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A systematic method is presented for deriving the Thomas-Fermi equation for an atom and the quantum
corrections from the many-body description. The novel feature of the method is that it does not require any
u priori assumptions about the assignment of electrons to fully occupied single-particle states or about the
distribution of electrons in phase space, but shows instead that the distribution which is usually assumed, or
derived from the assumption of fully occupied single particle states, is a direct consequence of specifying that
the many particle system is in its ground state. The procedure used in the derivation is the expansion of the
mixed position-momentum representation of the Green s function in a series of powers of A. The lowest order
term is found to correspond with the Thomas-Fermi density. The form of the higher order terms, which are
to be considered as corrections to zeroth order term, depends on the approximations made in the many-body
equations for obtaining the Green s function. This paper deals only with the Hartree-Fock approximation,
but the methods presented here allow generalization to other approximations which can include correlation
eBects.

I. INTRODUCTION

'HE Thomas-Fermi model of the atom developed
historically from reasonable physical assumptions

about the nature of an atomic system. ' However, be-
cause the development was not a systematic derivation
from the many-body Schrodinger equation, it was difi-
cult to incorporate corrections for certain higher order
e8ects.

Dirac' in 1930 showed the connection between the
Hartree-Fock theory and the Thomas-Fermi model. In
this paper, the Hartree-Fock equations were expressed
in terms of the density matrix, and the Fourier trans-
form of the density matrix was identified as being the
phase space distribution of electrons having a given spin
direction. In order to proceed with the solution of his
equations, Dirac made the plausible assumption that
the distribution of electrons in phase space is the local
Fermi density; that is, it equals (2Irk) ' for momenta
less than the Fermi momentum PE(R) and is zero
otherwise. The solution of his equations yielded the
Thomas-Fermi equation plus an extra term due to
exchange. This augmented equation has since become
known as the Thomas-Fermi-Dirac equation.

In 1955,' Theis was able to show that Dirac's plaus-
ible assumption was a consequence of the fact that the
system was in its ground state and that the single-
particle density matrix is idempotent, (p'=p). This
latter property of single-particle density matrices is
satisfied for systems in which. the e electrons can be
assigned to e single-particle states, each of which has
an occupation number equal to unity.
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'The basic references and the classical Thomas-Fermi model

are described in the review article by P. Gombas in Handbmch der
Physik, edited by S. Flugge (Springer-Verlag, Berlin, 1956),
Vol. XXXVI.' P. A. M. Dirac, Proc. Cambridge Phil. Soc. 26, 376 (1930).' W. R. Theis, Z. Physik 142, 503 (1955).

To complete this historical introduction, in 1957
Kompaneets and Pavlovskii' apparently independently
of Theis, showed how, starting from Dirac's assumption,
one could derive quantum corrections to the Thomas-
Fermi model using the scheme proposed by Theis,
namely, expansions in powers of A. The extra terms in-
cluded both exchange and inhomogeneity corrections.
A somewhat diGerent, but equivalent scheme was pro-
posed by Kirzhnits' at about the same time. By assum-
ing that the occupation number of each single-particle
state depended on the expectation value of the Hamil-
tonian in that single-particle state, Kirzhnits was able to
derive the Thomas-Fermi model at elevated tempera-
tures. Thus, to date, all systematic corrections to the
Thomas-Fermi model are based either on an a priori
assumption about the momentum distribution of the
electrons or on a model which, at zero temperature,
approximates the wave function of the atom by a
single Slater determinant. '

Before one attempts to introduce correlation correc-
tions into the Thomas-Fermi model, it is necessary to
investigate whether Dirac's assumption regarding the
distribution of electrons in phase space depends on the
description of an atomic system by a single Slater
determinant. I.owdin' has shown that the introduction
of correlation by using sums of Slater determinants re-

4A. S. Kompaneets and E. S. Pavlovskii, Soviet Phys. -JETP
31(4), 328 (1957).' D. A. Kirzhnits, Soviet Phys. -JETP 32(5), 64 (1957).

An apparent exception to this statement is the work of S.
Golden, Phys. Rev. 105, 604 (1957); 107, 1283 (1957); and Revs.
Modern Phys. 32, 322 (1960).Golden's work consists of two parts.
In the 6rst, he does not confine himself to single-particle Hamil-
tonians and makes no special assumption about the occupation
number of single-particle states. However his working equations,
while elegant, are not in the spirit of the Thomas-Fermi model in
the sense that their greatest utility is for treating problems in
which the number of particles is small. In the second part, he does
indeed derive the Thomas-Fermi equation and quantum correc-
tions from his formalism, but in doing so, he makes the usual
assumption of introducing a single-particle Hamiltonian and a
single-particle density matrix in which each single-particle state
is either fully occupied or empty.

I P. 0. Lowdin, Phys. Rev. 97, 1474 (1955), Sec. 4.
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suits in fractional occupation numbers for the single-
particle states.

By applying field-theoretic methods to the problem
at hand, we show in this paper that Dirac's assumption
can be derived from a statement that the atomic system
is in its ground state, and that the Thomas-Fermi model
with the previously derived quantum corrections can
also be obtained using this formalism. But, by freeing
ourselves at the outset from dependence on a deter-
minantal wave function, we obtain a formalism capable
of generalization to include correlation effects. We shall
exploit this freedom in a future publication.

