
P H YSI CAL REVIEW VOLUME 121, NUMBER 6 MARCH 15, 1961

Frequency Factors in the Thermally Activated Process
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Discussions of the rate ue U~'~ for thermally activated processes are usually based on the phase-space
distribution function for thermal equilibrium. Kramers has gone beyond this and for the particle in a bistable
one-dimensional well has treated the relaxation to equilibrium as a Brownian motion problem in which the
one-dimensional motion is coupled to a reservoir through a viscosity. Kramers arguments are readily
extendable to many dimensions. In the overdamped case the reaction rate is reduced below the value derived
from thermal equilibrium theory by the factor co,/n, where co, is the angular frequency associated with the
direction of steepest descent at the saddle point and p the viscosity. In the underdamped case equilibrium
theory is valid for many-dimensional systems, except for extreme degrees of underdamping.

1. INTRODUCTION

'HE probability, per unit time, for the thermally
activated jump of a particle over a barrier is

generally given by an expression of the form pe ~~~~,

where U is the barrier height. The factor v is often taken
to be an oscillation frequency characterizing the initial
state. This sort of expression occurs in many problems,
but has received particular attention in connection
with chemical reaction rate theory and the closely allied
field of solid-state diffusion. Excellent summaries of the
two viewpoints generated by these fields will be found,

'
respectively, in a book by Slater' and in a paper by
Vineyard. ' Both treatments are devoted to detailed
discussions of the frequency factor v. The thermally
activated jump is also of interest in the computing
process, ' where both the intentional switching, as well
as the subsequently undesired decay of information, can
be thermally activated. In fact, if the system making an
activated jump is allowed to have a suQiciently large
number of degrees of freedom, then the jump can
actually be the description of a phase transition from a
metastable state to a state of absolute stability. We
shall, however, in most of our considerations exclude
systems with such a really large number of degrees of
freedom. They are briefIy discussed in Sec. 6.

Most of the more sophisticated treatments of the
frequency factor v are equilibrium theories, or closely
related thereto. These theories assume that there is a
many-dimensional space, illustrated by the two- dimen-
sional diagram of Fig. 1, in which we consider an
ensemble of the systems in question under thermal
equilibrium. Points A and 8 are potential minima.
Point 5 is a saddle point. The typical equilibrium theory
then asks how many ensemble members, per second,
make the passage over the saddle point, in the direction
from A towards B. This rate, divided by the total
ensemble population of well A, is then taken as the
probability, per unit time, that a system initially near

~ Deceased,
' N. B. Slater, Theory of Unimolecular Reactions (Cornell

University Press, Ithaca, New York, 1959).' G. H. Vineyard, J. Phys. Chem. Solids 3, 121 (1957).
3 J. A. Swanson, IBM J. Research Develop. 4, 305 (1960).

A will make the transition to the region near B. In an
equilibrium ensemble the net fIow across the saddle
point is zero; a nonvanishing current is obtained by
selecting only half the systems near the saddle point, i.e.,
those which have a velocity vector pointing toward 8
rather than A. If the systems, in passing from A to 8,
and vice versa, passed through the saddle-point region
only once, the equilibrium argument would be rigorously
correct. Unfortunately, as has been pointed out by
Kramers, 4 a system in going from A to 8 may cross and
recross the saddle-point region several times. Therefore,
the equilibrium flux across the saddle-point region is
larger than the number of really independent crossings
and the equilibrium theories overestimate reaction rates.

The equilibrium theory, with some relatively in-
nocuous approximations, ' which we shall also make,
yieMs a transition rate

FIG. 1. Equipotential contours in two dimensions, but intended
here to suggest the general n-directional situation. A and 8 are
minima. @=0 is a symmetry hyperplane and S the saddle point.

4 H. A. Kramers, Physica 7, 284 (1940); see also K. I'. Brown,
J. Appl. Phys. 30, 130S (1959), for an application of Kramers'
concepts to fine magnetic particles.
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Here the v; are the vibrational frequencies in the initial
well and the v,

' are the vibrational frequencies at the
saddle point. The saddle point is associated with one less
real frequency than the minima, since there is one
direction at the saddle point in which the particle is
pushed away from the saddle point, rather than restored
to it. Kramers4 has gone beyond the equilibrium theory,
for the one-dimensional barrier, and treated the
Brownian motion of the particle in the well. He obtains
transition rates smaller than those given by Eq. (1.1).
It is our purpose to extend Kramers' arguments to the
many-dimensional case.

