
P HVSICAL REVIEW VOLUME 121, NUMBER 1 JANUARY

Interatomic Repulsive Potentials at Very Small and InterixIediate Separations*f
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Using a minimal and a maximal principle, respectively, two approximate expressions for the interaction
potential between atoms are given such that their mean, U(R), differs from the exact value, Up, in the
Thomas-Fermi-Dirac (TFD) approximation, by not more than 4% for the case of two-center system; and
by not more than 14%, in the Thomas-Fermi (TF) approximation, for the case of a three-center system.
The respective limits of applicability of these potentials are discussed, and some of their applications are
pointed out.

I. INTRODUCTION

~CONSIDERABLE interest attaches to interatomic~ repulsive potentials because of the important part
they play in the study of gas scattering, ' electrode
sputtering, '' radiation eGects in solids, 4' and matter
in the interior of stars. Under these conditions, atoms
approach each other much more closely than in solids
under currently attainable pressures. 7 Theoretically,
most of the interaction potentials that have been
proposed, are relevant mainly to the vicinity of the
equilibrium separation, but relatively little is known
about these potentials at the considerably smaller
separations referred to above. ' It is the purpose of the
present paper to develop a theoretical expression for
this interaction energy at very small and intermediate
internuclear distances.

The method for solving this problem is based,
essentially, upon the application of a variational mini-
mization-and-maximization principle, due to Firsov,
to the Thomas-Fermi statistical model of the atom. ' "
While the Thomas-Fermi model was originally em-
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ployed for calculating the central field of only one atom,
the same model may also be used for calculating the
interaction energy of two (or more) atoms, provided
their separation is sufficiently small, and hence the
overlap between their respective electron clouds
suKciently great, so that the statistical treatment is
applicable. ' The treatment to be given here, however,
will be based on the more accurate Thomas-Fermi-
Dirac statistical model of the atom. "

Inasmuch as the atomic interaction energy will be
found to depend in a somewhat complicated manner
upon the electron energy of the atomic system under
consideration, our attention in the next three sections
will be focused chieQy on this electron energy. Thus,
in Sec. II, a functional II of the electron density p, and
another functional Hr of a certain function f are
established. Hp(pp), the minimum of H, and Hrp(fp),
the maximum of H&, are each equal to the exact electron
energy in the TFD approximation. %ith the aid of these
minimal and maximal principles, respectively, both
upper and lower bounds can be determined for the
relative error e—= (H Hp)/~Hp~ in approximating Hp

by II, when II is calculated with a function p approxi-
mating the exact po. Similarly, upper and lower bounds
can be determined for the mean relative error
e=—[-'(H+Hr) —Hp]/(Hp(, when Hr is calculated with
a function f approximating the exact fp.

In Sec. III, this formalism is applied to the TFD
two-center problem. Here po is approximated by simple
superposition of the undistorted, exact single-center
densities pop and p02 of atoms 1 and 2, respectively;
similarly, fp is approximated by superposition of the
appropriate single-center functions fpr and fps. The
errors e and e are then found to have upper bounds of
less than 8% and 4%, respectively. As a second appli-
cation, the three-center problem is treated in Sec. IV.
A configuration in which the atoms occupy the vertices
of an equilateral triangle is assumed. Here, analogously

to the procedure followed in the two-center case, po is

approximated by the superposed exact single-center
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densities (poi+pop+pop); and similarly, fo by (foi+fop
+fpp). Evaluation of the upper bounds on 8 and 8 gives
less than 15% and 7.5%, respectively. In this case,
however, the TF (rather than TFD) model was used
in order to keep the work tractable. Essential formal
and physical distinctions between the two models are
indicated.

In Sec. V, the complete expressions for the inter-
action potentials U(R), Ui(R), and their average,
U(R), are formed by adding the internuclear Coulomb
term ZiZpe'/R to LH —H(oo)g, )Hi —Hi(oo)), and

f pLH+Hij ——,'PH(op)+Hi(oo)]}, respectively. The
symbols H(oo) and H&(~) represent the values of these
functionals when the atoms comprising the system are
infinitely far apart. Setting the exact TFD interaction
potential LZiZpe'/R+H p

—Hp(oo))—:Uo(R), it is shown
that, for an arbitrary number of nuclei, the relative
errors op=(U —Up)/Uo and op=—(U Uo)/Uo h—ave
respective upper bounds less than those on the corre-
sponding errors t. and c defined above. Hence it follows
that for a TFD two-center system, op&8%, and

pal&4%; and for a TF three-center system (with
equilateral triangle configuration), pp(27%, and
pp(13 5% .Firs. ov's' two-center TF potentials are
shown to be obtainable from our three-center formulas
as special cases, namely by letting the Z and p per-
taining to one of the three atoms vanish.

