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The classical equations of motion of a charged point-particle with intrinsic spin under the influence of an
external electromagnetic field are restated and compared with the Heisenberg equations of motion derived
from the Dirac theory. The partition of angular momentum between particle and field in the classical theory
is contrasted to the Dirac theory of electron spin. The analogy between the Dirac equation and the theory
of parametric amplification is pointed out.

A free spinning point particle moving according to the laws of classical relativistic point-particle mechanics
may move along a helix. The sum of the intrinsic spin ¢ and the angular momentum of the helical motion in
this classical analog of zitterbewegung is an effective spin vector S which is a constant of the motion. Because
of this internal motion, the effective mass M of the particle differs from the mass m which is ascribed to it
in the equations of motion. Solutions are found in which S is parallel or antiparallel to the momentum, and
the sign of M is determined by the helicity. When placed in a uniform electromagnetic field, the particle
behaves as if it had a rest mass M and a magnetic moment eg/Mc, in addition to any explicit magnetic
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moment that may be ascribed to it.

I. INTRODUCTION

ECAUSE spin and quantum mechanics were dis-
covered within a year of each other, these discov-
eries being quickly followed by that of the Dirac
equation, the classical relativistic theory of spinning
particles interacting with an electromagnetic field has
not been widely used although the nonrelativistic
theory is applied extensively. Indeed it was not until
1941 that the relativistic classical theory of charged
spinning particles, including self-interaction, was de-
veloped.! In this theory, equations of motion were
derived both for the spin and for the motion as a whole
including not only the usual radiation damping arising
from the acceleration of the charge but also the very
complicated set of terms describing the radiation from
this precessing accelerated magnet. The particle was
described by a set of six parameters which referred to
its mass, charge, rest magnetic moment, rest electric
moment and moments of inertia along the directions
of these moments, but the equations were also special-
ized to the case in which the particle had zero electric
moment in its rest system.

Measurements of the magnetic moment of a particle
are often made under conditions in which we have
every reason to believe that relativistic classical theory
is applicable. It is therefore of interest to examine the
classical equations of motion which we might expect
would be satisfied by a meson or baryon moving in a
magnetic field and ask how measurements made on
such a particle could be interpreted in terms of the
intrinsic properties which could be described by a
future quantum-mechanical theory of these particles.
It is also of interest to note how the classical theory
reflects the properties of the Dirac equation when
applied to the electron or u-meson. Although this
question was discussed in reference 1, an unusual
Heisenberg representation of the Dirac equation,

1H. J. Bhabha and H. C. Corben, Proc. Roy. Soc. (London)
A178, 273 (1941).

developed in this paper, makes the relation more clear.
In particular, we note that in classical theory the
magnitude of the spin of a particle has its rest value
only when the velocity and spin are parallel, whereas
in the Dirac theory the magnitude of the spin is a
constant of the motion under all conditions. Classically
also the magnetic moment of a particle increases with
velocity if the spin and velocity are not parallel, but
on the other hand the rate of precession of the spin in
a given uniform magnetic field decreases as the velocity
increases. For a charged particle with spin moving in
a Coulomb field, the sum of the orbital and spin angular
momenta is not a constant of the motion, it being
necessary to add also the angular momentum resident
in the field. It is shown how this is consistent with the
Dirac theory provided that the “spin of the electron”
according to the latter is also taken to include the
extra angular momentum that is due to the presence of
the particle in the external field.