Like Kramers, we shall consider motion in a potential
well, supplemented by damping forces. The damping
results from an interaction with dynamical coordinates
not explicitly represented by the potential well. These
are coordinates whose values are not relevant to the
assignment of the particle to a well, and are furthermore
coordinates which are only loosely coupled to the
degrees of freedom which are essential to the discussion
of the well jumping. The same interaction which
provides damping will also provide fluctuating forces
which are responsible for the random Brownian motion.
Two separate cases will be considered explicitly: over-
damping and underdamping. In the overdamped case
the motion is of a highly diffusive sort and Eq. (1.1)
overestimates the transition rate because particles stay
in the neighborhood of the saddle point, crossing and
recrossing it, before finally diffusing away from it. In
the underdamped case Eq. (1.1) overestimates the
transition rate because particles may bounce back out
of a well, once they have crossed into it, without having
had a chance to come into equilibrium.

2. GENERAL CONCEPTS

We are treating a relaxation process. It is, therefore,
inadequate to invoke the Liouville equation for the
many-dimensional motion, but we must supplement it
by the effect of damping forces and fluctuating forces.
The density, p, in the many-dimensional phase space
can, in general, be written

We are interested in the particular 7., associated with an
unbalance between the two wells. The time constants
associated with unbalances within a well are presumably
much shorter. The unbalance, 6, between the two wells
will be given by

near A near B
pddl'= 2 pddl', (2.5)

~near A

where we have invoked both the vanishing of the
integral of p~ over all phase space, as well as the fact
that even in the nonequilibrium case most of the
ensemble population is concentrated near the minima.
If the number of ensemble members crossing the saddle
point per unit time is J, then we will have

dA/dI= —u = —A/r, (2 6)

where r is the particular time constant of interest.
Hence, a simultaneous evaluation of 6 and I will give
us ~. The relaxation time defined in this fashion is a more
generally applicable quantity than the reaction rate r
used by Kramers, which consists of the current J,
divided by the total population of one of the wells. Our
relaxation time 7 is independent of the sign or magni-
tude of the deviation from equilibrium. Furthermore,
instead of explicitly evaluating the time dependent
relaxation, we will find it simpler to examine a closely
related steady state. If the particles are replaced in the
bottom of well A as quickly as they leak away, and
taken out of well 8 as quickly as they arrive there, then
the well populations can remain time independent, and
the current can continue without being reduced from its
initial value. The exact points at which we set up
sources and sinks do not matter, since the equilibrium
near the bottom of each well is rapid, compared to the
intervalley motion. In the event that one of the wells
is occupied and the other is empty (the case which
Kramers explicitly considered) the rate 1/r given by
Eq. (2.6) is just twice the reaction rate r that Kramers
discusses.

P= P~+Pd (2.1)
3. OVERDAMPED CASE

Here p& is the thermal equilibrium portion of p and its
normalization is defined by

pdl'=~ p,dl'. (2.2)

p& is the deviation from equilibrium, which obeys

p dI'=0. (2 3)

Pd =Z pd exp ( ~/r '))f. ' (2.4)

The deviation p~ is therefore of variable sign. The
equilibrium portion, p& is time independent whereas p&

decays with time and has the form

In the overdamped case we follow Kramers'4 pro-
cedure of first finding the Fokker-Planck equation in
phase space, and then integrating over the momentum
variables. If the motion is sufficiently damped, so that
regions where the concentrations differ appreciably
cannot exchange ensemble members, then an equation
can be found which involves only the ensemble density
at a spatial point, but not the momentum distribution.
The flow of ensemble members has the form [see
Kramers' Eq. (11)j

j= —np, V U —DV'n. (3.1)

Here n is the density of systems and U their potential
energy. The diffusion coefficient D and the mobility p,

must satisfy the Einstein relation D= he, , so that the
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Holtman distribution,

~e
—U/k l' (3.2)

symmetry hyperplane. Substituted in Eq. (3.5), this
gives

corresponds to j=0. If, in the nonequilibrium case we
set

pg
—UlkT (3 3)

then the variation of P indicates the extent of the
deviation from equilibrium and Eq. (3.1) becomes

j D(yp)~ Uik—T (3.4)

z jz
p(s)—,t ~U le') Ik Fds~

J„D (3.5)

In the saddle-point neighborhood, U depends quad-
ratically on the spatial coordinates:

N—l.