We use the Green's function formulation introduced
by Schwinger, ' discussed by Galitskii and Migdal' for
the quantum mechanical many-particle system in the
ground state, and by Martin and Schwinger' for the
quantum mechanical many-particle system at nonzero
temperature. This formalism for treating the Ã-particle
system is a time-dependent description which resembles
in some ways the time-independent description employ-
ing the set of 1, 2, E-particle density matrices. In it,
the sz-particle Green's function

G„(rr4 r„t; r, 'tr'. r„'t„')

is analogous to the e-particle density matrix and can
supply all of the information about the system con-
tained in the latter. " As is the case for the density
matrices, the Green's functions satisfy a hierarchy of
equations in which the ~z-particle Green s function is
coupled to the (n 1)-pa—rticle and the (n+1)-particle
Green's function.

Explicit solutions to this set of equations coupling
the various Green's functions are not known. Martin
and Schwinger" discuss a systematic approximation
scheme for truncating this set of equations, retaining
the first rs equations and approximating t"~~ in terms
of the Green's functions for fewer particles. The simplest
of these approximations is the Hartree-Fock approxima-
tion, " which results from approximating the two-
particle Green's function by the antisymmetric product
of one-particle Green's functions. We shall show by
using an expansion similar to that used by Theis that
the first term in the expansion of the solution of the
Hartree-Fock approximation in powers of 5 yields the
Thomas-Fermi model. The Dirac and inhomogeneity
effects appear together in the equation determining the
first nonvanishing correction to the Thomas-Fermi
model. Higher order corrections can be generated in a

' J. Schwinger, Proc. Natl. Acad. Sci. U. S. 37, 452 (1951).
V. M, Galitskii and A. B. Migdal, Soviet Phys. -JETP 34(7),

96 {1958)."P.C. Martin and J. Schwinger, Phys. Rev. 115, 1342 (1959)."A. Klein and R. Prange, Phys. Rev. 112, 994 (1958); R.
Prange and A. Klein, Phys. Rev. 112, 1008 (1958).' This approximation, in common with the usual Hartree-Fock
equations for the self-consistent 6eld, neglects dynamic correla-
tion between the particles, It differs from them, however, in that
it does allow for fractional occupation numbers, and does not by
itself make any assignment of electrons to single-particle states.

manner similar to the method of Kompaneets and
Pavlovskii. 4

This technique of using the Green's function to derive
the Thomas-Fermi model from the many-body equation
is useful because it enables one to incorporate correla-
tion corrections into the Thomas-Fermi model. We
shall treat this problem in a forthcoming paper by re-
placing the Hartree-Fock approximation with the Gell
Mann —Brueckner approximation. "

In Sec. II, we state without proof some useful prop-
erties of the Green's functions. We also state the first
hierarchy equation satisfied by the single-particle
Green's function and the Hartree-Fock approximation
to it. We transform this equation to a mixed position-
momentum representation. This transformation intro-
duces an infinite order differential operator 8, which
acts on the mixed representation single-particle Green's
function to produce an equation completely equivalent
to the original Hartree-Fock equation. In Sec. III, we
make use of the structure of 8 to expand the solution in
a series involving powers of A. We then show that the
lowest order term yields the Thomas-Fermi density. In
Sec. IV, we discuss higher order corrections. Sec. V con-
tains the proof of the assertions made in Sec. II. Most
important, however, it contains the discussion of the
analytic properties of the exact Green's function which
indicates clearly the connection between the appear-
ance of the Thomas-Fermi density and the specification
that the system be in its ground state. The derivation
of the operator 8 is to be found in the Appendix.

n(r; —r;) =e'/) r,—r, ). (2.1c)

We have mentioned the e-particle Green's function
in the previous section: For the purposes of this section,
we shall need only a few of its simplest properties. These
properties follow directly from the basic definition (see
Sec. V) and will be sta, ted in the following paragraph.
First, however, we must comment on notation. If the
e-particle Green's function is denoted by (1.1), then
each coordinate r; and r specides both a spatial loca-
tion and a spin direction. Consequently, equality of two
coordinates indicates that the spatial locations are the
same and that the associated spin indices are identical.
Integration over a coordinate will be understood to
imply summation over the corresponding spin index,

'3 M. Gell Mann and K, Srueck. ner, Phys. Rev. 106, 364 (1957).

II. TRANSFORMATION TO THE MIXED
REPRESENTATION

We consider an atom or an ion to consist of a nucleus
with charge Ze and infinite mass located at the origin,
surrounded by E electrons, each of mass m. When we
neglect spin-dependent forces and all relativistic eGects
in our system, the Hamiltonian is

H=P;Hs(r, )+-', P;„,v(r, —r,), (2.1a)

Hs(r)=( —5'/2m)V" —Ze'/~r, ~) (2.1b)
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n(r, t) = (—i)Gi(rt; rt+), (2.2)

where I+ is a time in6nitesimally later than t. The energy
of the system is the expectation value of the Hamil-
tonian and is computed from the one- and two-particle
Green's functions by the prescription

and a Dirac delta function of two coordinates will be
understood to be multiplied by the Kronecker delta of
the corresponding spin indices,

The n-particle Green's function contains all the in-
formation necessary to compute the expectation value
of any e-particle property of the system. "In particular,
the density of particles with a given direction of the
spin is given by

that there are no longer any implicit spin indices or
summations in the equation which results:

[iVi(8/at, )—Ho(ri)]G, (riti, ri'ti')

+i dr2 8(rl r2)$2G1(r-'t r2t )Gi(rlt ri ti )

Gi(riti ) r2tl )Gi(12ti I rl ti )]
= l'tS(r, —ri')b(ti —ti'). (2.6)

It is in the spirit of the Hartree-Fock self consistent
method to consider (2.6) as a, pair of integral equations
hy writing it as

(—t) -dr hm„~,H, (r)Gi(rt; r't)

j. I+ ( i)' —
,

dr-idrg(r& r&), G —(ritr2t; rit+r2t+) (2.3).

