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The system under consideration is a number of molecules
contained in a resonant cavity and isolated from external in-
Quences. The molecules are assumed to have two energy levels,
and the molecular", frequencies have a Gaussian distribution
centered at the cavity frequency; the initial states of the molecules
are uncorrelated. The onset of correlation in the molecular
behavior is studied by examining the Geld in the cavity and the
power emitted by the molecules for effects depending on the
square of the number of molecules, in a perturbation theory
approach.

It is shown that correlation effects manifest themselves in the
fourth order interaction. Both the correlation energy in the Geld

and, the correlation power emitted by the molecules approach

steady-state values after transient periods determined by the
relaxation time of the cavity and the frequency spread of the
molecules. A physical picture of the correlation effects, as being due
to induced emission produced by the lowest order spontaneous and
thermal emission, is investigated and found to be approximately
correct. The ratio of correlation energy to lowest order spontaneous
emission energy is derived. An analysis is made of the dependence
of the results on the initial states of the molecules, and interpreted
in terms of the physical picture. The effect of the presence of a
number of cavity modes, rather than a single mode, within the
frequency spread of the molecules is investigated under simplifying
assumption, and is shown to multiply the correlation effects by
the square of the number of modes.

INTRODUCTION

HE subject of correlation in a many-body system
includes a large number of diverse problems,

some of which have become very popular recently.
Correlation is caused, of course, by a coupling between
the individual bodies of the system, which can take one
one or more of several forms. The problem to be
treated in the present article deals with the correlation
of a number of atomic systems, which we refer to as
molecules, coupled to one another through the electro-
magnetic field in a resonant cavity. The question we ask
is the following: Suppose we have a cavity containing a
number of molecules that are isolated from external
inQuences and are initially in uncorrelated states. Will
correlation arise, and if so, in what manner?

The meaning of correlation in the present context
will be described first. The molecules are uncorrelated
if the state of each molecule is independent of the other
molecules. Correlation may be measured by the extent
to which the behavior of each molecule is affected by
the others. The di6'erence between the behavior of
molecules in correlated and uncorrelated states has
been discussed in some detail by both Dicke' and the
author. ' In reference 2 it is shown that when molecules

' R. H. Dicke, Phys. Rev. 93, 99 (1954).' 1. R. Senjtzky, Phys. R,ev. $/1, 3 (1958).

are in a correlated state, spontaneous emission is
proportional to N', where N is the number of molecules;
if the molecules are in an uncorrelated state that is
also an energy state, spontaneous emission is propor™
tional to N. There are, however, uncorrelated states in
which each molecule is in the same superposition of
individual energy states, and in this case the sponta-
neous emission is also proportional to N'. The latter
type of state may be regarded as corresponding to a
classical array of dipoles oscillating with the same
well-defined phase; it can be created by subjecting the
molecules to an external driving field. We are excluding
the consideration of such classical-type correlations,
since they cannot arise in an isolated system, and use
the term correlation to indicate only quantum-mechan-
ical correlation. (In the language of reference 2, the
case in which each molecule is in the same superposition
of individual energy states is called uncorrelated but
coherent. ) Incidentally, as explained in reference 2, in
the correlated energy state the molecules may also be
regarded as oscillating in phase with each other, but
the absolute phase is completely undetermined. ' With

3 We give a simple illustration of correlated and uncorrelated
states for the case of two similar molecules. If q; is the i'th
energy state of the mth molecule, then y&,.q» is an uncorrelated
energy state, and 2 &(sn;ys;&sq;pm') is a correlated energy state.
In the language of reference 2, $1/2, where p =aIp ~+a~q I, is
g goherqn& uncogre)g, ,ted state,
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the above exclusion, we can regard emission propor-
tional to S' as an indication of correlation.

The problem of the present article may now be
formulated precisely. We consider a number of initially
uncorrelated molecules in a cavity. There are no external
influences (such as driving field) acting on. the system.
We study both the field in the cavity and the energy
of the molecules as a function of time; the quantities
in which we are particularly interested are those
proportional to g'.

The equations of motion and other preliminaries are
discussed in Part I. Expressions for the field energy are
obtained in Part II, and the physical significance of
these expressions is analyzed in Part III. In Part IV the
power radiated by the molecules is examined. In Part V
the discussion is extended to the case in which a number
of cavity modes, rather than a single mode, interact
with the molecules.

