now

' In an earlier paper (see reference 4) we have performed this
continuation explicitly in the approximation Imaz (s) =do(s). We
found there that the correct continuation leads to a function
aw(s)L(s —4is')(s —4x)g& which is regular along the branch cut
s&4@~ and which does not vanish for s —+ 4p'+ if g& (~M'+p')
Another branch of this function, which vanishes at s=4p',
has a jump at s=2(x —Ms+p'), and in the interva} ass(s
&2(x—M2+p~) it is displaced by a. constant term from the
regular branch. The constant is, of course, given by the value of
the regular branch for s~4p'+. See also Blankenbecler and
Nambu, reference 14. These authors consider the form factor in
the approximation Imas (s) =AD(s) U'r(s) for s &0.



CONTINUATION THROUGH TWO —PARTICLE BRAN CH LI NES

It is of interest to see how the branch line g(x) (s&4p',
which appears for x) (M'+p') in the physical sheet of
the form factor W(z), continues into the left-hand
branch line for s&4p.' in the second sheet of the root
(z—4p')'*. We consider the function W" (z) given by
Eq. (5.12), which, for x& (M'+p'), may be written in
the form

1 1"~&*& ImW" (s+i0)
W"(z)=- ii ds

s—s

1 t g' ' 2i—p(s)A(s) V"(s)
ds

x ~gg(*) s—3

1 t " p(s—+iD)as (s)
ds—

1
I
" ImW" (s+i0)

ds +pole terms. (5.18)
s—s

If we now increase x above x=Mx+p', the second
integral is replaced by an integral over the same
expression but with the limits gt(x) and 4p', plus the
term

1 t'&' —2ip(s)A" (s) V(s)
dS

~ ~,i,) S—S
(5.19)

The continuation of the third integral in Eq. (5.18) has
been discussed before Lsee Eqs. (5.13) and (5.16)j; it
produces an additional expression which is just the
opposite of Eq. (5.19) and hence cancels this term.

So we are left, for x) (M'+p') )but x& (M+p)'g,
with an expression for W" (z) which is the same as the
one given in Eq. (5.18), but with g(x) replaced by 4p'.
We see that the branch line associated with the com-
posite structure of the x particle extends from g(x) in
the physical sheet to 4p', there it dives into the second
sheet and extends from 4p' to —~. The "anomalous"
portion of the cut in the first sheet appears just as an
extension of the left-hand cut in the second sheet, which,
at least for s&0, is due to the left-hand branch line of
the production amplitude G(s). We note that the
appearance of the structure cut in the physical sheet
for s&4p' does not change the analyticity of aa (s) in
the neighborhood of the internal 4p,'&s&s;, where we
always have the relation aa (z)=G(z)Urr(z).

VI. CONCLUDING REMARKS

In the preceding sections we have seen that partial
wave amplitudes and form factors have two-particle
branch lines which are simply described by the square
roots corresponding to the related c.m. momenta. The
same properties may be inferred for the complete
amplitudes using partial wave expansions. So we have,

for instance, for the production amplitude G(z, cos8)

A" (—~)31+2ip(~)F(~)j (6.3)

for g(x) &s&4p' in sheet I is an extension of the line
with weight

A (s)$1—2ip(s)F" (s)j (6.4)

for s) g, (x) in sheet II. In the same way the branch line
with weight —A" (s) in sheet II is an extension of the
cut with weight A(s) in sheet I. The continuous tran-
sition of branch lines from one sheet into the other may
be seen more explicitly if we map both Riemann sheets
onto the complex plane of g(z) = —', (z—4p') i Lsee Fig. 5].

2 t

q-p)one t.q(z)=-(*-4p ) j2

cut(p), '

I- +q(g(x))

L

I 4

-q(g(x)) '

,
'

cut(a)

-q(s;) q(s;)

Fro. S. Singularities of the production amplitude in the complex
q plane. There can also be poles in the lower half plane. The
"anomalous threshold" appears simply as the endpoint of the cut
along the imaginarv axis from i~ to, +qLgi—xi).

(z—4p2) '
G(z, cos8) =do(z, cos8)+i~

~
aa(z, cost)), (6.1))

where

aa(z, cos6)=g~(2l+1)G~(z)EP'(z)E~(cost)) (6.2)

in the region of convergence.
The considerations of this note may also be general-

ized to more complicated amplitudes. We may consider
reactions with two incoming and an arbitrary number
of outgoing particles. If one is w'illing to make assump-
tions about the relevant analytic properties of these
many-particle Green's functions in the physical sheet of
the energy variable, then one can obtain properties of
the two-particle branch lines which are analogous to
those discussed in this paper for scattering amplitudes.

I.et us finally add some remarks concerning the
physical and mathematical aspects of structure singu-
larities, which we have already discussed in an earlier
publication. 4%e have seen in Sec. IV and Sec. V that
the structure cuts are extensions of the left-hand branch
lines of the amplitudes and their continuations into the
second Riemann sheet of (z—4'):. So we find in the
case of production amplitudes that the structure
branch line with the weight
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On the real axis we have the inelastic cuts for q&q(s;)
and q& —q(s;). The first branch line discussed above
maps into the cut from +qLg(x) 7 to —i ~ on the imagi-
nary axis Ldenoted by n in Fig. 57, and the second
branch line P7 extends from —qgg(x)7 to +i~. Both
lines overlap in the interval —q/g(x)7&q&+qLg(x)7
provided x) (M'+y'). For x& (M'+ii') we have a gap
in this interval. Note that there can also be poles in the
lower half q plane.

For the baryon form factor W(s) the situation is
somewhat simpler because there is no left-hand cut in
the physical sheet. The anomalous" branch line in
sheet I of the s plane is just an extension of the left-hand
cut in sheet II. In the q plane we have only a cut
corresponding to n in Fig. 5, the usual inelastic branch
lines and the poles for Imp&0.

It is true that the appearance of a structure cut for
x) (3P+p') in the physical sheet of the s plane produces
an explicit extension of the maximal range of the charge
or moment distribution. However, as we have already
mentioned in reference 4, for x& (M'+ p') the left-hand
cut in the second sheet starts near s=4p', and it
can have an essential inQuence on the outer parts
of the charge distribution via the absorptive part

p(s+iO)as (s). This may be seen from the dispersion
representation of the analytic function as (s), which is
of the form fsee Sec. V7

1 r «" Imas (s+iO)
Gs (s)=— ' ds

7T Qo S—8

1 r
" Imus (s+iO)

ds +pole terms, (6.5)
x ~s; S—S

for x&3P+p'. There may also be resonance poles near
the physical region s=s&4p, ', which then could domi-
nate as (s). In practical calculations of the nuclear form
factors it is just the first integral in Eq. (6.5) Lwith
g(nP)=4@'(1—p,'/4m')7 which is evaluated approxi-
mately; a m.-m resonance would give rise to a pole term
in this equation.
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