Jg(riti j r2t2)df242 Gi(rgtg, i'i ti )
I

=Itb(ri —ri')b(ti —ti'), (2.7)

For the system governed by the Hamiltonian (2.1),
the Green's functions satisfy a set of integro-differential
equations in which the e-particle Green s function is
coupled to the (e—1)-particle and to the (v+1)-
particle Green's functions. The erst of these equations is

ftIt(8/Btl) HO(rl)]Gi(riti ri tl )

iIt(&/@i) —Ho(ri)+2i ar' &(ri r')Gi(r't; r't+)

Xb (ti —t..)0 (ri —r..)—ie (ri —r.)

XGi(r, t, ; r,t,+)ti(t, ti ). (2.8—)

Taking the Fourier transform of (2.7) with respect to
ri —ri' and t, ti', kee—ping R= ,'-(ri+r-i') fixed, we have

+i dr 5(r1 r2)G2(ritl r'itl ritl r2tl )

Q(r r &)g(t t &) (2 4) J E(rlti ' r ti)dÃ2dt2 Gl(r2t2' rlti )l(r1 ri )d(ti ti )

The Hartree-Fock approximation results from ap-
proximating 62 in the equation above by the antisym-
metrized product of one-particle Green's functions as
follow's:

Gg(1,2; 1'2')—Gi(1; 1')Gi(2; 2')
-G (1; 2')G (2' 1') (-':)

The functions appearing in (2.4) and (2.5) have the
spin indices implicit in the coordinates and a spin sum-
mation implied by the integration. %hen we neglect
spin-dependent forces of our system and choose a
Hamiltonian (2.1), a single particle propagates without
change of spin. That is, the single-particle Green's
function vanishes unless the spin indices for the par-
ticle r~ and the spin coordinate for the particle rj' are
the same.

Substitute (2.5) into (2.4) and make the spin indices
and summation explicit. If we use the fact that the
Green's function for a spin-independent system is zero
if the two spin indices are not alike and is otherwise
independent of spin, then we 6nd the only eBect to be a
factor of two multiplying the term arising from the first
product on the right. of (2.5). Accordingly, we shall in-
clude this factor of two, and in the future understand

Xexp{—zLp' (ri ri )—~{ti ti )]/tt) =It. (2.9)

J(ri —r2)d(ti —t2) E(riti j rit2)

Xexp{—iLp (ri —r.) —(o(ti —t,)j/k), (2.10a)

C'(Rt p(u)

=
)"(t(ri—r~)d( i—t~) Gi(riti) r.t2)

Xexp{ i$y (ri ——r. )—co(ti —t2)]/It), (2.10b)

R= —,'(ri+r, ), (2.10c)

by means of a difI'erential operator of zn6nite order
Og„" as

Scc AppcQc]lx.

The integral in (2.9) may be expressed in terms of the
Fourier transforms E and G,
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Equation (2.9) then takes the form

tIN', Gj=&.

that it might be useful to expand the density ii(R) in a
series in which the size of A enters in a systematic
manner. Accordingly, we write

X(R,pcs) may be expressed in terms of G by using the
definitions (2.8) and (2.10), with the result that n(R)=Q; 0 Akz;(R) (3 2)

Jp
+ i n(R, p')8(p —p'), (2.12)

(2m')'

ClQ)

ii(R, P) = i — ———G(R, P(o) exp(~0+),
~ (2~k)

(2.13a)

&(R,y~) =~—p'/2~+«'/I ~l —
2J «'i (R—r')l(r')

In writing this expansion we do not imply that ri, (R)
is independent of 5; if it were, this would require that
there be a classical charge density for the atomic sys-
tem, namely, n0(R), which could be found in the limit
fi=0. As we shall see, the quantum eGect which pre-
vents the atom from collapsing into the nucleus will be
manifest in a negative power of A multiplying each of
the terms e;(R)."

The expansion of the density e(E) implies the possi-
bility of similar expansions for N(R, P) and G(R,P~):

dp
n(R) = iG—(Ri; Rt+) = I ii(R, P), (2.13b)

J (2~a)3
g~(R, P) =O' Q 5'n, (R,P),

G(R, ya)) =O' Q 1HG, (R,yc~).