The molecules and the cavity are similar in their
properties to those considered in a recent investigation
of induced and spontaneous emission in a coherent
Geld. 4 Each molecule has two energy states and a
molecular (angular) frequency

cv = (E„s—E„,)/A. (1)
The spread in molecular frequencies is Gaussian, so
that the number of molecules per unit frequency range
at co is given by

p((o ) =Xns- & exp) —ns(cv —(o)sj, (2)

a being the frequency of the single cavity mode under
consideration. The loss in the cavity walls is described
by the loss constant P, which is speciGed in terms of
the cavity Q

p=~/Q' (3)
The molecules are coupled to the cavity Geld by an
electric dipole moment y having only off-diagonal
matrix elements (no static dipole moment). The
electromagnetic Geld in the cavity is described in the
usual manner by

E= —4scu(r)P(f), H= VXu(r)Q(f), (4)

where u(r) is a normalized function describing the
spatial dependence of the Geld in the cavity, and Q(f)
and P(f) are the quantum-mechanical Geld operators
satisfying the commutation relationship LQ(t),P(f))

P+PP+(v'P =F(t) ((u'/c) P—„u„y„(f), (7)

where F(t) is an operator which expresses both the
thermal and quantum-mechanical Ructuation properties
of the loss mechanism:

(F(t))=0,

ro'hP (P

(F(fi)F(fs))= i
2~2 f1—4

+borh(fi ts)f(T), —(9)

f(2') =11+2(c"""'—1)-'], (10)

T being the temperature of the cavity. We do not need
a similar equation of motion for Q, since if P is known

Q can be obtained from

Q= —(4zcs/oP) P, . (11)

which follows from Eqs. (5) and (6). The remaining
equations of motion follow immediately from the
Hamiltonian of Eq. (5):

sos& (f)=l& (f)»-(f)3 (12)

+H.(f) =4~cu.P(f)PH. (f),v„(f)3. (»)
It will be more convenient for our purposes to recast the
differential equations of motion into integral equations.
One can verify by differentiation that

=iA. The method of introducing loss into a quantum-
mechanical formalism was discussed in detail in two
previous articles, ' ' and only the results will be restated
here, as necessary.

We begin with the Hamiltonian

H=Hr+H~+Hf~+P H +P 4rrcu y P, (5)

where Hf is the Hamiltonian of the electromagnetic
fieM, H~ is the Hamiltonian of the loss mechanism, Hf~
is the term describing the coupling between Geld and
loss mechanism, and H is the Hamiltonian of the mth
molecule. The last term describes the coupling between
the molecules and the field, u representing the magni-
tude of u(r ), and y the component of y along u(r ).
The only individual Hamiltonian which need be given
explicitly in terms of coordinates and momenta is

H g
=27rc'P'+ ((u'/Ss. c')Q'. (6)

In reference 6 it is shown that the equation of motion
for P is

2' CN~
H (f)=H ™+ «i(LH (fi)D' (fi)j~P(fi)}

N

4mcg f'~

v (f)=v '"(f)+ ~ «i ~ «& (f—fi)fv-(f), Lv-(f),H (f)]P(fs)j& '(f—f), (15)

' I.R. Senitzky, Phys. Rev. 119, 1807 (1960).The term "spontaneous emission" should be understood as referring to the lowest order
eGect of the molecules. Higher order effects, vrhich are the subject of the present article, are referred to as "correlation" eAects, for
clarity.' I. R. Senitzky, Phys. Rev. 115, 227 (1959).

I.R. Senitzky, Phys. Rev. 119,670 (1960).Note the change of notation from D(t) in this reference to F (t) in the present article.
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where
U (r) =exp/(i/h)H„i'&rj,

and where the symmetrized product ({A,B)=AB—+BR)
is used for convenience. The operators H &'& and

i"(t) describe the dipole moment» and energy of the
mth molecule in the absence of coupling to the Geld, and
are the zeroth order quantities in a perturbation
calculation. These expressions also yield the initial
values in the presence of the coupling. We see that the
coupling between molecules and Geld may be considered
to be turned on at 1=0. As far as the integral equation
for the Geld is concerned, it is more realistic to consider
the coupling between the Geld and loss mechanism to
be turned on at t= —ao. We then have, from Eq. (7)
and the condition P/&o((1,

where

P= Pp+P», (16)

Pg= 'dtt P(tt)—e &e&' '» sinu)(t —tg),

P»= ——P I Cht 7 (t~)e &~&' '» sint0(t —tt).
0

In all the situations to be considered, we assume that
the initial phase difference between the two super-

Strictly speaking, y should be labeled y, since it gives the
amplitude of the component of dipole moment along n(r ).
However, since there is no correlation between the polarization of
the molecules and the direction of the 6eld, we can consider an
average 7 denoted by ~.

Pp is obviously the zeroth order solution for P(t)
Equations (14), (15), and (16) are three integral
equations for the three operators I', p, H . They are
of a form which is suitable for an iterative type of
calculation in perturbation theory, the zeroth-order
solutions being given explicitly.

