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An extension of recently developed methods determines a rigorous upper bound on (—# cotn)™, where
7 is the phase shift, for the general one-channel scattering process. The method, unfortunately, requires
truncation of the various potentials, but it should generally be possible, in practice, to so truncate the
potentials that the difference between the phase shifts of the original problem and of the problem for which
a bound is obtained is insignificant.

In the course of the development it is necessary to introduce, for compound system scattering, an absolute
definition of the phase shift, not simply a definition modulo 7. The definition chosen is to take the projection
of the full scattering wave function on the ground-state wave function of the scattering system, and to
treat the resultant one coordinate wave function as if it were the scattering wave function for a particle
on a center of force. Though irrelevant with regard to the determination of a bound on cotn, it is interesting
that at least for some simple cases this definition automatically increases the phase shift by at least =
whenever the Pauli principle introduces a spatial node into the scattering wave function. The triplet scat-
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tering of electrons by hydrogen atoms provides an example.

1. INTRODUCTION

N a series of papers,’~ it has been shown that for
the one-channel problem, to which the present paper
is restricted, it is possible to replace certain variational
principles for scattering theory by much more powerful
minimum principles. More specifically, a rigorous upper
bound on the scattering length, A, was first obtained
for the relatively simple case of the (zero-energy)
scattering of a particle by a static central potential
which is not sufficiently attractive to bind the particle.!
Using the Hylleraas-Undheim theorem,® it proved to
be possible® to extend the method to the scattering of
a particle by a static central potential (henceforth to
be denoted simply as one-body scattering) when bound
states do exist. (The interaction with the electromag-
netic field is assumed to have been turned off, so that
capture can not take place.) The generalization to the
scattering of one compound system by another, for
zero initial relative kinetic energy of the two scattering
systems, was trivial.?

The method was then extended to treat positive
energy scattering.* The presentation was there re-
stricted to the one-body problem, taking into account
bound states when they exist. The quantity bounded
from above in this case is (—#% cotn)™, where 7 is the
phase shift; this, of course, reduces to 4 as k& goes to
zero. Unlike the situation at zero energy, it was,
unfortunately, necessary to restrict the potentials to

* The research reported in this article was sponsored by the
Geophysics Research Directorate of the Air Force Cambridge
Research Center, Air Research and Development Command, the
Office of Ordnance Research, and the Office of Naval Research.
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3L. Rosenberg, L. Spruch, and T. F. OMalley, Phys. Rev.
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41, Rosenberg and L. Spruch, Phys. Rev. 120, 474 (1960).
In Eq. (5.4c) —kR should be replaced by 6 — (P—i—l);r In the last

integral of (2.5), u; and ¢, should be interchanged.
5 E. A. Hylleraas and B. Undheim, Z. Physik 65, 759 (1930).

those which vanish identically beyond some given
point R. While the rigorous bounds obtained do not
then generally apply directly to the real problem of
interest (account must be taken of the truncated
portion of the potential), it should be emphasized that
the effects of the artificial restrictions on the potentials
may be made to be quite small; indeed, in principle,
we may come as close as desired to the true problem,
by choosing the point R beyond which the potential
must vanish to be further and further out. In practice
the necessary labor increases as the point is moved
out, but it increases sufficiently slowly so that it should
ordinarily be possible to choose the point R far enough
out so as not to have introduced any serious truncation
error without having unduly increased the work
required.

It is the purpose of the present paper to provide the
further extension to the problem of the positive energy
scattering of one compound system by another. (For
the one-channel scattering with which we are presently
concerned, this is the final possible extension.) As for
positive energy one-body scattering, the various po-
tentials must be truncated.