(3.3)

(3.4)

e(y) = i (r) e 'i" ~ "-dr (2 14)

The relationship between e(R, P) and e(R) permits us
to interpret m(R, P) as the phase-space density for
electrons of a given spin direction. The system of Eqs.
(2.11)and (2.12) is completely equivalent to the original
Hartree-Pock equation (2.6). We next turn our atten-
tion to the expansion of the set (2.11) and (2.12) in a
power series in A.

t"i'
n (R y) = i —exp(ico0—+)G (R ya)) (3.5a)

2x

f' ~P
n;(E.) =

I eg(R, P).
(2m)'

(3.5b)

The powers of A appearing outside of the summations
above have been so chosen that those relationships
between the coefficients which are a consequence of
(2.13) will be independent of 5. These relationships are

III. EXPANSION IN POPPERS OF Iz

Ke should now consider the eBects of these expansions
We refer to the APPendix and find that the oPerator on the kernel X(R,yi0). The exchange potential (2.14)

Oiq consists of an inhnite series of terms, each term for the Coulomb force (2.]c) is
containing explicitly some power of 5 as a factor

(3 1)
v(y —y') =4ne'A'/I y —y'I'. (3.6)

The zeroth order term is simply the product of the
transforms K and 6 on which Hg„operates. Higher order
terms aB contain derivatives of the transform with re-
spect to components of E. Hence, in an in6nite homo-
geneous system for which neither X nor 6 can depend
on R, the zeroth order approximation to (2.11) is exact,
within the Hartree-Fock approximation. For a non-
in6nite system, higher order terms of tI do contribute,
and provide corrections for the eGects of inhomo-
geneities. The higher order terms of the operator 8 all
contain the operator 5(B/8R~)(8/Bp;), which suggests
that the physically significant parameter exhibited by 8
is the fractional variation of X and of 6 within a cell
of area Ii in the 8;P; phase plane. If II were small enough
relative to the extent of the phase plane occupied by
the system, then higher order terms of the operator 0
would again be unimportant.

This observation, that the operator 8 involves powers
of 5 in a series of terms whose relative size depends on
the importance of the uncertainty principle, suggests

Substituting the expansions (3.2) and (3.3) into the
definition (2.12) of the kernel X gives

Z(R, P(u)

=~—p'/2m+Ze'/R —p 2h&' ~dr e(R—r)e;(r)

4me' p dp'
+2 &"+" -

i~
— »~(R, P') (3.7)

(2~)'" Iy —y'I'

This form suggests that we can classify the terms in E
according to the explicit power of A they contain.

'~Recall that the radial scale factor in the dimensionless
Thomas-Fermi equation is proportional to A~. In the limit lz —+ 0,
the atom takes on zero extension. A physical way of looking at
this is the following: The sole function of A in classical Thomas-
Fermi theory is to establish a relationship between the local
density and other physical quantities. This relation is such that
the density is proportional to a negative power of A. As A —+ 0, the
density becomes in6nite which means, since particles are con-
served, that the density can differ from zero only at a single point.
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Therefore, we write

E(R,pp~) =Q; j'i''E, (R,pp~),

the chemical potential, approximately the energy re-
quired to add another electron to the system. It deter-
mines the number of electrons surrounding the nucleus.
This point is brought out in detail in Sec. V.

The exponential exp(A~0+) in (3.5a) makes it possible
to complete the path by adding the integral over the
infinite semicircle in the upper half of complex co plane.
np(R, p) is then given by a contour integral, and is
equal to A ' or zero, depending on whether the point
co= E is inside or outside the contour. Since the contour
crosses the real axis at ~=p, this means that

(3.8a)

Ep cu
——p'/—2m+ Ze'/

I
R

I

—2 tdr v(R —r)np(r), (3.8b)

(3.8c)Ei———2 dr v(R —r)ni(r),

E,= —2 "dr v(R r)—n, (r) (3.12a)

(3.12b)

np(R, p) = j'i—', p'/2m+pp(R) (p
= 0, p'/2m+yp(R) )p.

(3.13)

4m.e' p dp'
+ ' -n, p(R, p'). (3.8d) The density np(R) defined by (3.5b) is then

(2 )'& lp —p'I'
np(R) = (6m'5') 'p p'(R))

The expansions (3.1), (3.4), and (3.8a) are to be in-
serted in Eq. (3.11) and the explicit powers of A are to
be separated in such a way that the zeroth order
approximation is nonvanishing. The result is the series
of equations below:

ttpLEp, fi'Gp] =5, (3.9a)

j+k+l=n
O, I Ei(R, pp~), G((R,pp~))=0. (3.9b)

The solution to the set of Eqs. (3.8) and (3.9) can be
obtained in principle by starting with the zeroth order
equation of each set, solving simultaneously, then pro-
ceeding to the first order equation in each set, solving
these simultaneously using the results of the zeroth
order solutions, and so on. We shall now show that the
solution of the zeroth order equations, i.e., of (3.8b)
and (3.9a), yields the Thomas-Fermi model.

The operator Hp appearing in (3.9a) consists of the
product of the transforms, so that this equation may be
written

where

Gp(R, p~) = ji—'LEp(R, pp&) j—'

E,(R,p) =p'/2m+y, (R),

(3.10a)

(3.10b)

(3.10c)

gp(R) = —Ze'/IRI +2~tv(R —r)np(r)dr (3.11).
It is necessary to recover eo from Go by performing the
integrations indicated by Eqs. (3.5). ln order to carry
these out, however, it is first necessary to specify a
path in the complex co plane. This choice of path is
discussed in Sec. V. It turns out that the choice of a
path is determined by the energy state of the ion or
atom, and by the number of electrons E surrounding
the nucleus. For a system in its ground state, the path
of integration lies just below the real co axis from—~ &~(p, crosses the real axis at cv=p, and lies just
above the real axis from p«p(+ pp. The constant p, is

where pr(R), the maximum momentum of electrons in
the Fermi gas, is given by

p p'/2m+ yp (R)=p. (3.14)

The density np(R, p), which equals k ' for p(pr(R), is
of course the density usually assumed at the outset in
derivations of the Thomas-Fermi model. Its appearance
here is a consequence of the theory.