The quantities to which we will attach physical
meaning are expectation values. We will calculate the
expectation values of the Geld energy in the cavity and
the molecular energy. In order to perform this calcula-
tion in the Heisenberg picture, we must specify the
initial state of the molecules. As in reference 4, we may
want to consider several possible initial states, such as
a thermal state or a state in which all the molecules
have the same energy. The state of each molecule is
given, in general, by

Pm +mls ml++m2&pm2q

and the state of the group of molecules is described by

position constants a j and a 2, which we call the phase
of the molecule, is a random function of m, the molecular
label. This randomness implies that we are dealing
with a number of molecules that have not been prepared
beforehand to oscillate with the same phase. We will
therefore drop those terms in the expectation value
which contain a summation of the initial phases of the
molecules. This means that only diagonal terms of the
operators under consideration, in the energy representa-
tion of the (free) molecules, will contribute to the
expectation value.

Our problem can now be narrowed. We are looking
for the lowest-order terms in the Geld energy and the
molecular energy operators which (1) are proportional
to S2; (2) contain diagonal elements with respect to
the molecules, and (3) are not linear in F. The first
condition is our criterion for correlation, the second
condition has just been explained, and the third condi-
tion follows from Eq. (8).

The expectation value of the Geld energy is given by

(Hg) =2mc'(P')+ (aP/8vrc') (Q').

The evaluations which we must make here, as well as
in the later sections, are fairly complicated and lengthy.
In order to illustrate the method used, we will go into
detail only in the evaluation of (P').

If we express the higher-order operators in terms of
the unperturbed operators, I'p, y "~, and II' &", we
obtain, in general, a sum of numerous terms. Only a
few of the many term's of I" will satisfy our three
conditions. It is therefore advisable to develop a scheme
by which it is possible to pick out for computation only
those terms contributing toward our Gnal result. Ke
note that in order to obtain proportionality to 1P,
we need at least a double summation. Whether or not
a term contains diagonal elements with respect to the
mth molecule depends on the number of times the factor
y &" occurs in that term, since H &" is a diagonal
matrix and does not alter the diagonality properties of
the term. If y &'~ occurs an even number of times, the
matrix is diagonal; and if it occurs an odd number of
times, the matrix is off-diagonal. The arguments of the
operators, the commutator and symmetrizing brackets,
the integrals, and the numerical coefficients are not
pertinent so far as the three conditions are concerned.
We can therefore use, for each term, a shorthand
notation that omits arguments, brackets, integrals, and
numerical coefhcients. 8 "& may also be dropped. It
is important, however, to retain the summation signs.
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Pbl ~P
Pill ~P ~

pm ~pm~p

plol ~p p 2p

lol ~ p p MP+p 2PPl+p 3+2

~z- v-'v +v-'p',

mVmm, Vm'+2 m Vm P ~

(18)

(19)

(20)

(21)

(22)

(23)

It can be seen very easily from these expressions that
no order lower than the fourth in an expression for

We use an arrow instead of an equal sign to indicate
correspondence of the shorthand symbol. For further
simplicity we drop the superscripts (which indicate
the order) of the zeroth order quantities in the shorthand
term. We thus have

P' will fulfill the three conditions enumerated above.
We therefore select the terms in P"4' that satisfy the
conditions.

One sees immediately that P"", for which the
shorthand symbol is P p 2y .2F2, meets the
requirements. So does the term in [Pl'l, P'3l}, which is
described by the short-hand symbol g
&(p ", when we take only that part of the summation
for which m"=m. In a similar manner we can select
the pertinent term in Pt'&Pt41 after we have obtained
the shorthand symbol for P'4', which is rather lengthy.
We write now those terms contributing toward that
part of P2t4& which meets our requirements. Where the
expression for an operator has several terms, and where

some terms are dropped because they do not contribute
toward the result in which we are interested, we put
the symbol " over the operator to indicate that the
expression is incomplete, but contains all that we can
use. We have

where

CO pt
Pl'l(t) =—p u„dtl q„«l(t,) 0 (t—t,),

na 4p

y(r)=e ""sin40r, '

pl' (t)= 40+ p—u—'I
~

dtl dt2 q(t —tl)P2(t2) sin&0 (tl —t2), (26)

where

the subscript ns indicating that I operates on the state vector of neth molecule only;

~t1 ~t2 pt3

P (t) P um um~ dtl
~

dt2
~

dt3 dt4
eI32 m m' J 0 a)0 Elo Jo

X 0 (t—tl) 0 (t3—t4) tIm(tl —t2)[Vm'" (t2)y LVm"'(t3)i IIm«')Vm «'(t4)l IIm '(tl —t2); (2&)

kror p tl ~ t2

P&'l(t) =— Q u ' dtl dt2 dt3 02(t —tl)[y„«l(t2), [y„«l(t3), H «l)p&'l(t3)],
C52 m "O "O "O

327r2 pt ~tg

402@ p u„'u„' ~~ dtl dto 02(t—tl) 02(t3—t4) sln40 (t4 to)pp(to)J,
X[V lo'(t2), LV 'ol(t ), & "')I l. (28)