II. CLASSICAL THEORY

If we neglect all radiation damping effects, we may
write the classical relativistic equation for the spin
motion of a particle which has zero electric moment in
its rest system in the form? [reference 1, Eq. (103),
with K=0, IcS;; replaced by o4, go/I by g/c]

. &
65+ Sii=—(faori—oimnfr;),
c
where

. 4
Si;= (0jm¥i— 0 im2;) (f)m——f mkvk) ) 1)
C

)

(Sign differences with reference 1 are due to the fact
that here x,=1ct). The dot denotes differentiation along

030;= 0

2See V. Bargmann, L. Michel, and V. L. Telegdi, Phys. Rev.
Letters 2, 435 (1959).
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the space-time path of the particle, v;=;, so that

dx; dx; .
v Y= = —1 3)
ds ds

and the magnetic moment tensor u;; has been assumed
to be proportional to the spin tensor o;;:

Wiy = 80sj. 4)

In vector notation, Eq. (2) is then e=vXu/c, where
=1 (a1, pa2,ua3) 1s the electric moment which then
vanishes for v=dx/dt=0.

From (1) and (2) it follows that

. R 4 4
0i0;= — G'im(vm__fmkvk) +“('— Uikfkj'”j);
c c
or

d
Z(a i) =0,

so that (2) is consistent with the equation of spin
motion, and the electric moment in the rest system
remains zero throughout the motion.

For the special case in which g=e/mc and the
equation of motion is given sufficiently accurately by
the Lorentz force equation

(2

bmz—fmkvk, (5)
. mC‘Z

it follows that S;;=0 and

[
6ij=——faori— o fr;),
mc?

or
de ¢
—=—(oXB++XE),
dt  mc®
(6)
dc e
—=—\(—oXE+4<XB),
di  mc?
where
== (v/c)Xae.

The rate of spin precession in a uniform magnetic field
is then given by

doe e
_=_(1_62)%“XBa
dt  mc

i.e., although the magnetic moment may increase with
velocity, the resonant frequency decreases as ‘the
velocity of the particle increases. If, however, g=£e/mc
or the motion of the particle departs for any reason
from that given by the Lorentz force equation (5), S;;
will not vanish and extra terms must be added to (6).
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From (1) and (2) it also follows that

d( )=0
oi—(a:)=0,
]ds J

so that

ot—=¢2——(vX0)?=0=const. )
2

Hence, if v||o, 6>=0¢? or the magnitude of the spin is
independent of the velocity, whereas if vl ¢ we have
a*=~%¢® [y= (1—@2)~%]. This result is in contrast to
that of quantum theory according to which the magni-
tude of the spin is constant under all conditions.
However, a simple example shows where this disparity
arises. If we consider a transversely polarized particle
of charge e, magnetogyric ratio e/mc, and rest mass m,
projected from infinity in a straight line directly at a
fixed charge Ze, the initial spin of the particle would
be v, where yo= (1—B¢*)~% Bo=uv¢/c, vo being the
initial velocity. Such a particle would come to rest
instantaneously at a distance » from the fixed charge,
where

Z?’o
yo=1+— (ro=e/mc?).
r

At this point its spin is oy, but the extra angular mo-
mentum in the electromagnetic field due to the presence
of the transverse magnet of moment u= (e¢/mc)oy at a
distance » from Ze is Zeu/cr= (Zro/r)oo. Hence by the
above energy integral, the angular momentum g0
stays constant throughout the motion, but as the
particle approaches the fixed charge this angular
momentum becomes divided between the spin of the
particle and the angular momentum in the field. For
the equivalent motion of a longitudinally polarized
particle, however, the spin of the particle stays constant
and no angular momentum appears in the field.

Thus, classically, the change in the magnitude of the
spin of a particle is intimately connected to the angular
momentum put into the electromagnetic field by the
motion of the particle in the external field which is
acting upon it. In quantum theory, the constant magni-
tude of the spin must therefore be interpreted to mean
the constant magnitude of the intrinsic spin plus the
angular momentum in the field. In the Dirac theory,
the magnitude of one component of this quantity is
constrained to be always #/2 and this automatically
means that a fast particle is polarized longitudinally.
In order to have a theory in which free fast particles
can be polarized transversely, it is necessary that the
magnitude of the spin should be free to vary with
momentum.