U=- U, —,'-ns'-+ P nf;x, 2, (3.6)

where the (.V—1) coordinates x; are confined to the

In Eq. (3.4) D can still be a function of position; and, in

fact, for complete generality D must be allowed to be a
matrix with positive real eigenvalues (in the absence of
a magnetic field). We will assume in the subsequent
reasoning that D is sensibly constant in the neighbor-
hood of the saddle point, and that one of its principal
directions is parallel to the line connecting the two
minima.

To obtain a given magnitude of current from Eq.
(3.4), assuming not too much varia, tion in the value of

D, requires a relatively large value of VP near the
saddle point, where e ~~~ is small, and much smaller
values of VP near the minima, where eUtkT has larger
values. We cari therefore expect that the serious
departures from equilibrium occur only near the saddle
point.

Consider now the case where the two potential
minima are at the same value of potential and the
situation is symmetrical about a plane through the
saddle point. The case where a biasing force is present,
and one of the minima is favored, will be considered in
Sec. 5.

In the symmetrical case e&, the ensemble density
deviation from equilibrium, will be odd about the plane
bisecting the line AB, as will Pd ——nd exp(U/kT). There-
fore, Eq. (3.4) tells us that at the symmetry plane j is
perpendicular to the symmetry plane. Iet us now
assume that j has this same direction throughout the
neighborhood of the saddle point, and see whether this
leads to a satisfactory solution.

Let s be the coordinate perpendicular to the symmetry
plane. If we assume that a principal axis of D lies along
the s direction, and that none of the other principal
values of D vanish, then Eq. (3.4) tells us that P is only
a function of s, in the neighborhood of the saddle point.
We can then integrate Eq. (3.4) immediately

p(s)= —D '~
0

U, n(s')' 1
Xexp —— + P n;x d»'. (3.7)

kT 2kT 2k'1

The factor j, exp[Pi'v 'n, x,'/2kTj is, by Eq. (3.4),
only a function of s. The continuity of current, div j=0,
requires, however, that j, be independent of s. Hence,
the term j, exp[Pl~ ' n,x,'/2kTj is, infact, a constant.
The only remaining variable in the integrand is
exp[—n(s')'/2kT]. The integrand of (3.7) is then large
only at the saddle-point plane a=0, and diminishes
rapidly, through the factor exp[ —n(s')'/2kT] as we
move away from this plane. Therefore, at a relatively
short distance away from the plane s=0, p(s) ap-
proaches constant limiting values, a positive one in well

A, and a negative one in well B. These are, however,
exactly the desired boundary conditions: approximate
thermal equilibrium within each well and appreciable
departures from this only near the saddle point. There-
fore, Eq. (3.5) describes the desired solution, since it
satis6es the equation of continuity: divj=0; it satisfies
the constitutive equation (3.4), and also the boundary
conditions. (A variational principle can be devised
which establishes that a solution satisfying these condi-
tions is at least locally unique —i.e., that there is not a
whole continuous family of solutions. )

To evaluate T from Eq. (2.6), we must first find the
values of both J and D. The population difference 6 is
equal to twice the population of well 3, giving

well A

dxl dx P(A) exp( —U/kT)
well A

= 2P(A) exp( —Ug/kT) I dpi dx„
well A

iv

&«xpl — 2 ~.~" ~. (3.g)
2kT i j

In the final form of the integral we have used an
expansion appropriate to the bottom of well 3:

U=U~+-', Q y;z,', (3.9)

and assumed that almost all of the well population is
contained in the range in which the potential is repre-
sentable by a quadratic form. This yields:

A =2P(A) exp( Ug/kT)l—I(27rkT/y„)''. (3.10)
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The other quantity needed for an evaluation of 7- is
the total current J crossing the saddle point. The current
density is

(3.11)

which if used in Eq. (3.14), puts this into the form

1
—= 2@kTe—&U —U»i'~
T

In the symmetry plane containing the saddle point,
Eq. (3.11) becomes

tBPi p U, 1
expI — — Pn, *P I. (3.»)