Since we are interested only in effects depending on 1V2 and not on tV, we ignore the 223=223' terms in Eqs. (27)
and (28). This allows us to take the 223' factor out of the commutator brackets and obtain simpler expressions:

82r
p«l(t)= —402/ p u 'u I 40 dtl ~ dt4 y(t tl)02(t3 —t4)y„«l(t4—) cos40 (t2—t3)

0 J,
Sx ~t ptg

=~'y p u„'u„I, dt,
~

dt, dt30 (t—t,)0(t2—t3)q„.«l(t3) sine (t,—t,),
Jo ~0 0

(29)
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642
P'"(t)= oo'y' g Nm'Nm'~mI~Im dtl d4 PE(to) 0 (t—t~) oo(to —t4)»»~ (t4—4) co»m(4 —4)

m~m' ~ o 0

64m' ~t
oo2p4 Q I &~,&I I, I dt, ~ ~ ~ dt4 P&o~(t4) oo(t—tg)oo(to —to) since (tq —to) sinM (to—t4).

A/2

mmmm'

p 0

(30)

We consider now the products occurring in (P'&'&). From Eq. (26)

32~2 pt IIty pt
halo

(P&"')= co'$' p I 'u ' dt~
I

dt2
I

dto dt4 since (tq —t2) since .(to—t4)p(t —tq)oo(t —to)
o ~o ~o

X((I Pp(to), I„Pp(t4)}). (31)
Again, ignoring the m=m' terms, we have

32" p t t]. ~t pt3
(P&"')= co'y' P I 'u„'(I„)(I„),I dt& dt2 dto ' dt4 since„(t~ —to) sinoo„(t& —t4)

$2 mam' &o Jo J o J,
X o (t—t,) q (t—t,) ((P,(t,), P, (t,)}). (32)

We convert the summations over m and m' to integrations over ~ and &u . Assuming that I ' and (I ) are
su%ciently slowly varying functions of cv to be taken outside of the integral sign as averages, which we call I
and (I), respectively, and making use of Eq (2),.we obtain

32%2 ~t pt
(P&'~') = oo2$41PN4(I)' dt& dt2

~
dt3 dt4(f Pp(to), Pp(t4) })rp(t —tq) y(t —to) sin~(tq —to)

A' J,
XsinM (to—t4) exp f —(1/4&x') L(t~—to)'+ (to—t4)']}. (33)

The evaluation of ((Pz(t&),Pp(t4) })is carried out by means of Eq. (9). It is shown in Appendix A that

((Pp(t, ),P~(t4) })= (ku/4~e') f(T)e &e~" '4~ cos~(t&—t4).
We have, thus

Sx ~t3

(P "')= ~'v4N'&'(I—)'f(T) d4 d4
I

dt, «4E expt ——,'p() t,—t4(+2t —t,—t,)) sin~(t —t,)
c'5

Xsinoo(t —to) sinoo(tq —t2) sinoo(t3 t4) cosoo(t& —t4), (33)
where

E-=exp(-(l/4 ')L(t~- to)'+(to- «)'j}.

The produc& of trigonometric functions in the integrand of Eq. (35) is equal to a constant plus oscillatory &erms.
We drop the oscillatory terms and retain only the constant, which is —„.Our expression for (P&'t') is now

pt ~t3

(P ) 2 dt's dt's ~
dt3 dt4E exp( ——,'p(2t —t&—t3+ j tQ t4

~ )jp (36)

where

A —= (7r/C%)N'y'Q'E'(I)' f(T).

We deal with the absolute value in the exponent by dividing the region of integration into two regions: one in
which 32~& t4, and the other in which t2& t4. Thus

~tg ~E ~4
dto

~
dt3 dt4 E expL ——'P(2t —4—to+ ( 4 t4~)j

&o o ~o o
~t ~t pt pt

dt2 I' dt4 dt~ dto E exPL ——,'P(2t —t~ —to+
~

t&
—t4~)j"o ~o J~o J ~4

where
= F+Z, (37)

ptm pf pt
dt, d« II dt& dto E exp/--, p(2t —ti+4 to t4)j, — —
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and
fZ dt3 dt4 dt's, dt3 E expL ——,'p(2t —ti—t3—t3+t4)j.

By interchanging $2 with t4 and $3 with t&, we see easily that

ft (4Z=
I

dt4 d/2 d4 d]& EJ
0 ~t4 J t4 ~t3

d&2 d&4, dt&
'

dte EJ
o o

where

Thus
J=—expL —-,'P(2 t—ti+ t3—t3—t4)j

(P&»3)=A I'. (39)

For later application, it is convenient to recast Y. Sy rearranging the order of integration, and interchanging
t3 with t4 (which leaves the integran&i of F' invariant), we have

ft ty &143 ft (t ptg pt3 43

V dti dt3 dt3 ' dt4 EJ— dt, dt, dt, ~ dt4 EJ.J. . . J, J, J, J, (40)

Using methods similar to those with which we derived Eq. (39) from Eq. (31), we obtain

and

pt ~t1

((P&'&(t), P&'&(t)})=A dti ' dt3
0 0 Qp4 p

p t2 pt3
d')3 I dt4EJ, (41)

where

pt pt], ~tg pt
((P&'~, P&»})=B dt, I dt3 dt3 I dt4EJ

~0 & 0 J0

B= (7r/c'A) &03y4N—4N'(I).