In the extension of the formalism for positive energy
scattering from the one-body problem to the case of
compound system scattering, certain new features arise
which were not present in the zero-energy case and
which require some study. The development of a bound
in the method that we have used always effectively
involves the expansion of the difference function, the
difference between the trial function and the exact
function, in terms of some complete set of functions.
More precisely, the question is always whether or not
the difference function satisfies the boundary conditions
which are necessary if it is to be possible to use it as
one of the trial functions in the application of the
Hylleraas-Undheim theorem. For one-body scattering,
it was shown! that the complete set could be taken to
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be the eigenfunctions either of an associated potential
strength eigenvalue problem or of an associated energy
eigenvalue problem. The former was found to be
preferable, but both gave rigorous bounds. It will be
demonstrated in Sec. 4 that the potential strength
eigenvalue approach admits of a straightforward
generalization to include the case of compound system
scattering. The energy eigenvalue approach, on the
other hand, will not, in general, be applicable for
compound system scattering. It is possible to make the
energy eigenvalue approach applicable, but unfortu-
nately only by introducing certain rather restrictive
boundary conditions on the trial function (see Sec. 5).
The origin of the necessity of these restrictive condi-
tions, for many-body scattering, lies in the fact that
for any given R, the wave functions of the virtually
excited states, while decaying, have not vanished
identically.

The technique for getting bounds on phase shifts
using the associated potential strength eigenvalue
problem® was first given by Kato for the one-body
problem and later extended to some restricted cases of
scattering by compound systems’; in this latter work
numerical calculations for ¢tH scattering were included.
We note that using the method of the present paper it
would now be quite feasible to perform the ¢tH calcu-
lation for higher values of the kinetic energy of the
incident positron.

It might be noted that the same remarks are appli-
cable for compound system scattering with regard to
the error introduced by truncation as were applicable
for one-body scattering. As examples, consider the
scattering of electrons or positrons by hydrogen. An
estimate based on the method of the present paper is
that for R of the order of 15 Bohr radii, only about
three or four eigenstates need be accounted for,? right
up to the threshold energies for inelastic scattering,
i.e., 7 ev for ¢tH and 10 ev for ¢ H.

2. DEFINITION OF THE PHASE SHIFT

The formal development of a bound is based on a
consideration of the associated potential strength
eigenvalue problem noted above. One here encounters
the necessity of having a definition of the phase shift
which is unambiguous. This is in contrast with the
normal requirements where one need only know some
trigonometric function of #, that is, one need merely
know 7 modulo . Despite the fact that theorems have

6 T. Kato, Progr. Theoret. Phys. (Kyoto) 6, 395 (1951). We
might note that a somewhat similar eigenvalue problem has
recently been studied by M. Rotenberg (to be published).

7 L. Spruch and L. Rosenberg, Phys. Rev. 117, 143 (1960).

8 This estimate was arrived at with the aid of a rather crude
approximation, namely, by assuming that the incoming particle
is unaffected by the hydrogen atom. It is nevertheless adequate
for the purpose intended, i.e., to indicate that there exists a
significant range of energies in which the calculation can be
performed without an undue amount of labor. Of course the actual
bound obtained will not depend on any such free wave approxima-
tion.
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been surmised which involve the value of n (not simply
of 7 modulo =), and despite the fact that phase shift
values are often discussed for scattering by compound
systems, to our knowledge no definition of 4 has been
given which is applicable to general compound system
scattering. While the above theorems and values
undoubtably have some meaning,® and certainly so
within the context of some approximation, such as the
static approximation, it is clear that an unambiguous
definition of the phase shift is very much called for.
One would, of course, like to choose a definition which
is the most natural possible generalization of the
definition for one-body scattering, but this general
question doesn’t arise in our present concern in ob-
taining a bound on cotn.