The classical relativistic equation for the motion of
the particle as a whole, again neglecting radiation
damping and setting K=0, IcS;=0i, g/I=g/c,
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gi=¢/c? in Eq. (101) of reference 1, is

d 1 g g
;i;[mvi—zaiﬂij—ggvﬁsz kz—gﬂ iff jk'”k]

e 4
=—fuvkt+—0ordifr.  (8)
c2 22

Thus on multiplying Eq. (8) by v; we have

lgd g
- _(O'klfkl) _"—vi—(a'ijfjkvlc) = -—Uklfkl,
2ctds ¢ ds 22

or
O'klfkl= Zvié'ijfjkvk-

This last equation follows from Egs. (1) and (2) for
the spin motion, so that Eq. (8) is consistent with the
condition (3) that v,9;,= —1.

However, although the above classical equations of
motion are self-consistent, and appear to lead to the
correct nonrelativistic limit if we set g=e/mc, it is
important to realize that, as pointed out in reference 1,
these equations do not give the correct cross section
for the scattering of light by an electron, and that in
order to describe the interaction of the electron with
an electromagnetic field it is necessary to put g=0. A
value of g different from zero gives the classical limit
of the Dirac theory to which Pauli terms have been
added.

According to Eq. (8), a free spinning point-particle
is not restricted to motion in a straight line, but may
move along a circle or a helix. It is this orbital motion
which gives the particle a magnetic moment which is
the classical analog of the magnetic moment of the
Dirac theory. Before discussing this motion in Sec. IV
we rewrite the Dirac theory in a form suitable for
comparison with the classical theory.

III. DIRAC THEORY

The relations between the classical equations of
motion of the last section and those obtained from the
Heisenberg representation of the Dirac equation may
be seen most easily by defining the operator

d ‘)’4d
= ©)
ds ¢ dt
where
dX 0dX
—=———(XH—-HX),

and H is the Dirac Hamiltonian:
H=ep+coP+psmc?,

(P=p—(¢/c)A, (vi,72,73)=p20, vs=ps).
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F16. 1. Mnemonic for the
operators X, &:.

It then follows that

dx,;
—i7i7
ds
d’yi dxl 2
= 2k———P,, (10)
ds ds %
dP,, € dx,
ds - ¢ Y ds’
(i, j=1---4, k=mc/h).
If we define? (see Fig. 1)
%
Xi=wx:—§&, (EiE—‘Yi )
2mce
it follows from (10) that
dX,' €
. me——=P;=p;—-A;,
ds c
and
2x; e dxr h d%x;
=—f; —_— (11)

k2 .
ds® mc® ds 2imc ds®

The above equations are relations between operators
acting on a solution of the Dirac equation, which may
be written
—_———= 12
ds ds ’

or, using (10),

—_ =—1.
ds ds 2mc ds ds®

(12')

In the limit #—0, (11) becomes the Lorentz force

3 Similar coordinate operators for a Dirac field have been
introduced in discussing the center of mass and localized states
of the field and the passage to the nonrelativistic, extreme rela-
tivistic and classical limits, see M. H. L. Pryce, Proc. Roy. Soc.
(London) A150, 166 (1935); 195, 62 (1948). L. L. Foldy and S. A.
Wouthuysen, Phys. Rev. 78, 29 (1950). T. A. Newton and E. P.
Wigner, Revs. Modern Phys. 21, 400 (1949). F. Bopp, Z. angew.
Phys. 1, 387 (1949). H. Hénl, Ergeb. exakt. Naturw. 26, 291
(1952). H. Hoénl and A. Papapetrou, Z. Physik 116, 153 (1940).
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equation (5), and (12) reduces formally to (3). Because
of (10), however,

dxi dxl
=—vyvi=—4%
ds ds
so that
dx,- dzxi
= —6ix, (13)
ds ds?