(42)

From Eqs. (39), (40), (41), an&i (42) we finally have

Ptl &It3 f
t

(P3&4i)=BL1+f(T)(I)) ' dt, dt3 dt3 dt4EJ.
0 0 0 0

(43)

We can calculate (Q3&4&) in the same manner as (P'&4&), or we can make use of the fact that (when averaged over a
cycle) the electric energy in the cavity is approximately equal to the magnetic energy, provided (p/&0)«1 and the
molecular coupling energy is small. We therefore have, from Eq. (6)

where

(&x'"&= (4~'/&)&'~'~'I'( &L +f( )( )j (t),

~t t1 tm t

X(t)=—
I dti dt3 dt3 I dt4 EJ.

"0 ~0 0 ~O

(44)

There remains now the task of evaluating the integral in Eq. (44). It obviously cannot be evaluated in closed
form, since it contains Gaussian exponentials in the integrand. However, it can be partly integrated, as shown in
Appendix 8, to yield

~t
X(t)= I dg dy' E(r—i,rI')e &&&0+&'&+ de ' dg' E(rt, ri—')

t 2+p(rt —g') je—~'&3-3'~

0 "0 "0 ~0

1 ~t t—y pt
e-p II d3t de E(rt 4t )Ep(g+3t t) 1j ~4& 3+" ~+

I
d&, drt E(9 rt )LP(9 t) 1)e&e&3+' & (45)

0 0 ~o
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where

E(~,~') ="pL-(1/4") (n'+~")3.
becomes infinite with r) gives rise to a term linear in
t when 5„=0 (or n= ~).

We can obtain an insight into the physical meaning
of the correlation energy by considering at first, the
factor

We discuss now some interesting aspects of the
correlation energy given by Eqs. (44) and (45). Per-
haps the most interesting aspect is its approach to
a steady-state value' after a transient period, which is
determined by two time constants: the cavity relaxation
time p ' and the inverse molecular frequency width ~n.
The steady-state value of X may be written, after
some transformation, as

exp(2')(1 —erfr)2+ t Zy, I ~x

where

XexpL ——,'(x'+y') j(1+ry)e-'&, (46)

We also define for convenience the molecular Q,

and where, instead of using n and p, we have introduced
the molecular and cavity frequency widths

8,—=P, 8 —=2/n,
and their ratio

~ (I&L1+(»j, (53)

which is obtained from Eq. (44) by setting T=0. It is
shown in reference 4 that the spontaneous-emission
energy due to a single molecule is proportional to
L1+(I&] and the induced-emission energy is propor-
tional to (I) times the energy of the driving 6eld. If
we consider therefore, the induced emission of one
molecule produced by the spontaneous emission of all
the other molecules, and multiply by the total number
of molecules, we obtain just the factor (53),remembering,
of course, that we are neglecting terms in Ã compared
to terms in Ã'. We have, therefore, a tentative inter-
pretation of the origin of the correlation energy.

It is interesting to carry this physical interpretation
further and to make a calculation based on it. One may
expect that this interpretation will have greater
applicability during the steady-state condition than
during the transient period. The results of reference 4
for the steady-state condition may be summarized
as follows: Labeling the expectation value of the
(zero order) thermal energy in the field /which is
fur(e""~~ —1) 'j by Er, and labeling the coherent
driving field energy in the cavity by E&, we have the
thermally-induced energy given by

Qm=&/~m (4g) Z,~(I)Z, (54)

The expression for X.& may be evaluated explicitly in
the limits of small and large r, respectively. It is shown
in Appendix C that in the limit of small r

the spontaneously-emitted energy of the molecules
given by

2i Acre(1+ (I&)R, (55)

and the induced energy due to the coherent driving
field given by

(49)X,i-+ gs./8, '8 ',
so that

(56)Ei)e(I&,

e=—(16m «/fur)ÃQ. Q u'P,

R—= ~~exp(r') (1—erfr).
and in the limit of large r and

X,g 8(2%)&/b, '8„, (51)

(H g &4~),t = (32m'/b(o) Ã'Q, 'Q„'PN'(I) wliere
XL1+f(2')(I)3, (5o)

so that

(IIf'"& =L32(2 ')'/Ii j&'Q.'Q v'&'(I&

XL1+f(2')(I&j (52)

We see that as the molecular frequency spread becomes
infinitesimal, the steady-state correlation energy
becomes infinite. This merely means that there is no
steady state for the case in which all the molecules are
in resonance with the cavity. In fact, an examination
of the first curly bracket in Eq. (45) shows that the
second integral (the same one which, in the steady state,

' lt should be remembered, of course, that the time for which
the present theory is valid is restricted by the use of perturbation
theory; that is, it must be short compared to the time required for
a substantial change of the state of the system.