To complete the derivation of the model, one may
obtain the integral form of the Thomas-Fermi equation
by eliminating Pp(R) from (3.14) and (3.11), and
eliminating np(R) from (3.11) with the result

P,P(R)/2m —ZeP/IRI

y(3prpfp) —i)I prp(r)v(R —r)dr=@. (3.15)

The differential form of the Thomas-Fermi equation
may be obtained by first combining (3.13) and (3.14) as

np(R) = (6m-'P) '{2m+—Pp(R) j}') (3.16)

then taking the Laplacian of (3.11) with v(R —r)
=e'/I R—rI. The result of this operation,

V'Pp= —8pre'np (R),

is combined with (3.16) to give

V'yp(R) = —(4e'/3vA') {2m'—yp(R) j) ', (3.17)

which is the Thomas-Fermi equation in its usual form.

IV. HIGHER ORDER TERMS

Having found that the zeroth order term in the spa-
tial density is the Thomas-Fermi density, we turn our
attention to a consideration of the higher order terms.
Vfe shall find that the first-order. correction vanishes,
and that the second-order correction is identical with
that discussed by Kompaneets and Pavlovskii. 4 Ke
consider the n= 1 equation of the set (3.9b). The opera-
tor gi (see Appendix) constructs the Poisson bracket of
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the functions on which it operates —in this case Eo and
Gp. The zeroth order result (3.10a) guarantees that this
Poisson bracket vanishes. Moreover, since the operator
ep merely forms the product of the functions on which
it operates, the solution of the first equation of (3.9b) is

Gi= —KiGo/Ko= —II 'Ki/(pp —E)'. (4.1)

The density ni(R) may be recovered from Gi by the
integration indicated in (3.5),

!-do& exp(ipp0+)
(2~5)'ni(R) =Ki(R) dp . (4.2)

2pri (pp —E)'

where
C= me'/ (pr'0'),

P(r) =pF 9')Ki(r)

The integral on the left is non-negative. The integral
on the right is the self-energy of a distribution of charge
with density p, it too is non-negative. The minus sign
then requires that each integral vanish. Equation (4.1)
indicates that G~ also vanishes.

We may now consider the n=2 equation of (3.9b),
which we solve explicitly for G2 using the fact that E&
and Gj are zero.

G,= K,Gp/K—o Hp(K p, G—
pj/K p,

We have previously found that, over the path described
in Sec. III, or, equivalently,

t dpi exp(ia&0+)
=5'(~—E),

2pri(pi —E)
(4 3 )

—Ii'Gp ——Kp(R, p)/(pi —E)'
+( —E) 'BpL(~ —E) (~—E) '3 (48)

S(x)=1, x&0

=0, x&0.

(4.3b)

(4.3c)

When the set of diGerentiations which constitute 0& are
performed, the result is

Furthermore, if polar coordinates are introduced into
momentum space, one may write

dy =mpdEdgd cosg. (4 5)

The integral in (4.2) may be evaluated using (4.4) and
(4.5). We note that when E=Ii, p= p~.

ni(R) = (2 phr') 'mph(R)Ki(R) .(4.6)

An integral equation for Ki(R) results by using this
density in the definition of Ki(R) given by (3.8c)

Repeated differentiations of (4.3) with respect to E
will develop a series of relationships we shall use later
in this section.

I
dpi exp(i&f0+) 1 ( B ) "—'

~(~—E) (4.4)
2pri(pi —E)" (n 1)!&BE)—

1 dip 2 dip
C(R) = +-

4m dE.' R dR

1 d'Qo(p R~' 1 d@ofpXRq'
D(R,p) =-

f I
+-

4 dR' ( mR J R dR E mR )

(4.9b)

1 (dip)
(4.9c)

m (dR) s

The density n, (R) is to be recovered from G& by inte-
gration, as before. In performing=this integration, we
note first that Eq. (3.8d) indicates that K2will depend'
only on the magnitudes of R and y. Utilizing (4.4) and
(4.5) and integrating by parts where necessary, we
obtain

—fi'G, = (pp —E)—'K, (R,p)+ (pi —E) 'C(R)

+ (pi E) 4D(R,p)—, (4—.9a)

( dp'!

K (R) (,~,), "d
( )K ( ) (R ) (4 7)

4pr'5'np(R) =2mpi Kp(R, pp) —mC(R)
~

—
~

J Q—p

The integration in (4.7) is over that region for which

p&(R) is greater than zero because the density ni(R)
given by (4.6) is nonzero for positive pp only. Depend-
ing on the choice of p, , the region of integration may or
may not be all space.