which tends to infinity rather than zero in the classical
limit. On the other hand, from (12)

dXqdX; 1 #2X; 1 dX;
—1= [ _ - ]’ (12
dslds 2k ds¢ 4k ds®
which reduces to
dX;dX;
ds ds B

in the classical limit.
In terms of the internal coordinates £, Eq. (11)
becomes

dzsi d& 2ie
— 2Zik—~+—f1%;=0, (11')
ds? ds e
with
dé; 3
' ds - 2k

The natural oscillations of the &; thus become forced
by an external field which in general couples their
normal modes. Equation (11’) may also be written in
either of the forms

2t 2 )d£i+2iecf£ .
——(H—eg)—+—T =0,
@ i n
(11")
a2E; 2t dg; 2iec
+——(H—e¢)——(fijti—2fus) =0.
a  hodt /

For an external magnetic field B,, Eq. (11") becomes

a2z az 2e
——2ik—+—B,Z=0,
ds? ds e

(14)

where Z=§41¢,, and &5, & are unaffected by the
presence of the field. Thus in the classical limit of an
electron at rest, ¢d/ds is to be interpreted as a time
derivative, and a periodic magnetic field

B.= B cos{,

leads to a Mathieu equation to describe the motion of
the internal coordinate

2.

EJ;—!— (a4q cos2w)y=0, (15)
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with
y=(&1+1&2) exp(—imct/#),
=3, a= 2mc/hQ)?, g=8ecB/ 2.

Standard plots of the a-¢ diagram for Eq. (15) show
the values of these parameters for which the motion is
stable and in particular show that for small ¢, i.e.,
small By, the motion is unstable for e=#? (» integer) or

nhQ=2mc?. (16)

These instabilities in the internal motion therefore
occur at just those frequencies of the driving field for
which # quanta provide enough energy for pair pro-
duction. From this point of view pair production bears
a close analogy with parametric amplification, the
natural frequency of a resonant circuit being replaced by
the natural frequency of the electron’s zitterbewegung.

There is no indication in (11) of the interaction of the
magnetic and electric moments of the electron with the
field fi, but this appears if we use the equation itself
to eliminate the third derivative in terms of the fourth.
Introducing the spin operator

7 /)
oi=—(vevi—8i)=—(vevi—vi7s), 17)
27 47
so that
(023,031,012) = 305,
(014,024,034) = 3Tip10,
we have
a*x; e dx,- f
o= Ja— 01504 frj
dst me® " ds e
" ieh [ s dzxk_*_iﬁc d‘*xi] 19)
Ji— fo—+— . (18
2m?c? * ds>  2e ds*

In this form the equation of motion shows in the second
term on the right-hand side the force due to the inter-
action of its magnetic moment

(19)

with the inhomogeneous electromagnetic field. The
four vector j;=98;fu is the source of this field.

It is easily verified that the spin operator o, satisfies
the conditions

aX; % dé;
O = —
ds 2 ds
(20)
dx; 3% dx;
Oy——=— = 31%6 El
ds 21 ds

We now compare the classical equations (4), (2), (8)
with the Dirac equations (19), (20), and (18), respec-
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tively. Equation (19) gives the correct value of the
magnetic moment, apart from radiative corrections,
while in (4) g appears as an arbitrary parameter.
Clearly in taking the classical limit by letting 2 —0
all spin properties disappear and the equation of motion
(11) reduces to the Lorentz force equation without
spin. However, if we take the classical limit but keep
the spin finite by setting #=0 in (18), the extra term
that remains on the right-hand side of (18) is identical
with the extra term on the right-hand side of (8), with
g=e¢/mc. This is a source of confusion, for the classical
limit of the Dirac equation is obtained by setting g=0
in the classical equation (8). It is shown below that the
extra term on the left-hand side of (8) gives rise auto-
matically to the correct gyromagnetic ratio (apart from
radiative corrections).