We note that when the driving field is coherent, one
obtains the induced energy from the driving energy
by multiplying by the factor e(I&; and when the
driving 6eld is incoherent in the manner of the thermal
6eld, we obtain the induced energy from the driving
energy by multiplying by the factor e(I&R. The
spontaneous-emission energy is similar in its coherence
properties to the thermal energy. Therefore, one might
expect, at first glance, that the factor e(I&R should be
used in order to obtain the correlation energy from the
spontaneous-emission energy. Further thought, how-
ever, leads to the realization that this reasoning amounts
to the breaking up of a higher order process into a
succession of indepeedeet lower order processes, which
is, in general, incorrect. Thus, the probability of a
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E—+-'r '7r (59)

Substituting in Eq. (58) and comparing with Eq. (52),
we see that for r large our intuitively derived expression
is just V2 times the correct expression. As r becomes
small, the error function approaches zero. Comparing Kq.
(58) in the limit of small r with Eq. (50), we see that in
this limit our intuitively derived expression is two times
the correct expression. These results indicate that our
intuitive interpretation of the correlation energy, as the
induced-emission energy produced by the (lowest
order) spontaneous and thermal-emission energy, is
reasonable. "

A quantity which is of interest in connection with
the present discussion, particularly for large r (large
correlation energy), is the ratio of steady-state correla-

From a physical, or intuitive, viewpoint, the thermally-induced
energy is of a different type than the spontaneous emission energy.
The latter may be regarded as being the square of a spontaneous-
emission field intensity, and is always positive; the former is the
product of the zero-order thermal Geld intensity and the Geld
intensity which it induces, and can therefore be either positive
or negative. The formalism, however, treats these two energies in
the same manner; we therefore combine them in order to obtain
the complete result in the present argument. For purposes of
intuitive clarity, the reader may bear in mind only the sponta-
neous-emission energy.IThe fact that the intuitive resultiis somewhat larger than the
correct result indicates that the "coherence effects" contained in
the higher order processes for the&&coherent Geld are not as large
as those contained in an independent succession of lower order
processes for a coherent Geld. It should also be noted that in the
limit of small r we could have obtained, in our intuitive argument,
exactly the correct result by using the formula for induced emission
due to an incoherent driving Geld, since in this limit, E= ~. The
above formula, however, is entirely inadequate for large r, since
8 -+ 0 as r ~ ~. VVe see, therefore, that the above "coherence
sects" vanish when the molecules become nonresonant, but
are important for small molecular frequency spread.

higher order transition is generally not equal to the
product of the probabilities of the constituent lower-
order transitions, since correlation (commonly called
coherence) effects are neglected. We try to incorporate
these effects, in an intpitive manner, by using the
factor which gives the induced emission for a coherent
field. Furthermore, since the spontaneous-emission
energy and thermally-induced energy have similar
properties, we combine them and consider the effect
of their sum, 9

[-,'Aa) (1+(I))+Er(I)]eR= —,'A(v[1+f(7') (I)]eR, (57)

in inducing emission. To derive our result, we merely
multiply this energy by e(I), obtaining

(128''/gg~)Q'Q, 'Q 'PN (I)[1+(I)f(T)]R. (58)

This expression must now be compared with Eqs. (44)
and (46), which give the steady-state value of the
correlation energy. Since we do not have an evaluation
of the second integral in Eq. (46), we look at the
limiting values of the correlation energy for r large and
small, given by Eqs. (52) and (50), respectively. Using
the asymptotic value of the error function found in
Appendix C, we note that

tion energy to (lowest order) steady-state spontaneous-
and thermal-emission energy. Comparing Eq. (52)
with Eqs. (57) and (59), we see that this ratio is given,
for large r, by

[8(2s') &/fuo]ÃQ, 'u'f'(I)r. (60)

One might say, very loosely, that when the absolute
value of this ratio is comparable to unity, the behavior
of the molecules will become correlated. In that event,
higher order interactions than fourth order may also
become important.