& Bs&,= & kT 2kT

&(g(27rkT/n, )I/[(27rkT/n)' g(27rkT/y ;)l].
p N N

[(n)I g ~.~/g n.—:je-(~.-»)i»
7 1

(3.19)

Integrating over the l"ti' —1 transverse coordinates gives
a total current:

(Bp )
IjkTI ——

I
e ~1"r ~dxg dx~ g

Eels), p

)c', expI — P n,x,' I

2kT i J

(~p

iBsJ, p i ( n; )
(3.13)

The ratio 1/r = 2J/A is then given by dividing Eq. (3.13)
by Eq. (3.10):

1 (Bp/Bs), =p
—= —2pkT e

—(U.—U~)/»
7 p(A)

X g (2skT/n;)&/[2 g(2skT/y, )i]. (3.14)

To make use of Eq. (3.14) we still have to evaluate
(BP/Bs), p/P(A) from Eq. (3.5) which gives

(3.15)
~A. j (U nsP )

P(A) = — —expI — Ids,
&kT 2kT)

j,(S)= —D(BP/Bs) s exp( —U,/kT) (3.16).
Equation (3.16) substituted in (3.15) gives

where j, in Eq. (3.15) is the current density at the
saddle point itself. This is given by Eq. (3.4) as

N N 1—
=2wmI I [(IIv~/II v* )e '~' "'"" ] (3 20)

The quantity in square brackets, on the right-hand side
of Eq. (3.20), is just the rate given by equilibrium
theory, in Eq. (1). Denoting this by (I/2r), p, we have

(1/r) =pm(n/m) '*(1/r),„. (3.21)

The quantity pnz is just the viscosity p, used by
Kramers. '

g gives the rate of momentum relaxation, due
to dissipative effects, according to the equation

dp/dI = —gp. (3.22)

The quantity (n/m) '* is an angular frequency,
associated with the unstable equilibrium at the saddle
point. [Note that our co, = (n/m) &, whereas Kramers uses
the symbol co' to stand for a frequency which is
(2s.) '(n/m)'. j In this new notation, Eq. (3.21) can be
written

(1/r) = ((o,/ri) (1/r)., (3.23)

The reduction factor (co./ri) is the same as the one
Kramers found for the one-dimensional case. The
smaller the damping, the more rapid the diffusive
motion of the overdamped system becomes. Decreasing
values of ~, represent increasingly Qat saddle-point
barriers and therefore thicker obstacles for the di6using
system.

In order to introduce the frequencies of Eq. (1.1), we
must use the particle mass m. In case the real physical
problem involves a, number of different masses it is
assumed that a canonical transformation was introduced
which makes all masses identical, and that we have been
working with the transformed coordina, tes. Using
(y;/m)'= 2prv, „and (n;/m)'=2vrv, ', we get

(BPi )2skTi '*

EBs) s E n )
or equivalently

(~p/») s

p(~) (27rk T/n) &

(gp )
P(a) =

I

—I, exp( —ns&/2kT)ds
&as) s ~p

(3.17)

(3.18)

4. THE UNDERDAMPED CASE

In the one-dimensional under damped case, it is
pointed out by Kramers that a very considerable degree
of underdamping is required to cause appreciable
deviation from the equilibrium theory. Kramers points
out that a typical particle crosses the energy barrier
with about kT of excess kinetic energy. During its
motion through the new well it only has to dissipate
this excess kinetic energy to become trapped. Since this
excess kinetic energy is only a small fraction of the
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total energy, a relatively small degree of damping will
insure trapping. Instead of giving a detailed treatment
of the underdamped case, we will be satisfied in extend-
ing the above argument to the many-dimensional case
with very rough statistical considerations. This will
leave us with an estimate of the degree of underdamping
that is required to produce appreciable deviations from
Eq. (1.1).

Again there is a balance, in equilibrium, between
damping forces and fluctuation forces. For a particle,
however, which has already a considerable kinetic
energy, such as one which has just crossed the saddle
point, and entered into a well, the damping forces
(which we will assume proportional to the particle
momentum) are predominant compared to the fluctuat-
ing forces, and we shall consider only the damping
effects.