A discussion of the results, indicating the limits of
their applicability and outlining some of their further
applications, is contained in Sec. VI.

II. TOTAL ELECTRON ENERGY IN THE
TFD APPROXIMATION

A. Minimization Principle

The total electron energy of a system of interacting
atoms, according to the Thomas-Fermi-Dirac (TFD)
statistical model of the atom, is given by'

ith atom, ' the distance to the ith nucleus. Here and
henceforth, the nuclei are assumed to be either held
axed, ot else, moving so slowly that the adiabatic
approximation is justified.

Extremalizing H by variation with respect to p,
subject to the normalization condition

e t pdv=Xe,
~D

(3)

where, from TFD theory, '

Vp ——«,'/4«/, 8)0. (5)

Substitution for «ppp'/' from (4) into (1) then gives for
the extremum of H,

/' po(r)p (r')
t

Z,
IIO= ——'oe t& t& pe Q— podi/

y —y y

——o'«Jt pp"'dv —-', Vpe ppdv, (6a)

or, eliminating also the double. integral by means of
(4)

Ho=-p«p pp"'di/ ——p«, pp"'dp ——,e', Q —ppdp
y,

——,
'

Vpe ppdi/. (6b)

where E is the total number of electrons in the volume
0, and introducing a Lagrangian multiplier t/'0 gives

(r') Z,
(5/3)«/, ppo/'+8' i

— di/' —e' Q—
[r—r'[ y,

—-', «pp'"+Vpe=Q, (4)

~ p()p(')
H =«/, p'/'de+ ,'8'

~

-di/'di/
J r—r'

As the right-hand side of Eq. (6a) shows clearly,

Bo(o. (7)

82 p pd~ « I P4/pdi/ (1) To show that Hp is a minimum, let p=pp+8p, with
y, J '

8P((pp. Then, by Eq. (1) and expanding to first powers
ln Spy

—O' P ——p4«, pp'/P Bpdi/y
J t (5/9) «ppp

' '
yi

«o =—(3 // ) / 8 /ip~2. 98 Gp
'

«.= —,
' (3/~) i/pep~0. 74e'; p t 8P8p'—(2/9)«, pp '/'j(8P)'di/+p'8'

~

di/'di/, (8)
/r —r'f

(2)

where the first term on the right represents the kinetic /' po(r')
energy of the electrons; the second, the electron inter- H(po+op) =Ho+ (5/3)«/Po"'+8'
action energy; the third the interaction energy between [r—r'f

the electrons and the nuclei; and the fourth, the electron
exchange energy. Also,

and ao, p, Z;e, y;, respectively, denote the radius of the
smallest Bohr orbit in hydrogen; the number of
electrons per unit volume; the nuclear charge of the

or,

H(pp+op) =Ho+2 ~/ (8')
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where I; denotes the jth integral on the right in Eq.
(8). Now, by (4),

With the aid of (4), (10') can be written

(5/3) ~pP pP '
4p
—~,Pp' ' e—(Pp V—p) =0, (12)

Ii= —Voe Spy,

whence, by (3),
Ig ———8(Xe)=0.

Again, from TFD theory,

(9a)
-'l .+L(p .)'+4(5"/ ) (4 o

—Vo)e)'"
p 113

2 (S~p/3)
(13)

which, being a quadratic equation in po'I', has the
solution

(Spppp 'I' —2a,pp pi'))0, (9c)

and hence also I2&0. To show that also I3)~0, dehne
the "potential" I by

2~ppb-'i' —~,pb
—'i'=0, po&~ pb) (9b)

where pb is the electron density at the boundary of the
TFD atom, so that

That the formal solution involving the megathere square
root in (13) is physically unacceptable can be seen from
the following reasoning: Very near the nuclei, Pp can
become very large, far exceeding Vo, and thus making
the radical far greater than -', ~; but in this case po'I',
and hence po, would be negative, which is clearly
inadmissible.