We consider now some special initial states of the
molecules. It is again easier to consider first the situation
5=0. Then, the only factor in Eq. (44) that depends on
the state of the molecules is

(I)(1+(I)), (61)

where, it is recalled, (I) is the average of (I„),with

Considering the dependence of expression (61) on the
initial state of the molecules, we see that this expression
has a maximum value of 2 when the molecules are all
in the upper state; goes down to zero when the molecules
are, on the average, in an equal superposition of the
upper and lower state; becomes negative as the average
expectation value of the molecular energy drops
further; but returns to zero when all the molecules are
in the lowest energy state. Thus, if one considers the
correlation energy as a function of the average energy
expectation value, and lets the latter vary from E2
(upper state) to E& (lower state); the correlation energy
starts at the maximum; drops to zero when the average
expectation value is half-way down; then becomes
negative, but returns to zero when the expectation value
reaches bottom.

We can understand this behavior, in terms of the
picture we have given previously, as an induced effect
produced by the lowest order spontaneous emission.
When the correlation energy is positive, the induced
emission is in phase with the spontaneous emission and
reenforces it. When the correlation energy is negative,
the induced emission is out of phase with the sponta-
neous emission, which means that there is reabsorption
of the spontaneous emission, or raCkatiots trappitsg
Going back to the picture of correlated states discussed
at the beginning of the article, one can visualize the
latter situation as arising from a (correlated) state in
which the oscillations of some molecules are out of phase
with those of the others.

By setting T=O, we have isolated the correlation
energy which is due to the spontaneous emissi. on only.
The correlation energy produced by thermal effects is
the remainder of the correlation energy for T&0. We
see from Eq. (44) that the factor in this thermal part
of the correlation energy involving the initial state of
the molecules is (I)', so that the thermal correlation
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energy is always positive. We can understand the origin
of this energy in the following manner: The thermal
field in the cavity induces oscillation in the molecules.
This oscillation of the molecules produces a field the
amplitude of which is proportional to the number of
molecules, since the molecular oscillations are correlated,
having been produced by the same thermal field. The
energy, now, is given by the square of the sum of the
two field strengths, the zero-order thermal Geld strength
and the induced field strength. The total energy due to
thermal eGects, therefore contains a mixture term
proportional to E[this is the energy of Eq. (54)j,
which may be positive or negative, depending on the
relative phase of the induced field strength'; and a
square term, which is, of course, always positive and
proportional to E'.

IV

'We consider now the energy radiated by the mol-
ecules. Formally, this is given by—(P H„). Again,
we look for terms which are proportional to Ã' and
which are diagonal in the energy representation of the
free molecules. We use exactly the same procedure as
we did in obtaining the correlation energy of the field,
making use of Eqs. (14), (15), and (16). Since the
methods of derivation have already been explained and
illustrated, we will write down the result only. The
correlation power

—(Z- H-'") = —G[1+fP') (I)jlf' (63)
where

G= (4r2/h) cV'cu'y4u'(I),

+ g P~ I g—g
— d~' jv(~ g')pe(n+e'&

We see that the correlation power radiated by the
rnolecules approaches a steady-state value after a
transient period similar to that of the field energy. YVe

also notice, by comparing Eq. (63) with Eqs. (44) and

(45), that
O(H~'").~= -(2-H-'").~, (64)

a very reasonable result, which expresses the fact that in
the steady state the correlation power radiated by the
molecules is equal to the correlation power absorbed
by the loss mechanism of the cavity. In fact, the
complete expressions for the radiated power and for
the field energy satisfy the relationship

(Hf'")+P(Hf'") = (r.-H-'"—), (65)

which states that the power radiated by the molecules
is equal to the rate of change of field energy plus power
absorbed by the walls.

V

We come now to the last topic under consideration
in the present article. So far, we have considered a
single cavity mode and a molecular frequency spread
centered at the cavity frequency. All other cavity
modes were assumed to have frequencies outside the
range of the molecular frequency, and therefore do not

with

E=Q„E., H=g„H„,
E,= —4~en„(r)E„(/), H= v &(n„(r)Q„(t),

(66)

The energy of the field in the cavity is now the sum of
the energies of the individual modes:

Hg= Q, [2~c'E,2+ (aP/Smc')Q 'g (67)

Our integral equations of motion, Eqs. (14), (15), and
(16), become

couple to the molecules. One may ask, however, what
the situation would be if there were more than one
mode within the molecular frequency range. In order to
be able to answer this question by utilizing the results
already derived, we introduce simplifying assumptions,
which may be somewhat too idealized for a practical sit-
uation, but nevertheless lead to a qualitative understand-
ing of the problem involved. We assume that the modes
which couple to the molecules all have the same fre-
quency as the single mode previously considered, and
that each molecule couples equally to all the modes. Let
there be m modes, each labeled with the index v. Instead
of Eq. (4) we have"

27/ C

H (t)=H &0&+ g N„„dt's([H (tg), y (&x)$, &(4)),
do

4mc

y~(t) =y~'"(t)+ Q u, ~ I
&4 d4+m(~ ~1)[Vm(~&)& [V~(~2)~ H~(~&)3+(&2))+~ (~ ~&)t

Q 0

(69)