We first wish to find the mean energy in excess of the
saddle-point energy, U„with which particles in thermal
equilibrium cross the saddle point. Consider the par-
ticles with excess energy between» and»+d», at a point
in the symmetry plane where the potential exceeds U,
by 8?i'. The kinetic energy of the particles is then e—8U,
and their momentum is proportional to (»—8U) &. The
rate at which they contribute to the current Rowing
from one well to the other, per unit volume of phase
space, is then proportional to the particle velocity,
2'm '(» —BU)'*. )The fact that these particles have a
total momentum 2'm&(» —8U)'*, and that only one com-
ponent of this momentum gives their rate of Row in the
s direction brings in a multiplying factor which depends
only on the dimensionality of the system. ] In integrat-
ing over phase space, consider the integration over mo-
mentum first. The range of integration is proportional
to p~ 'dp, where 1V is the total number of spatial dimen-
sions. The current Qow, per unit volume, is therefore
proportional to (»—8U) ~p 'dp, or equivalently to
p~ 'd». We must now still consider the integration over
the transverse spatial dimensions. Hence, we have an
integral of the form

Q(»)d»=d»
~ p d&l' ' 'd&N 1—

N—1
=d» L2m(» Q 6's' )]t ~t dsg dt's —y) (4.1)

1

for the saddle-point Aux in the range de. The range of
integration is the region in which the integrand remains
positive. A change of variables, t,'=o, ;x brings this
integral into the more symmetrical form

N—1

y(»)d»=ed» I 2m(» P t,')]&—~ »t'dt,

dt's

g,
—(4.2)

aJ 1

where the constant c is independent of e. An additional

change of scale t, =, e'v; takes us into

The Aux per unit energy range, across the saddle point,
would therefore be proportional to e ' if all parts of
phase space were given equal probability. In thermal
equilibrium, therefore, the Aux will be proportional to

' exp( —»/kT). The mean excess energy of the flux
across the saddle point will be

(»)= »~ exp( —/»kT) d» „" »"—' exp( »/—kT)d»

=kTC I'(1V+1)/I'(1V)]=XkT. (4 4)

How much of this excess energy )VkT must be dis-
sipated in order that the particle be trapped? In order
for it to be trapped with absolute certainty all of the
excess energy must be dissipated. For large E, however,
the distribution»~ ' exp( —»/kT) becomes a very
sharply peaked function at e SkT, indicating that
particles with e appreciably less than EAT have very
little chance of passing through the saddle point open-
ing. Hence, the particle need not really lose all of its
EkT excess energy to become electively trapped.

Let us consider this point slightly more quantita-
tively. Assume that the particle is subject to a damping
f01ce

dP/dh= —rtP,

or equivalently, for the kinetic energy T

d T/dh = —2g T. (4.6)

Now assume that averaged, over the particle motion in
a well, T constitutes a fraction ~b of the total energy,
where 6 is a coeNcient of order unity. The total energy
U is then lost according to

d U/dt = —gb U. (4.7)

A particle with an initial total energy (»»+U, ) will

therefore lose excess energy according to the law

»(t)=(»0+U, )e &" U—(4.8)

In the typical case we have in mind eo is smaller than U,
and therefore the energy relaxation is described fairly
well by

»(t) = (»0+ U, ) (1—qQ) —U, . (4.9)

This equation is particularly accurate in the very initial
stages of the damping process, where it will be really
necessary to invoke it.

Let I'~dE be the total amount of phase space in one
well, in a range dE above the saddle-point energy U, .
Let us furthermore assume that the saddle-point open-
ing is reached with somewhat similar ease from all parts
of this phase space. (See Sec. 6 for an additional dis-

N—i
y(»)d»=e»A'-&d») L2m(1 —P r 2)]&&-»»

1

Xd'e" ' 'Ax —1 (4 3)
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cussion related to this point. ) The escape probability
from a well per unit time, for a particle with energy
greater than U„ is therefore given by be~ '/I' s, where
be~ ' is the flux calculated in Eq. (4.3). We shall, for
these qualitative considerations assume I'g is independ-
ent of E.For very large F this is certainly incorrect, but
even there Fz will vary relatively slowly compared to
e~ '. (Furthermore, our considerations generally are in-
tended to apply to relatively modest values of X. See
Sec. 6.)