We now propose a definition of the phase shift for
the scattering of one compound systems by another.
(As always in the present paper, we are concerned
with systems and energies for which the open channels
can be decomposed and analyzed in terms of uncoupled
channels.) To avoid irrelavant kinematical complica-
tions, we give the definition for the particular case of
the zero orbital angular momentum scattering of a
neutron by a nucleus of angular momentum I. We
further assume, purely for convenience, that the total
angular momentum J, and its z projection, J., satisfy
J=J,=I+%. (In Sec. 4 the description of the method
for obtaining a bound on k cotn will be given in terms
of this system.) We define the function

¢l = f Py (i) Wdrs 2.1)

where ¢, is the distance between neutron ¢ and the
center of mass of the nucleus which consists of all the
particles except neutron 4. F; is the ground-state wave
function of this nucleus, ¥ is the full scattering wave
function, and Xss,(z) is the spin function for neutron 1.
The integral is over all coordinates except g;, and is
understood to represent a summation over all spin
indices as well. The phase shift is defined by treating
g(g:) as a one-body wave function and applying one of
the standard definitions of the phase shift for static
potential scattering, namely

n=lim (mwr—kg;™),
M0

where ¢,(™ is the mth zero in g(g:).
We note that from the relation

W — constXy(2)F; sin(kg:+1)/qs,

it follows that g(g;) — const sin(kg;+n) as ¢;—
which guarantees that g modulo = as defined by Eq.
(2.1) is correct.

9 It seems likely, for example, that when finally some definition
will have been introduced of sufficient utility to be generally
acceptable, the phase shifts that follow from this definition will
generally be the same as those that have been quoted.
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An Application : Triplet Electron
Hydrogen Scattering

It has been stressed that for the purposes of obtaining
a bound, the question of the justification of our defi-
nition of the phase shift does not arise. However, since
the question of a useful definition of the phase shift for
compound system scattering is a very interesting one
in its own right, it may be worth noting that the
definition given enables us to see, in a few simple cases
at least, how contributions to the zero-energy phase
shift arise by virtue of the Pauli principle. (Such
contributions have been discussed previously!® on the
basis of an approximate model, the so-called static, or
no-polarization approximation.) As an example we
consider the zero-energy scattering of electrons by
atomic hydrogen in the triplet (spatially antisymmetric)
case. We wish to show that the antisymmetry of the
wave function implies that the phase shift is at least .
According to our definition, as applied to this problem,
we need only show that the function,

g(‘h):f (]2207sz sinf12df1z F(g2)¥ (q1,q2,012), (2.2)
[} 0

has at least one node. Here ¢; and ¢ are the magnitudes
of the electron position vectors, 61, is the angle between
those vectors, and F(g,) is the hydrogenic ground-state
function. (The subscript on F is redundant in this
particular discussion and will not be retained here.)
The spins have been accounted for. We form the
integral

0

fF(ql)g(ql)912d91=f qﬁdmf q:dgs
0 0 0

Xf sin012d012F (Q1)F((]2)‘I’ (411(12,912)~
0

This integral clearly vanishes since ¥ is antisymmetric
in the electronic coordinates while F(g1)F(gs) is sym-
metric. The fact that the ground-state function F(g1)
is nodeless leads to the desired result, namely n=#.1

After the present work was completed, we learned
from Dr. A. Temkin that he has considered the identical
definition of the phase shift for compound system
scattering, and further that he has obtained theidentical
result for the zero-energy triplet e"H phase shift.

An extension of the triplet e"H phase-shift result to
positive energy scattering is discussed in Sec. 4.B.

10 P, Swan, Proc. Roy. Soc. (London) A228, 10 (1955).

11 The zero-energy triplet phase shift is generally taken to be =.
We note that this has only been established within the context
of the static approximation. Indeed, as observed above, no
definition of the phase shift for the true problem has previously
been advanced.
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3. DEFINITION OF THE PROBLEM FOR WHICH THE
BOUND IS TO BE OBTAINED

For purposes of clarity we begin with the case in
which the mass of one of the scattering systems can be
effectively taken to be infinite. A prototype problem
would then be the scattering of an electron by a neutral
atom of atomic number Z. To describe the assumed
potentials, we first define three regions in configuration
space. The first region contains that portion of configu-
ration space for which all of the Z+1 electrons are
within a sphere of radius R centered about the nucleus
of the atom. Region (2) is further subdivided into Z+1
parts; region (2¢) contains that portion of space for
which all but the 7th electron are within the sphere of
radius R, while the 7th electron is not, where 7 runs
from 1 through Z-+1. Region (3) consists of the rest
of space, that is, the part for which two or more elec-
trons are outside of the sphere.