One solution to (4.7) is that Ki(R) vanishes identi-
cally. To show that this is the only solution, multiply
(4.7) by Ki(R)pp(R) and integrate over the region for
which pp(R) is greater than zero. Making use of the
specific form for m(R —r), the result is

r u(r)~(R)
)t [Ki(R)]'pp(R)dR= —C t ~f drdR,

[R—r/

m B'
+— p D(R,p) d cosB— . (4.10)

6 BE' " 2z z-o

(dA& '
(12p ') (4 11)

A single-integral equation for E& will result if the equa-

The remaining integration in (4.10) may be carried out
by choosing the polar axis in the direction of R, after
which the differentiations may be performed, resulting
ln

4m'5'np(R) = 2mpp(R)Kp(R, pp) —2m'C(R)/(3pp)
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@2(R)=2 '

n2(r)v(R —r)dr (4.12)

Since i (R—r) is the Coulomb potential,

tion (3.8d) for E, is written using the density N2 given
by (4.11) and eo given by (3.12). Instead of doing this,
however, we shall exhibit the diGerential equation
which shows that the second-order term in our solution
is the same as the first quantum correction found by
Kompaneets and Pavlovskii. Define

V. GENERAL PROPERTIES OF THE
GREE¹SFUNCTION

In this section, our main concern is to establish the
connection between the state of the ion or atom and the
path of integration used to recover the density from the
Green's function. This connection follows from certain
general properties of the Green's function. These
properties are best exhibited by starting with the well
known definition of the Green's function and working in
the formalism of second quantization. In this formalism
t:he Hamiltonian (2.1a) takes the form

+-,' Z..jp.t(ri)p. &(r'&)~(r—r')E.(R,p)

X)P;(r't))P„(rt)drdr'. (5.1)

P&2= —8x-e'm2. (4.13)

The I() of Eq. (3.12) used in the j=2 term of Eq. ~ J ~

(3.8d) gives

e" ( p/p
—p ) p/p

—p= —y, (R)+ p, —
(xh' & 2p ) p/+p

Finally, N2 is eliminated from (4.11) using (4.13) and
E~(R,pF) is eliminated from (4.11) using (4.14). In
the equation which results, we evaluate C(R) using
(4.9b) as (4nz) 'Pyp and p/ (R) using (3.14) as
L2/n(/i —yo) 1'

4me'
-~'e.+ I.2~(~--vo)]'~2

mA'

r~e'L2m(/i —yp) j—l
= 8m2e4(~~V)-'(/ —y,)—

12KA3

&& 4~'&o+(/ &o) 'I
I

— (4»)
& dRJ

This equation was derived by Kompaneets and Pav-
lovskii using a diGerent method in which the Thomas-
Fermi distribution (3.12) is assumed al. the outset. The
authors discuss this equation and its numerical solution
and point out that the exchange effect (first term on the
right) and the inhomogeneity correction (last term on
the right) appear together in this equation. Therefore
the first nonvanishing correction to the Thomas-Fermi
equation contains both exchange effects and inhomo-
geneity effects.

I'he higher corrections could presumably also be ob-
tained by using systematic methods such as Kirzhnits
or Golden has proposed. Retaining all higher corrections
must ultimately lead back to the Hartree-Pock result.
The utility of the Green's function method which we
have presented here becomes apparent when we go to
methods beyond Hartree-Pock, in which correlation
sects preclude use of a scheme based on a single-
particle Hamiltonian. This will be made more apparent
in a future publication.

)P (r/) —eiH t/Q(r ]—0)e iBt/i—
(P $ (r[) e(/r///)(P $ (r ] 0)e /H//5

(5.3)

States of the ion are specified by 37, the number of
electrons surrounding the nucleus, the energy E, anti
possibly some degeneracy parameter y, i.e.,

IJ
I
~v,z,&)=zI xz&),

x.,= Ix,z,~)=~vIx,z,&).

(5.4a)

(5.4b)

The operator giving the number of electrons surround-
ing the nucleus is

/V. „=
J

)P" (rt)P(«)dr, (5.5)

and hence, the operator //, ~(r/!) giving the spatial
density of electrons with a given direction of spin is

n, («) =)pt(rt))p(rt). (5.6)

Ke shall be especially concerned with the ground state
of the system with E electrons, having energy Eo(N),
and for this state, we shall suppress the indices lVEy
and the vertical bar, leaving just the angular bracket
to denote the state.

Green's functions for the many-particle system are

)p„(rt) and )p /(«) are the annihilation and creation
operators for the electrons; 0. is the spin index and
takes on two values. These operators satisfy anti-
commutation relationships

p. (r~)1t, (r'~) yp. .(r'~)y. (rt) =0,
)p t(rt))p„. t(r't)+)p . t(r't))p, t(rt) =0, (5.2)

0-(r&)4-'(r'&)+0-'(r'/)4-(«) =~-;~(r r'). —

It will be convenient to suppress the spin index 0, by
considering it to be implicitly contained in r and using
the convention described in the beginning of Sec. II.
tAte shall use the Heisenberg representation, in which
the time dependence of the operators is
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well. known and have been widely studied. ' "To fix the
de6nition we have been using, the e-particle Green's
function for the ground state of the Ã electron system
was defined by

G (1,2, e; 1' n')
= (—i) "((0(1)4'(2) It'(N)0'(ri') It'" (I'))+) (5 7)

The operators in (5.7) are the time dependent, annihila-
tion and creation operators; the bracket ( )~ indicates
the time ordering of the operators enclosed: operators
with later time coordinates stand to the left of opera-
tors with earlier time coordinates and the collection is
multiplied by ~1, the parity of the permutation of the
operators from the sequence indicated in (5.7) to the
time-ordered sequence. The expectation value is taken
with respect to the ground state of the tV-electron

system.
It is now evident that Eqs. (2.2) and (2.3) are nothing

other than the statements that the energy of the ground
state is equal to the expectation value of the Hamil-
tonian in the ground state and that the particle density
is the expectation value of the density operator. ' "The
equation (2.4) linking the one-particle and two-particle
Green's function may be derived"" by differentiating
(5.3):

operators in each matrix element, and the Heisenberg
time dependence (5.3):
(0-(xt.)It-'(y, t.))