The particle which loses energy according to Eq. (4.9),
therefore has a probability per unit time, dr/dt, of
returning to its original well, given by

dr/dt= (1 r)be—" '/Ps (4.10)

where the factor (1—r) on the right-hand side accounts
for the possibility that the particle has already returned.
Equation (4.10) integrates to

t

r(t)=exp —" dt'bP '/I'~ . (4.11)

We are interested in the maximum value r(t) reaches
when the limit of integration t, on the right-hand side
extends to the time at which e vanishes. Using Eq. (4.9)
to perform the integration indicated in Eq. (4.11) gives

Note that for very small 1V, Eq. (4.9) is a good approxi-
mation if the typical value of ep XkT is small compared
to U, . For larger values of 1V Eq. (4.9) becomes poorer in
describing e(t), in the range where it is positive. For
larger values of E, however, the high power of the
integrand t in Eq. (4.11)]makes the integrand impor-
tant only at times where e(t) is still close to eo, and hence
Eq. (4.11) is still accurate. The factor be@ '/I'z in the
exponential term of Eq. (4.12) is just the rate of leakage
out of the initial energy range. The factor multiplying
it is the time taken to lose an energy eo/1V, by damping,
out of the total initial energy )eo+U, j. Hence, if the
particle loses appreciably more than (eo/1V) AT energy
within the time taken for escape in the absence of
damping, r, in Eq. (4.12) does not come close to
unity, and the particle is electively trapped.

The energy loss required, kT, is therefore the same
as in the one-dimensional case. The time available,
however, for this loss of about kT is likely to be much
larger in the many-dimensional case, than in the one-
dimensional case. In one dimension the escape time in
the absence of damping is the oscillation period of the
well. In many dimensions a particle must be aimed in a
very particular way, in order to bounce right back, and
most paths through the saddle-point opening will lead
to complicated orbits, returning to the saddle-point
opening only after many oscillations.

Thus, for all practical purposes, one can assume the
equilibrium expressions valid in the many-dimensional
underdamped case, unless the damping is extra-
ordinarily weak,

1V~=c di' exp( —U/kT) = 1V~, —(5 1)

where the integration is over the phase space of well A.
The new populations, which are in equilibrium with the
above will be

1VA c 7 d+ exp( U/PT) —+~e UplkT—
7

Zp

(5.2)
Zg

1Vg'= —c ~' dl' exp( —U/kT) = —1Vge ~e"r
+1 Zp

where Z= J'dl' exp( —U/kT), with U measured from
the bottom of the well concerned. The subscript 0
designates the original symmetrical well. An alternative
way of writing Eqs. (5.2) is to define a free energy
F~——U~ —kT lnZ~', and similarly for Ii~, and also Fp
for the original well. Then Eqs. (5.2) become

~ ~ —~ ~
—(&~—&o)l»

A — A&

E~' ———iV~e &~

(5 3)

The distinction between (F~ Fo) and U~ becom—es
relevant only if the well minimum at A changes its

5. THE UNSYMMETRICAL WELL

Our arguments in Sec. 3 assumed a symmetrical well.
In this section we will generalize the results. The basic
point is as follows: The deviations from equilibrium, in
both the underdamped and the overdamped case, are
con6ned to energies close to, or above the saddle-point
energy U, . At appreciably lower energies very slight
deviations from equilibrium suffice to generate the
required current flowing up (or down) along the energy
scale. Hence, if we are given a solution for the non-
equilibrium part of the phase space density, pd, for a
symmetrical well, corresponding to a current Qow J, we
can proceed to deepen one of the two wells, and as long
as we have left the potential variation near the saddle
point unaffected obtain a solution for the new situation
very trivially. We simply have to populate the new
(deepened) well in such a fashion that it is in equilibrium
with the original well, and then the current Qow across
the saddle point will remain unaffected. Let us evaluate
how such changes aftect the relaxation time v-.