In region (1), the potentials are the true (in this
case, Coulomb) potentials. In region (2¢), all but the
ith electron interact as before, but the 7th electron is
assumed not to interact with the others. In region (3),
the potentials are taken to be infinitely repulsive.

We return now to the particular problem discussed
in Sec. 2, namely, the zero orbital angular momentum
scattering of a neutron by a nucleus consisting of Z
protons and N neutrons. We again divide space into 3
regions, but because the center of mass is not now fixed
it is necessary to introduce the auxiliary parameters,
S:. These are defined, for any distribution of particles,
as the radius of the smallest sphere whose center is at
the center of mass of the N4-Z particles excluding
neutron ¢ and which contains all these N+Z particles.
(4, of course, now runs from Z+1 through Z4+N-1.)
The three regions are chosen to be

(1) (1i<R,
S:<[(N+Z—-1)/(N+Z+1)]R, for each neutron

Si<[(N+Z—1)/(N+Z+1)]R,
i1=7Z+1,Z+2, --- or Z+N-+1

(3) the rest of configuration space.

The limit on .S; has been chosen such that the N+41
regions which make up region (2) are nonoverlapping.

The potentials are assumed to satisfy the following
requirements. In region (1) the particles interact via
two-body central potentials which allow for space and
spin exchange. As discussed in reference 4 we exclude
tensor forces since we are restricting ourselves to one-
channel processes, and we are considering nonzero
scattering energies. In region (2¢7) the potentials are of
the same form as in (1) except that the interaction
between neutron ¢ and the rest of the system vanishes.
The potentials are taken to be infinitely repulsive in
region (3).
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It will now be obvious how to define the problem for
other systems, such as the scattering of one compound
system by another,’? where each nucleus may carry a
net charge.!

As shown in reference 2, the generalization of the
Kato identity for the problem under consideration
takes the form

k cot(n—6)= k cot (ni—8) + (2u/%?) f U (H— E)¥ dr

— Qu/7) f Q*(H—E)dr, (3.1)

where now the wave function V¥, which is a solution of
(H—E)¥ =0, satisfies the boundary conditions

V= (—1)*(N+1)" Xy () {F; sin(kgi+n)/[g: sin(n—6) ]
+2 0 @D f9(q,)},
in region (24), Z4+1=5i<Z+N+1;

¥=0 in region (3).

Here 9 satisfies 0=8 < but is otherwise arbitrary. E is
the total energy, the sum of the relative kinetic energy
and of E,, where E, is the ground-state energy of the
target nucleus. The incident relative wave number &
therefore satisfies

12k 2u=E—E,.

The F® represent normalized excited state wave
functions of the system which does not include the ith
particle, while the f{® are free particle decaying
functions. If, for example, a denotes a nuclear state
with zero total angular momentum, then

fi(a) = e"‘Kaqi/qi’
- Ka2h2/ (2[#)+Eu= E,

with Ee. representing the energy of the ath nuclear
excited state. If o represents a nuclear state with
angular momentum L, then F/®f(® will involve a
sum of products, each containing a pair of angular
momentum eigenfunctions. ¥, satisfies similar boundary
conditions with  and a,, replaced by 5; and a,, respec-
tively. It is our purpose to obtain a lower bound on the
error integral, JSQ*(H—E)Qdr, where Q=V¥,—V,
thereby providing an upper bound on % cot(np—#).

where

4. BOUND ON kcot (n—8 AND ON ¢

a. Associated Potential Strength
Eigenvalue Problem

We consider the equation
(H—E)®=up®,

12Tn this case, incidentally, the definition of a one-body scat-
tering function, in terms of which the phase shift is defined, will
require that we multiply the true scattering function by the
product of the ground-state wave functions of the isolated
systems before performing an integration. Correspondingly,
I, will be the sum of the ground-state energies.
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where p is positive, but otherwise arbitrary, in region
(1) and vanishes elsewhere. ® satisfies the boundary
conditions

&= (—1){(N41)"4x3;(3){constF; sin[ kg:+6(u) 1/ ¢:
+ 20 bl [ (q)},

(in region (2), Z4+1=i=Z+N+1;
in region (3).