» Although the assumption of equal molecular coupling to all the modes is utilized in the 6nal calculations, it is illuminating to
write the equations of motion more generally and label each coupling constant u, with the modeindex.
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and
Pv Pvv+Pvy& (70)

pt
P„v=—J' dt~ F,(tt)e—&ec' "' sincd(t —tt),

Cd

CO

P„~=——P N, m dtt ym(tt)e eCt '» sinco(t —tt}.c- ~o

The properties of F, are the same as those given by
Eqs. (8), (9), and (10) for each individual mode, and
we add the condition

(P,(tt)F„(t,))=0 for vWv'. (71)

From Eq. (71) we obtain the relationship

({P„v(t,),P„.v(t,)})=0 for vNv'. (72)

We can now proceed exactly as we did in the case of a
single mode. In view of the simplifications adopted, we
can see that our expressions for the field energy and
power radiated by the molecules will be multiples of
the corresponding quantities in the case of a single
mode, the multiplying factor involving the number of
modes. In order to obtain this factor we resort to our
shorthand notations and now retain the summations
over v. We consider a term in H t" that contributes
toward the total expression for (P H '"). From our
equations of motion we have

H f41 ~Q tt H lolp lolP M+. . .

Substituting from Eqs. (75) and (74) into Eq. (73),
we have

~m Hm ~ ~m, m' Qv, v', v'' tcv Nm' vtcmv' tmt "v'm
Xl' [4]

Eol+ [olzP [olP „[ol+.. . (76)

The right side will lead to a nonvanishing expectation
value only for v"= v. We are thus left with adouble
summation over v, which, in view of our assumption of
equality of molecular coupling to the various modes,
is replaced by n'. The same reasoning and result apply
to the remaining terms in the power radiated by the
molecules and to the energy of the field. We see,
therefore, that the correlation effects we have been
discussing are increased by a factor which is the square
of the number of modes coupled to the molecules.
It is not difFicult to justify this result intuitively. Each
molecule is coupled to the others e times as strongly as
in the case of a single mode, and also radiates into e
modes instead of into one.
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APPENDIX A

We derive Eq. (34). From Eqs. (9) and (16) we have

For

Ap
({Pv(t) Pv(t')})= f(T) dtt dto ct(tt —to)e tee' '&' sinco(t —tt)e &~&' '» sinco(t' —to).J2&c g)

(A1)

lltcoP

({Pv(t), Pv(t')})= f(T) ~
dt's e *'eCt+' 't» sinu&(t —t&) sina&(t' —tt) = f(T)e 'ec' 'l cosu&(t' —t), (A2)

2xc' ac'

where we have dropped an oscillatory term in the integrand. For 3& t, the integration over ti must be carried out.
before the integration over to, and the sign in the exponent of the result in Eq. (A2) is reversed. We have thus
derived Eq. (34).

APPENDIX B
We consider the evaluation of

where

tt vtt ptt& &tv
X(t)—=

~
dtt~ dto~' dto] dt4 Pj,

0 0 0

E—=exp{—(1/4cc') P(t —to)'+ (t,—tt)'1},

(A3)

J=—expL ——,'p(2t —t,+ to—to —t4)j.
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Since integration of a Gaussian function over a finite region cannot be carried out explicitly, we alter the variables
of integration so that ti —t2 and ta —t4 are two variables of integration, respectively, and integrate over the other
two variables. We therefore set

(= ti+ t2, rl= ti 12,
—

$'= t3+ $4„rl'= la t4.—

Writing the integration symbols as operators, we have

(A4)

dt' EJ, (A5)

where E and J are considered functions of the new variables of integration. We carry out the $ integration first.
Then we rearrange the order of the g and ri' integration so that the P integration may be carried out next. The
result, after some simplification, is given by Eq. (45).

APPENDIX C

We evaluate the expression for X,&, in Eq. (46), in the limits of small r and large r, respectively. As its argument
approaches zero, the error function vanishes; and as its argument becomes large, we may use the asymptotic
formula"

erfr = 1—
)exp (—r')/rgb. $.

Therefore, in the limit of small r, the first term in the curly bracket of Eq. (46) is equal to sr; in the limit of large
r, it is equal to r . The second term becomes, in the limit of small r,

QO F00

dy~ dx exp' —gr(x'+y') j
~o

which, by transforming to polar coordinates, may easily be seen to be equal to m. In the limit of large r, we have

r

dp
dx exp) —

a (x'+y')](1+ry)e "&= I dy e "&(1+ry) ~ dx exp( —-'ax')
Jo V

S 2 f

dx exp( —3x') ~ e '&(1+ry)dy= 'dh exp( ——ax') =2(2w)&/r. (A'7)
0 rJ

Combining the above results, we obtain Eqs. (49) and (51).

"H. B. Dwight, TaNes of Isstegrals (The Macmillan Company, New York, 1934), Eq. (592).