In addition to the spin operator (17) we may consider
the following angular momentum tensors:

Lij=M+Fy,
%P,

dX;
quj= mc[x,

Lij=x:p;—

21

aX;
—Xj ])
ds ds

[
F¢j= —[xiAj— xjA 4,:]
4

It then follows from the equations of motion that

d2X;
—; ]
ds? ds?

d &2X;
-—[Mij"}"ﬂij:l = mc[xl
ds

e dxy,
=-[@ifix—x;fat—,
c ds
(22)

d[L tos] e[dxiA dxjA
—| Lijtoi|=—| —A;———A;
ds ’ ! cl ds ! ds

dxk .

ds

For the space components these equations may be
written

d 1dr
—(M-+o)=erX (E—l—- —XB),
dt cdt
(22')

1 A dr
L e e (L4
c d ¢ dt

The first of these equates the rate of change of the
spin plus mechanical angular momentum to the torque
about the origin. The second equation reduces to the
first for A=0.
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IV. MOTION OF A CLASSICAL FREE
SPINNING PARTICLE

The equations of motion (1), (8) may be written in
the form

g
dij=—(fuaori—oufri)— ipi—vips), (1)
c

i /. +P1, — ¢ + g 9 8/
- m'v; - —‘;‘fikvk E-C;Ukz ifxt, (8

where

g 4
m’=m———-oszkl=m—~(c-B—l—«:-E),
2¢? c?

C

pi=0iYj,  (vpi=0)

4

Yj= z'),---~f,-kvk.
c

In vector notation, these equations are

do ¢
—="[oXB+<XE]— (vXp),
di v

dr g
—=—"]—eXE++XB] %9
‘o )
vp
+c(p—v ),
52
d
—(m'vy+p)=e
dt ")
g/ OB oE
—(m y+v-p)=ev-E——( 0-—+2-—
% dt at
with
=p (1= 1; 27 3): P4= (i/C)V'p,

I\ dv cg v? vXE
R )|
c dt vy c c

The ten equations (1”) (8”) are six independent
equations for the spin motion and the motion as a
whole. In a uniform magnetic field they become

d e
—(m'vy+p)=-(vXB),
dt c

deo
—o-XB—vXp,
dt v

m'=m—(g/c*)a-B,

with
m'yc24-v- p=const,

pP= ——O‘X (————VXB
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The extra terms, which include Thomas precession
effects, have the important consequence that in a
uniform magnetic field ¢-B is not necessarily a constant
of the motion, even in this approximation in which
radiation damping is neglected;

o en (6]

The extra terms also lead to the interesting result
that a free spinning particle does not necessarily move
in a straight line, but that classically such a particle
can move on a helical path which is the classical analog
of the Dirac zitterbewegung.* In such a motion the
spin and orbital angular momenta are in general not
separately constants of the motion. To see this we note
that in the absence of any external field at all, Egs. (1)
and (8) give

mcvi—l—aiﬂ')j: Pi,

23
0'“=(_Pﬂ)j—P ( )

.7'7}1')7

where P; is a constant four vector such that v,P;= —mec.
Thus, v;= P;/mc, ¢;;=0 is a solution, but it is not the
only solution. Writing P,= (PiW/c) we have

Y2 dv
myv——eX—=DP,
¢ di

7? av
mey——v-aX—=W,
c? dt

(24)

do/dt= (P Xv),
with
y(W—v-P)=mc.