(4.1)

d=0

The eigenfunctions ®, and their corresponding eigen-
values u, are defined by the condition'®

6(un) =0+nm.

In the following, we make the reasonable assumption
that for finite u and for positive scattering energies 6(u)
is a continuous function of g ; this is, of course, known
to be true in the one-body problem.

In order to apply the Hylleraas-Undheim theorem,
which leads to the desired bound, it is necessary to
establish the existence of a lowest eigenvalue. By
virtue of the monotonicity of cotd(u) the continuity of
6(u) leads to the monotonicity of &(u) itself with
respect to u. We therefore need only show that §(— )
is finite. In fact, as in the one-body case, we have
6(— o )=—kR. Thus, for p=—c the corresponding
wave function, ®(— « ), vanishes in region (1) and has
the form given in Egs. (4.1) in regions (2) and (3).
According to our definition of the phase shift (see
Sec. 2), §(— ) is determined by examining the function

(a5 — )= [ Foxu@a(= )i
We clearly have
§ (q 4 — ® ) = 0)
= const sin[kg;+6(— =) /g,

from which the stated value of §(— «) is immediately
deduced.

The boundary conditions satisfied by the difference
function Q are given by
Q= (—1)4{N+1)~"tXy{constF; sin(kg;+86)/q:
+2a Cal' i [ (q4)},
in region (20), Z+1<i<Z+N+1;
in region (3), ’

qi<R
2R

Q=0
which is of the form satisfied by the eigenfunctions ®,.
Therefore, © is an allowable trial function in an appli-
cation of the Hylleraas-Undheim theorem to the
associated potential strength eigenvalue problem. The
formal steps required to derive an upper bound on
k cot(p—6) are then identical to those described in
reference 4. The upper bound obtained, the basic

18 The fact that the Hamiltonian, H, is Hermitian under the
assumed boundary conditions for the ®, is easily verified; the
required calculation is quite similar to the one by which the
Kato identity was established (see reference 2) and we omit the
details.
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result of the present paper, is

 cot(n—0) <k cot(ne—0) -+ (2u/72) f ¥ (H—E)V dr

—pPy7—1 1 2
) Y — f O (H—E)Vdr|, (42)
=P lUnt

where the ®,; are trial functions which satisfy the
boundary conditions

&= (—1){(N+41)"2x33(s){constF; sin[ kg;+07/¢:
+Za batFi(a)fi(a) (qi)}7

in region (24), Z+1=i=Z+N+1;
in region (3);

(4.3)

‘I)M=O

as well as the conditions

f‘ﬁn t*q)thdT:‘ 5nm,
(4.4)

f‘I)M*(H—-E)CI’de=uM§,m, [Jn;<0.

We here have the condition that

§— (P+1)r< —kR<6— Pr. (4.5)

Note that the restrictions u,: <0 impose some minimum
requirements of accuracy on the trial functions &,..
The inequality of Eq. (4.2) is valid provided that the
number of trial functions 7” which have been found
with the required properties is equal to the exact (in
general, unknown) number 7" of eigenfunctions with
negative eigenvalues: In almost every case, however,
it should be possible on the basis of the numerical
calculations involved in the determination of the
negative trial eigenvalues un; to be fairly certain that
T’ does in fact equal 7.

b. Conditional Inequality

In the one-body case, it was shown* that by the use
of the conditional inequality* one could obtain a
rigorous bound on 7 even when one could not be sure
that 7'=T, that is, even when one did not have a
rigorous bound on % cot(y—#). It was found that

"7>71L,a
where 7./ is defined by the equations
k cot(n.'—0)=right-hand side of the
one-body equivalent of Eq. (4.2),