=r. ',Q.(.t.) I»'E»(»'E~l~. t(y, t,))
=Z..- (&-( ) l»'E»(»'E~ls-t(y))

Xexp fi (t —t",)(Eo(&V)—E)/fi ), (5.10)
with

f (x)=—It (x,t,=O),

P t(y)= P(y—,t„=O).

The summation in (5.10) is symbolic, and implies in-
tegration over the continuous range of eigenvalues also.
The only intermediate states which will contribute are
those for which (&V'~gt ~iV) does not vanish, i.e., states
where»'= iV+1. The energy E appearing here speci6es
energy levels of the system with (iV+1) particles, and
will be denoted E(»+1). Similarly, for the other
matrix element in (5.9), the same technique yields

Q.i( yt„)P.( xt,))
=Z~..Q-'(y) I» 1, E,v)(» —1, E,V lIt—-(x))

Xexpfi(t, —t„)t E(»—1)—Eo(»)1/Af. (5.11)

The spatial Fourier transforms are co-independent, and
will be denoted as

ibad(rt)/at =P(rt)H —Hy(rt), (5.8)

evaluating the commutator on the right of (5.8) using
the relations (5.2), multiplying the result by i/i(r't')—
from the right, and time-ordering the result. A delta
function arises because

d(x —y)(It-(x) I»+1, E,v)(tV+I, Ev I4-'(y))
pJ

XexpL —ip (x—y)/h~ g

=h 'A(R, n; p, E(IV+1)j, (5.12a)

Finally, taking the ground-state expectation value re-
sults in Eq. (2.4).

%e are especially concerned with the Fourier trans-
form 8 of the one-particle Green's function and its ~
dependence. The transform was defined by (2.10b),
which we rewrite, using the specific definition (5.7), as

G(R,n; p(u)

Xexp( —imp (x—y) —~(t*—t.)]/t~)

Xexp( —iLp (x—y) —cu(t.—t„) j/lt), (5.9)

R= ,'(x+y). -

There is no spin summation implied in (5.9). The time
dependence of the matrix elements is exhibited by
using a resolution of the identity between the two

d(x —y)Q"'(y) I»—1, E,»(»—1, E,v~It. (x))

XexpL —ip (x—y)/iI)

=Pi 'B(R,n; p, E(»—1)j. (5.12b)

When (5.10), (5.11), and (5.12) are inserted into (5.9),
the remaining time integration does not converge and is
therefore ambiguous. The integration can be made un-
ambiguous in the usual manner by inserting a con-
vergence factor expL —g ~

t,—t„~j into the integrand and
taking the limit q —+ 0+ after the inversion to the time
dependent form is performed. The result of the integra-
tion with the convergence factor inserted is

A/R, n; p, E(»+1)$
G(R,n; pcs) =P ——

7-"(IV+1) E0(N) irt— —

8LR,n; p, E(~V—1)j
(5.13)

Eo(») F(N 1)+irt— —

The sums in (5.13) are over the energy levels of the
(iV+ 1)-particle system and of the (iV—1)-particle
system.

At this point, we call attention to the fact that
E,(») appears in (5.13) because the state which ap-
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peared in the definition of the Green's function was the
ground state of the system with S particles. We can
make use of this by introducing the excitation energy,
a positive quantity defined by

e(N) =E(N) —Eo(N) )0. (5.14)

It is also convenient to introduce the chemical potential
p, defined as the minimum energy required to add
another electron to the system, i.e.,

tz(N) =Eo(N+1) —Eo(N) (5.15)

We observe that the singularities of (5.16) in the
complex co plane are poles and branch cuts adjacent to
the real axis. The singularities below the real axis are
contributed by the first sum in (5.16) and extend from
p, (N) to infinity. The poles arise from the discrete
(bound state) energies of the (N+1)-particle system.
The branch cut arises from the continuum state eneriges
of the (N+1)-particle system, for which the sum in
(5.16) becomes an integral. The bound-state energies
(if any) are expected to lie below the continuum-state
energies, i.e., have lesser excitation energies. Therefore
the poles, if any, are expected to lie to the left of the
branch cut. No matter how many bourid states of the
(N+1)-particle system there are, all the singularities
below the axis lie to the right of p, (N).

The singularities above the real axis are contributed
by the second term in (5.16), and extend from tz(N —1)
to minus infinity. This time the branch cut lies to the
left of the poles, if any, All singularities above the real
axis lie to the left of p(N 1). The reason the t—wo sets
of singularities terminate at the p is that the ground
state of the E-particle system was used to define the
Green's function. If the Green's function had been de-
fined relative to an excited state, then each series of
singularities would extend past its p a distance equal to
the excitation energy of this state. This statement is
most easily verified by substituting for Eo(N) in (5.13)
the energy of the state used to define the Green's
function.