With the aid of (13), Eq. (11') can also be written as

so that

and therefore

V2N= —4&cp,

Sp
Q = — d'v)

1
' NV'Ndv;

V Pp= —4pre 'Q Z;b(r —r;)+4we(2~ /SKp)'

&((1+[1+(15~p/4~. ')e(yp —Vp))'")'. (11")

Equation (11") is the Thorns, s-Fermi-Dirac equation
for an arbitrary number of interacting atoms. ~ Equation
(13), therefore, describes the electron charge density in
such a system of TFD atoms.

I V (uVu)dv= [uV'u+(Vu)')dv,
J J

C. Maximization Principle

Corisider the functional

and, upon application of Gauss' theorem to the integral
on the left,

where

fO

Hg —— [-,'——(Vf)'+k%'(f)+4s-Vpep)dv, (14)

whence

V (uVu)de= uVu dS=O,

Ip (Vu)'de——)~—0.
4 J

(9d)

f=e 2 (Z'/r') —4, (15)

and is subject to the boundary condition that f +0-
asr —+ ~;

k —= (2~/5') (pr/3) (~,'/» p') =4s(SKI /3) (2Kg/. SK&) '; (16)

By results (9a, c, d), the quantity added to Hp in Eq. +(f)=—C'(u) =- [1+(1+u)"')'du
(8) is positive, and hence Hp is a minimum.

(17a)

Z, t pp(r')
yp ——e g ——e dp', (10')

B. Electric Potential and Charge Density

The electric potential is given by

Z; t' p(r')
y=e P ——e dv',

r; ~ Jr—r'f

and the corresponding Poisson equation is

V p= —4vre Q Z,5(r—r,)+4s.ep, (11)

where b(r r,) deno—tes the three-dimensional Dirac
delta function. Thus also

with
=4u+2(1+u)PiP+ —'uP+ Pp(1+u)»' (17b)

u= b[e Q Z;/r; f Vp) =b[@—V—p);— (18)

b = 15~pe/4~. '; bk =4~e(2~,/5~&)'. (19a,b)

Extremalizing H& by variation with respect to f, subject
to the subsidiary condition (3), gives

b(Hi+) efpdw) =0,
with X a Lagrangian multiplier to be determined below;
thus,

1 f'

Vf, S(Vf)

and
V'gp= —4vre Q Z,8(r—r,)+4prepp.

84 BQ Bp Bp+ 5— +in. Vpe — X4epr—8f dp=0—. (20)
Bu Bf Bf Bf
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Now

f
V (bfVfp)dv= (Vfp Vb f)dv+ (V'fp)bfdv, (21)

and by application of Gauss' theorem to the integral
on the left,

Jr V (bfVfp)dv=~t (Vf)bf dS=O,

so that by (21),

(Vfo Vbf)dv= — t (V'fo)bfdv

Hence, as the symbols 8 and V "commute", it follows
from Eq. (20) that

1 —V'f o+kL1 +(1+up)'"j'(—b)

Bp
+4pre—(Vp —X) bfdv =0,

8
or)

V fo —bkg1+——(1+up)'~'g +4v e(bp/8 f) (h Vp) —(22).

Also, V'e P (Z;/r, ) = —4v-e P Z,b(r —r,), so that

V'(e g Z /r fp) = —4—pre P Z;b (r—r,)
+bkt;1+ (1+uo)"]'+4~e() Vo) (~p/~f—) (23)

which, by virtue of relations (15), (16), (18), (19) can
also be expressed as

But in view of (3) and (22), it follows that the last two
integrals in (27) vanish, whereas the first integral, to be
subtracted from H&p, is evidently positive. The ex-
tremum H~p, therefore, is indeed a maximum.