T'r+6— (P4 1w <qr' < (T'+1Dr+6— (P+Dr.  (4.6)

This lower bound on #, while rigorous, will be too low
by roughly (T'—7")r if T’ is less than 7. (7” . can
never be greater than 7', for we can never find more

141, Spruch, Phys. Rev. 109, 2149 (1958).
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negative potential strength eigenvalues than actually
exist.) The lower bound then obtained will then be
useless with regard to a comparison with the experi-
mental data, though it may still be useful as the
starting point for further theoretical calculation.*

The above developments can be taken over directly,
with complete rigor, for the many-body case. There is
nevertheless one respect in which the use of the condi-
tional inequality differs for the many-body problem
when identical particles are present from its use for the
one-body scattering problem. Thus, account must be
taken of the additional nodes which arise from the
symmetry requirements on the wave function, or the
lower bound %/, while rigorous, may be too low by a
multiple of = even when the number of eigenstates
with negative eigenvalues u, has been correctly ac-
counted for. The effect of the Pauli principle can
perhaps be better understood through a comparison of
one-body scattering and the triplet (spatially anti-
symmetric) scattering of electrons by hydrogen atoms.
For both systems, we have that 6(— « )= —kR. [For
u=— oo, the one-body scattering function vanishes for
0=<¢=R, as does the equivalent one-body scattering
function, g(g:).] However, while 8(x) is a continuous
function of w in the neighborhood of u=— e for one
body scattering, it is #ot continuous for e H triplet
scattering. It is to be recalled that the e"H problem
under consideration is the true problem modified by
the introduction of a cutoff and a repulsive barrier.
The proof given in Sec. 2 that n= at zero energy can
then be immediately extended for 270 to show that
kR-+n>m. To see this, we note that in the definition
of g(¢q1), Eq. (2.2), the range of integration, 0 to o,
can be replaced by 0 to R since F(ge) exists only in
that range. It then follows, using the same symmetry
argument as was used at zero energy, that the integral

R R R
f F(g1)g(q1)gdg1= f 4112d91f g2dg»
0 0 0

X f sind2df1z F (1) F(2)¥ (q1,92,012)
0

vanishes. It follows that g(gi) has a node for some
¢1<R, which in turn, as has been previously shown,?
implies the inequality AR-+%>m. The argument is
independent of the form of the potential so that we
have, more generally, 2R+ 6 (u) > for all finite u. There-
fore, with the integer P defined as in Eq. (4.5) we would,
in the application of the conditional inequality tech-
nique to this problem, replace Eq. (4.6) by the form

T+ Dr+6— P+ <t/ < (T'42)r 40— (P+ 1),
which gives rise to a more accurate lower bound on .
5. USE OF ENERGY EIGENFUNCTIONS

It was shown in reference 4 that in the one-body case
the introduction of an associated energy eigenvalue
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problem will lead to similar though less general results
than obtained using the associated potential strength
eigenvalue problem. When the scatterer is a compound
system, however, the energy eigenvalue approach is
not valid, since by definition the energy eigenfunctions
vanish at the box [i.e., at the boundary of region (1)],
while the difference function @ does not; Q is therefore
not an allowable trial function in the application of the
Hylleraas-Undheim theorem. Here the distinction be-
tween an allowable trial function and a function which
can be expressed in terms of a complete set of functions
is essential. If we were merely interested in the latter
case we would not have required that the function
satisfy particular boundary conditions.

In the one body problem, the difference function,
there denoted by w, does vanish at the box. There,
the form of w is known to be

w(r)=const sin(kr+6), r=R,

so that by the appropriate choice of R, it is a trivial
matter to arrange to have w(R)=0. In compound
_system scattering, however, Q contains, in addition to
a term proportional to the above form, contributions
from the virtually excited states, with unknown ampli-
tudes. There is then no choice of R which will cause Q
to vanish, though clearly one can still arrange to have
the nondecaying component of @ vanish at the edge of
region (1).