Thus for P=0, we have o= const, and

v dav mc?
v=—-oX— W=—o.
mc? at’ %

This equation is satisfied by a particle moving in a
circle normal to o, and of radius (a/mc)(v2—1)%.

v=QXr, Q= (—md/yo?)o. (25)

For P50, the equations are also satisfied for arbitrary
constant J by

o=J—rXP,
me? (26)
[y o?P—J-Po],
v(J-P)

4See D. Bohm, P. Hillion, T. Takabayasi, and J. P. Vigier,
Progr. Theoret. Phys (Kyoto) 23, 496 (1960), C. Mgller, Ann.
inst. Henri Poincaré 11-12, 251 (1949)

V=
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where o9 is the spin of the particle in its rest system:

iy _62+(v-(r)2
()@

and y=(1—p%)~t=const. Other constants of the
motion are ¢%, ¢-P=J-P, v-p, v-0, but v and ¢ are not
constant in direction:

de/di=QX g,
v=const+QXr,
with
-— ch
Q= P.
vJ-P

(28)

The position of the particle at any time may be
written

4
r(1)=—P+o(H)+R,, (29)

w

where
do/di=QXp, (30)
Ry=PXJ/P?=const, (31)
W2= P>+ M?c, (32)
M=maooP/I-P, y=mW /M2 (33)
From (29) the velocity may be written

v=vy+QXp, (34)

where vo=c2P/W is the forward velocity on which is
superposed the motion in a circle. On squaring Eq. (34)
and using (33), we find the radius po of the circle:

1

m? 3
___1>

Hence M <m, so that since W>Mc¢? it follows that
v>1 as required. We then have

W=M6’Yo,

po_ — (35)

Mc

P=M’Yo'l)0,

where vo= (1—1¢/¢?)7%, so that M is the effective mass
of the particle.

The effective spin S of the particle may be defined
as the sum of its intrinsic spin ¢ and the angular
momentum due to the helical motion:

S=o+oXP. (36)
From (26) and (31) it follows that
s="7p 37)
1=
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Thus in the motion described by (29), S is directed
parallel or antiparallel to P according to the sign of
J-P, which by (33) also determines the sign of the
effective mass M. Hence, S-P has the sign of M, and
the magnitude of S is S=moo/M. Since M<m, it
follows that S>oo. The magnitude of the angular
velocity of rotation is M2¢*/W.S, and its sense is opposite
to that of S.

From (26) and (31) we note that J may be broken
into two parts which are separately constants of the
motion for a free particle:

J=L+S§,
where

L=RXP,

and Ry is the vector drawn from the origin perpendicular
to the axis of the helix (see Fig. 2). The radius po (Eq.
35) may then be written

pPo= (S?‘—(Toz)%/MC. (38)

It was pointed out in reference 1 that the classical
limit of the Dirac equation is obtained by setting g=0
in the above theory. In this limit, Egs. (1’) and (8’)
become

3= — (v:P;—v;Py),

dP;/ds= (e/c) furvs,

where P; is defined by (23) but is now no longer a
constant four-vector. As in the Dirac theory, the
classical theory in this form does not exhibit an explicit
interaction between the spin and the external field.
The first of Egs. (39) may be written in the form

(39)

d e
—(Mijtoi)=—(x:fix—%;fir) vk,
ds c

where
M1,j= (xiP]—x,Pl)

This is of the same form as (22), and the second of
Egs. (39) is of the same form as (10). Similarly it
follows that even if an electromagnetic field is present,

v, Py= —mc,

which is to be compared with (12).
Finally we note that for g=0,

PiPi= (e/c) favioiiVi,

Girfin= 2 furvio,i0;,
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F16. 2. Classical motion of a free spinning particle.

d e e .
_(PiPi—'_U'ikfik) = ——0itJ k.
d c

) 4

so that

Thus in a uniform and static field,
Pipi—- (e/c)mkfik= —'MZGZ

is a constant of the motion. We may write this in the
form

W2= 2P+ M?*—2ec(o-B+=-E),
or, nonrelativistically

P2

e
W=M+———(o-B+=-E),
2M Mc

where P=p—(¢/c)A, W=E—ep, p, E being the
canonical momentum and total energy, respectively.
Thus in this limit the particle behaves as if it had a
rest mass M, magnetic moment es/Mc, and electric
moment er/Mc. However M is not the bare mass m
assumed for the particle, and in time- or space-varying
fields M is not necessarily a constant of the motion.