It will now be shown that the two extrema Hp, Hyp

are identical. We have the identity

and by Gauss' theorem,

so that
J„

V (foVfo)d = f Vfo dS=O,

1
+

tp(5/3)K-happ'I'

oK.pp ~'jdv—+-', Vpe rppdv. -(29)
2

and hence, by Eq. (14),

rKo=—
i

foVofodv Lk—@—(up)+in Vpepp jdv. (28)
8~& 4~ J

To eGect the transformation of this expression into one
entirely in terms of pp, we use Eqs. (12), (15), and (23),
to obtain

1 t' r Zg
foVofodv =—pe'

i Z podv—

V Pp
———4pre P Z;b(r —r;) Similarly, by Eqs. (13), (18), and (19),

+4pre(2a, /Sa p)'(1+ L1+ (15~i/4a, ') (Pp—Vp) j'")'
+4,(), V )(b /~f) (24)

po= (bk/4 ')~i+(1+

Comparison of this equation with (11")clearly requires

(30)

X= Vp. (25)

In view of this result and of (18a), Eq. (24) becomes

—V fp= b(k1 +f1 +(bPeZ /r' fp Vp)] j (26)

To show now that the extremum of H~ is a maximum,
let f= fp+bf, with bf« fp, and utilize the relations
+(fo+bf) =@(uo+bu), and p(fo+bf) =pp+bp. Then,
upon expanding and retaining terms to first order in
8N, one finds

Pi Hio II ( '(Vbf)'+pkg(l+u-p)'"

f
C'(uo) = (4ve/bk) po(du/dpo)dpo.

J

Using (18) and (14) to evaluate (du/dpp) then yields

C'(uo) = (4pr/k) (—&ppo ——x po ~ ), (32)

so that, upon substituting results (29) and (32) into
Eq. (28), one has

Hip= oKp I pp ~ dv pg~~t pp ~ dv—

+ (1+uo) '"j'(bu)')dv ——I (—V'fo
—

pie'~ P (Z;/r~) ppdv —pi Upe ppdv, (33)
4

Hgp=Hp.

where the right-hand side here is identical with that of
kb(1+(1+up)i/Pjo}bfdv Voe I bpdv (2y) Eq. (6b), and hence

(34)



I NTERATOM I C REPULS I VE POTENTIALS

H, Hi „

H, = H

p, f

III. THE TWO- CENTER PROBLEM IN THE
TFD APPROXIMATION

A. Construction of H and H~

Let us now employ the preceding results to obtain
an upper bound on the relative error e when Hp is
calculated by setting p= pot(rr)+pps(rs) in H. Here pp;
denotes the solution of Eq. (4) for the ith atom alone.

From Eq. (4) we have

Fzo. 1. Schematic representation of the (negative) functionals
Z(p) and H&(f) associated, respectively, with the minimal and
maximal principles.

Po(r )
g2 dv'= es P—(5/3)K»oslo

r—r' r,
+-',K.pp'" —Voe, (36)

I
pp, (r') Z,

e' —dv'=e' ——(5/3)K»0;0 '
[r—r'] r,

+ 0 Kgps '"—Vo,e, (37)D. Signi6cance of the Minimal and
Maximal Principles

Some of the main results concerning H and H and therefore, for the ith atom,

established thus far, are represented schematically in
Flg.

The existence of a minimization for H and of a
maximization principle for H& is extremely useful in
that it makes it possible to establish both an upper and
a lower bound on H. That is, in order to calculate the
exact value of H =Hp ——Hyp, it would be necessary to
solve either the nonlinear integral equation (4) or the
nonlinear differential equation (11"), which, even in
the TF approximation and for only two nuclei, presents
great calculational difficulties.

Another approach to determine Hp utilizes the fact,
evidenced by Eqs. (8) and (9) above, that H varies
slowly for small variations bp about pp. Thus, Lenz"
and Jensen" have used p= pot+pop to calculate H for
two centers; and Hund, " using a more elaborate
function, has done the same for the two special cases
F2 and X2. Even these approximate calculations,
however, are extremely tedious and require both single
and double planimetry. ' A more important de.ciency
in these and all similar calculations, however, is the
fact that as long as the minimization principle clove
was available, no lower bound on H was known, and
hence the only accurate assertion possible was that Hp
was less than H. How mech less, could only be guessed. '

With the added establishment of the maximization
principle, however, this uncertainty is substantially
reduced; for now another accurate assertion becomes
possible, namely, that Hp is greater than Hq. Indeed,
it is readily seen from Fig. 1 that the relative error in
approximating Hp by H is

where Vp; denotes that part of Vp which pertains to the
ith atom.