It is, of course, true that by choosing R large enough,
it is possible to make the effect of the decaying states
quite small. However, there is a reason for not making
R too large; there are then too many energy eigenstates
which must be accounted for in the determination of a
bound. Furthermore, one does not really know how
large R must be made before the effect of the decaying
states is truly small. Not only does one then have an
approximate if well-defined problem (the potentials
having been truncated), but one has an ‘“‘approximate
bound” on that approximate problem.

Recently, Percival'® has attempted to extend a
technique!®*” introduced for obtaining a bound on the
phase shift for one-body scattering to the compound
system scattering case. The approach was restricted to
the very special case where no Pauli exchange can take
place between particles in the scattered and scattering
systems, but even for this extremely restrictive case,
we can find no rigorous justification for this approach.
This is not very surprising, since we have just seen that
the straightforward energy eigenvalue approach does
not lead to a rigorous bound, and, as indicated in
reference 4, there is an intimate connection for the
one-body case between the energy eigenvalue approach
and that of Percival and of Risberg. It seems worthwhile
nevertheless to give some details as to why the Percival
approach is not rigorous for many-body scattering.

151, C. Percival, Phys. Rev. 119, 159 (1960).

16 T, C. Percival, Proc. Phys. Soc. (London) 70, 494 (1957).
17V. Risberg, Arch. Math. Naturvidenskab. 53, 1 (1956).
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It will be recalled that in one-body scattering, there
is a simple connection between the wave function for
the eigenstate with energy E; of a particle confined to
the region R within which V (#) exists and the scattering
wave function at the energy E; for the potential V (r)
truncated at R; the scattering wave function is simply
the extension of the eigenstate wave function, con-
tinuous in value and slope at R. There is no such simple
connection in the case of compound system scattering.
Once again, the origin of the difference is the existence
of virtually excited states, for a wave function which
vanishes at the edge of region (1) must contain terms
of the form

Fi(“) (e~xa(qi—-R) —_ 6+Ka(qi"R))/q¢.’

where for simplicity we consider the case for which
F,® represents a nuclear state of zero total angular
momentum. Due to the presence of the exponentially
increasing term, the smooth continuation of the eigen-
state wave function into the rest of configuration space
cannot represent a scattering wave function.

It is true that for R “large enough,” the approach is
not unreasonable, and that is really all that Percival
claims, but one does not obtain a rigorous bound on
any well-defined problem.

It may be of some interest that the results of the
present paper can be used to show that there exists a
modification of the Percival approach which can be
justified. The modification is not a trivial one since it
involves placing an additional restriction on the trial
functions. This modified form, being a special case of
our general development, has the interesting property
that it does include the effects of the Pauli principle.

Thus, suppose we choose for p some constant value
in region (1). (It must of course vanish elsewhere.)
Furthermore, we choose the boundary conditions
satisfied by the trial function ¥; to be of the form

Vo= (—1){(N+1)" X5 ()){ F: sin(kqit+n:)/
[gsin(n.~6)1},
in region (24), Z4+1=¢<Z+N+4-1;

¥,=0 in region (3);

that is, no sum over excited states appears. Similarly,
we choose the trial eigenfunctions ®,.; such that the
coefficients of the terms in the sum over excited states
vanish. With the choice kR+8=mm, m an integer, the
functions ®,; vanish at the boundary of region (1),
i.e., they are allowable trial energy eigenfunctions in
region (1). Indeed, with our choice of p the boundary
conditions along with the conditions given by Egs.
(4.4) are just those placed on trial energy eigenfunctions
in the application of the Hylleraas-Undheim theorem.
The resultant inequality for & cot(n—8), along with an
application of the conditional inequality, then leads to
a modification of the Percival result which is rigorous
and which does allow for identical particles. However,
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since one here requires the use of trial functions whose
flexibility is restricted by the physically unnatural
conditions mentioned above (the exact function does
not satisfy those conditions) there is a limitation on the
accuracy of the bound that can be obtained. In fact,
it may well not be possible to find the appropriate
number of trial functions &, of the prescribed restricted
form (i.e., we might necessarily have T'<T) in which
case the bound obtained on 7 will be too low by approxi-
mately (T—T1")x.