For the symmetrical situation we have 1/r=2J/A.
The excess population in well A is 6/2, as is the deficit
in well B. If we change the minima away from their
original positions at U= 0, let the new minima be at U~
and U&, respectively, and let the saddle point remain
at U= U, . The original population of well A was of the
form
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shape as well as its energy level, when the deviation
from symmetry is established. The values Xg' and Ã~'
given by Eqs. (5.3) are associated with the original
current J. The solution to the modified problem does
not obey Ã&' ———Ã&', i.e., it contains a certain amount
of equilibrium solution. To obtain 6' we must subtract
out this portion. After subtracting out enough of the
equilibrium distribution to give us a total population of
zero, we find a remaining pop elation difference:

t) ~ —2ttk/(e(za zo)(kl'—+e(zA zp)(k—r) (5 4)

For the relaxation rate this gives

./. '= a/a'
k (e(Ze Zo)lkr+—e(Zg Zo) jkT)—2x (5.5)

In the case where the deviation from symmetry is
caused by a uniform applied field, we will have to first
order in the field

Zo —Zo= —(Z~ —Zo) (5.6)

Denoting this difference by $, and bearing in mind that
g will, in general, be largely an energy difference and
will refIect changes in vibrational entropy only to a
minor extent, we have

r/r'= cosh(g/hT). (5.7)

Equation (5.7) describes the speeding up of the re-
laxation process due to an unbalance, and can also be
deduced from more elementary kinetic considerations.

In the solid-state diffusion process this is likely to be
a small effect, particularly if we neglect the structural
changes resulting from the field and consider only the
applied field itself as the source of an unbalance. Fields
of the order 10' and 10' volt/cm would be required to
produce a 1/o increase in electrolytic mobility, if the
structure is symmetric in its initial state. In piezoelectric
materials an initial symmetry will not obtain and a
first-order change of mobility with field can be expected.
Equation (5.7) does have a real application: the theory
of computing devices. This will be discussed in a
separate publication.

0. SYSTEMS WITH VERY lVIANY MMENSIONS

If a system has a very large number of dimensions a
number of our approximations will break down. First
of all, the concept of two wells, within each of which
equilibrium is rapid compared to the exchange between
wells, is likely to break down. Furthermore, the system us
a whole is lihely to ha~e an energy comparable to, or large
compared to the saddle point energy. The rele-vant
question then does not concern the damping —that is
energy exchange with still further coordinates —but
only concerns the energy exchange between the degrees
of freedom explicitly specified. That is, for sufficiently

large lIIt, most of the populated parts of phase space will

be at an energy greater than U, .
The overdamped case with very many dimensions, all

of them equally overdamped, seems to be an unlikely
and unrealistic situation. If there were such a situation,
however, our analysis of Sec. 3 would still apply, if the
specific mathematical approximations involved are still
valid. The latter only involve the quadratic potential
variations, near the minima and the saddle point.

The high-dimensional underdamped case seems more
likely, and can be easily visualized. A solid-state
diffusion problem, in which all the crystalline degrees of
freedom are explicitly represented, is an example. The
high-dimensional underdamped case can be separated
into two categories.

1. The case where most of the degrees of freedom are
only very loosely coupled to the activated process. This
is true for the crystalline example mentioned above.
Mast of these extra degrees of freedom could have been
represented simply through a viscosity, and it is only as
a matter of rigor that one would want to include them
explicitly as part of the process. If one does, however,
our considerations of Sec. 4 break down completely. The
system does not have to lose any energy to become
"trapped, " since it never had to become atypical and
gain energy to cross the saddle point in the first place.
Furthermore there is an assumption in the use of
Eq. (4.10) that all parts of the well (with the correct
energy) are about equally on "speaking terms" with the
saddle point. The slow energy exchange with the many
coordinates explicitly represented in the motion, rules
this out.

2. The case where all of the many underdamped
degrees of freedom are really intimately connected
with the activated process, and must be examined, in
order to know which well is occupied. This is again hard
to imagine. In this case, however, the particle can be
assumed to have thermalized immediately, when it
crosses the saddle point —i.e., its motion has a character
typical of the well in question. Therefore, equilibrium
theory is valid, i.e., the probability of a particle bounc-
ing back is negligible, since it has so much phase space
to get "lost" in. The specific expression (1.1), of course,
depends also upon the validity of quadratic potential
expansions.

SUMMARY

In the overdamped case the reaction rate for the
many-dimensional problem is reduced by the factor
already found by Kramers in the one-dimensional
problem. In the underdamped case very extreme under-
damping is required to produce deviations from the
equilibrium theory.
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