In the inversion of (5.16) to recover the time de-
pendent form, the path of integration of co along the real
axis defines a path which passes beneath one set of
singularities and above the other. The relationship be-
tween the two sets of singularities depends on whether
tz(N) is larger or smaller than p, (N —1). The exact rela-
tionship between these two will depend in detail upon
the nature of the system. For an ion, however, the fact

These two definitions bring (5.13) to the form which
exhibits its ~ dependence most clearly, namely

A[e(N+1) j
.w+i) tz (N)+ e(N+1) izt oi— —

B[e(N 1)]-
+ Q . (5.16)

~i~—&) tz(N —1)—e(N —1)+zzt —zo

Fxo, 1. Path of integration in complex ~ plane.

that it becomes increasingly dificult to remove succes-
sive electrons indicates that p, increases with E. Hence,
the set of singularities below the axis lies completely to
the right of the set of singularities above the axis, with
no overlap.

The nonoverlapping of the two sets of singularities
makes it possible to shift slightly the path of integration
oG the real axis, so that it still passes beneath the one
set of singularities and above the other, even as the
operation of letting q go to zero moves all of the singu-
larities onto the real ~ axis. In this way, the imaginary
part of the denominators in (5.16) may be discarded
but the path used for recovering the time dependent
form now lies below the real axis from minus infinity
to p, crosses the real axis at co= p, and lies above the real
axis from p to plus infinity. Here, p is some real number
such that

tz (N 1)(tz (—tz (N) . (5.17)

Ihe path of integration discussed above is possible
for the ground-state Green's function, because of the
separation of the sets of singularities. But this path is
precisely the one which in Sec. III yielded the Thomas-
Fermi density.
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APPENDIX. THE OPERATOR BR, p

An operator 8&,„was defined in Sec. II by the re-
quirement that it produces the Fourier transform of the
matrix product of two functions when it operates on
the transforms of the individual functions. The precise
definition is
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The integration may be performed 6rst over z, then
over q2, then over (x—y) and finally qi, with the result
that the integral equals the value of (A.4) with qi

——0,
g2

——0. Setting the q equal to zero deletes all terms from
the summation except those for which /=k and m= j.
The result is

A four-dimensional notation will be convenient, in which

px=p x—(Ot,

dx=dxN,

dp= dpd(d

R= —,
' (x+y).

The kernels E and G in (A.1) must be expressed in (iI't/2)& +' '( B y
& (B q

~

terms of their transforms, so that the right side of BL&~Gj=Z .
,

I I I I &(R~p)
(A.1) becomes j!h! (BR) &Bp)

(27ph)
—8 d(x )dwdpidpq g

—/[u(*—/I) —ul(*—///) —u2(~—w)1//)

(x+w ) (w+yxÃI, p, IGI, p, I. (A.2)
2 ) L 2 )

Eliminate pi and p2 by putting pi= p+qi p2= p+q2.
The preceding expression (A.2) becomes

(A.5)

Xg (R,p)G(R', p'). (A.6)

( B ~'(Bl'
x

I

——
I I

—
I G(Rp)

BR) &Bp)

i'(B B B B)= lim exp —I—
/', P 2 (BR Bp BR Bp)

(2mh) ' d(x y)dwd—q,dq2 e' '* "+"'"""'"

(xzI R+ —;p+q, IGI R-

This latter form has been given by Theis. The modifica-
tion brought about by the multicomponent nature of E
and p is simply the appearance of an index for each

p+q, I (A 3) component, i.e., the argument of the exponential
2 ) becomes

Each of the transforms E and G may be expanded as a
Taylor's series about R and p. For clarity we shall tem-
porarily neglect the fact that R and p each have four
components. Then the Taylor's series expansion is where

ih 4(B B B B$—ZI
2 ~=) &BR, Bp BR Bp,)

GI R—
—w $ 1 1 (x—w)

p+q I=~-—
I

2 ) &ml!m! ( 2 )

( w —y l 11pw —y~~
~l R+;p+q. I

=2 —.—
I

2 ) /i j!h!0 2

(B
xq "I —

I I
—

I &(R,p),
) BR) EBp)

R4 ,'(t.+t„—)—-p4 ———(d.

There will be no E4 dependence in either of the func-
tions X or G because the ground-state system is time
independent, and so the summation need be extended
only over i= 1, 2, 3. If we separate out terms according
to the explicit power of k they contain as indicated by
(3.1), then"

( B $'(Bp
xq2 I

——
I I

—
I

G(R,p)
BR) &Bp)

The powers of (w —y) and of (x—w) are derivatives of
the exponential with respect to iqi/h and iq&/h. On
integration by parts, the derivatives of the exponential
may be transferred to the other factors of the integrand,
which, exclusive of the exponential, is then

1 (B &~'(B
I
—

I I

—
I X(Rp)

t/«~ j!h!t!m! (BR) &Bp)

eo)Z, Gj=EG,

BX cIG BX BG
IBX),G]=-,'i P

'~' Bx Bp, Bp, Bx

I (gB2 B~G Pg' B2G)
e,gz, Gj=(-;t) P I

+*"2 & Bx' Bp.' Bp.' Bx')

( B'X B'G B'E B'G i
+XI +

EBxBy Bp.Bp„Bp.Bp„BxBy)

(A.7)

(A.8)

B q'(B qx
I

——II —
I G(R,p)

BR) ) Bp)

(ih B p (ik B $'
xI — Iq, I

— I,,-. (A.4)
42 Bqi) &2 Bq2)

O'X O'G

»~w» '~* BXBp„ByBp
/

(A.9)

' The summation of ryan means ryan' are to replace each other
cyclically. The double summation means that xp„ is to be replaced
by each of the eight other combinations of a component of R and
a component of y.