It should be emphasized that while we obtain valid
results using (restricted) trial energy eigenfunctions
is nevertheless not an allowable trial function in an
energy eigenvalue problem. The difficulty has been by-
passed by the use of the associated potential strength

AND L. SPRUCH
eigenvalue problem as the starting point. The point is
that in this latter approach one places conditions only
upon the oscillatory term, through having specified the
phase shift §(u»); no restrictions are placed on the
amplitudes of the virtually excited decaying states.
The primary purpose of the present paper is the
derivation of Eqs. (4.2), (4.3), and (4.4). The analysis
of previous work presented in this section is simply a
byproduct. We have presented the analysis for two
reasons. Firstly, it sheds some light on the methods of
the present paper as well as on previous work. Secondly,
there will be occasions when for practical reasons one
would use trial functions of the restricted form; that
is what was done, for example, in the analysis of the
scattering of positrons by hydrogen atoms.”
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The isotope shift in 31 spectral lines in the nickel arc spectrum
has been determined by the use of a Fabry-Perot interferometer.
The normal mass shifts were calculated (=-0.025 cm™ between
Ni%8 and Ni%) and subtracted from the observed isotope shifts.
The differences were attributed to the specific mass and field
effects. The relative shifts of levels of four configurations were
deduced from the observed line shifts, these being the “complex”
configurations 3d%4s? and 3d%4s4p and the two-electron configura-
tions 3d%s and 3d%p. It was shown that the shifts due to the
specific mass effect are a significant part of the observed shifts,
Perturbations due to interconfiguration interactions were postu-
lated to explain some of the observed shifts. The isotope shift to
be expected between Ni®® and Ni* on the basis of field effect
calculations is about —0.02 cm™ for a single 4s electron, while the

INTRODUCTION

SOTOPE shift of spectral lines can be divided into
two classes, that caused by the mass effect and that
resulting from the field effect. The mass effect consists
of two parts, normal and specific, and results from the
nucleus having a finite mass. The normal mass effect
‘can be calculated exactly while the specific mass effect,
present in spectra of atoms with more than one electron,
is very difficult to calculate precisely. Both of these
effects decrease with increasing Z. The field effect,
which increases with increasing Z, arises because of the
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District, the National Science Foundation and, through the
research committee of the University, the Wisconsin Alumni
Research Foundation.

t This report is based-on a thesis submitted to the University
of Wisconsin in partial fulfillment of the requirements for the
Ph.D. degree.
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shifts observed are as large as +0.190 cm™., A large fraction of
this shift must therefore be attributed to the specific mass effect.
By noting the deviations of the relative shifts between adjacent
pairs of even isotopes from those predicted by mass effect theory,
it was possible to deduce the relative field effect. The relative level
shift resulting from the field effect is nearly the same for the
adjacent isotope pairs 60-62 and 62-64 while the relative level
shift for the isotope pair 58-60 is approximately 0.004 cm™ larger
than that for the other adjacent isotope pairs. The arrangement
of neutrons in the outermost nuclear shells is believed to account
for this difference. Within the experimental error the level shift
of the Ni®! relative to the neighboring even isotopes is such that
there is no odd-even staggering of the levels.

deviation of the nuclear electric field from a Coulomb
field and can be used to study details of nuclear struc-
ture. This is probably the most important consequence
of isotope shift studies.

In the very light elements the mass effect dominates
and can account qualitatively for the observed shifts.
In the heaviest elements the mass effect is negligible
and the field effect can roughly account for the observed
shifts. In the elements of intermediate mass the two
effects are comparable. As a result, the shifts observed
are small because the mass and field effects within the
levels are often in such a direction as to oppose one
another. In order to use the field effect in the determi-
nation of nuclear properties, it is necessary that the
contributions of the mass and field effects to the
observed shifts be known. For elements of intermediate
mass it is difficult to determine experimentally the
relative contributions of these two effects.