Substituting the right-hand members of (36), (37)
into Eq. (1) then gives

+=Ks~ I (por+pos) —s(pot +pop' )7(pot+Pop)dv

t' (Zt Z—le') (

—+—[( 01+pop)dv
E r1 rs)

K~ L(pol+p02) s(pot' +pop )7( p+01p )opdv

——,
' Voe (po1+pop)dv. (38)

J

Next, to obtain a corresponding expression for H~,
it is helpful first to transform Eq. (14) by a procedure
entirely analogous to that used above in arriving at
Eq. (28). This yields

1
I

1
fV'f dv Lk@'—(f—)+47r Voep7dv. (39)

8

Furthermore, by (12) and (15),

z'
f0= e P e'L(5—/3—) »o'K' OK,PO' '7—Vo, (40—)

and that the mean relative error in setting Hp
=-,'(H+Ht) is

.-—=L)(@+a,)—a,7/( II, [
(~.'.

'0 W. Lens, Z. Physik?7, 713 (1932).
'4 H. Jensen, Z. Physik 77, 722 (1932).
'0 F. Hund, Z. Physiir 77, 12 (1932).

(35b)

whence

V'fp ———41repo,

z'
f .=e——e ((5/3)K»0 —OK~ps. 7

(1/kn) V'fp;= —epp;,

e=(H Ho)/[Ho[((H +1)/j+~=e (35a) and by (22),
(41)

(43)
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where fp; denotes the solution of Eq. (26), again for
the ith atom alone. Hence, if analogously to the pro-
cedure followed with regard to H, we now set f= f01(r1)
+f02(r2) in H1, then Eq. (39), with the aid of Eqs.
(42) and (43), gives

H1 ~k
J Lo (P01 +P02 ) 2 (Po1+P02) j(pol+P02)~2/

//u Lp (Pol +p02 ) 2 (pol+p02) j(pol+p02)/f2/

0 (Z1 Z2)
I

—+—1(p»+po2) d2/

(r, r2)

——,
' Vpe Jt (p01+p02)d2/. (44)

Kith this exact form of H~ it turned out to be im-
possible to obtain a numerical value for e, essentially
because of the complicated structural forms of B and
H~. However, using the fact that the exchange term
(the term in /:,), constitutes but a small correction' to
the remaining terms in H1, an expansion of H1(/1, ) in
terms of the dimensionless parameter

pk(~)2L(5/3)//k(P01 +p02 )j(pol+P02)d2/

/' (Z1 Z2)
I

—+—
I (P01+P02)~0'

~ ( r, r2 )

J
4(~)2L 2/1. (P01"'+P02'")j(p»+P02)d&

and

—-' Vpe (p01+p02)&2/, (49)

H1 2/k(&)2t (5/3)&k(pol +P02 )g(ppl+P02)/f2/

/' (Zk Z2)
(
—+—

~
(po1+po )/E2t'~ Er, r2)

B. Upper Bound on the Relative Error

To facilitate now the formation of 0'=—(H—H1)/~H~,
let us introduce

&= (po1—Pop)/(po1+ po2),

Then we have from Eqs. (38) and (47), respectively,

y =//. /[4Kke(e P Z;/r; f Vp)—]'/2—

was carried out to first order in ~, yielding

1 / Sor ( 3 ) 2/2

H = ,'(V'f—)'—+-
42' & 5 &5~k)

( Z. ) -5/2

X«e] eZ f Vo —[—

(45) n. (~)2L2~.(P01"'+P02")j(P01+P02)~~

so that

—
2 Voe (ppl+ p02) d1/, (5o)

H1 ' (fk 'gk) 2 p(5/3)//k (P01 +po2 )$

X (P01+P02)d&—
J (4—n.)2L2~.(pol +P02 )]

)3q2 - Z;
+42rl I

K e Z f Vo +4«Vop ~2/ (46) where
&5~k) r,

X (p01+p02)&0, (51)

f1+a) 2/2 (1—n) '/'- —'
i +i (52a)

(52b)

(],+a) '" t'1 —~) /'- 22/2
=1—OS

i I
+2) E2 (52c)

To perform the transformation H1(f) to H, (pp, ,pp, ),
we again set f= f01(r1)+f02(r2), use relations (42),
(43) to introduce the electron densities pp1 pp2

~) 18-—1

before, and again expand to erst order in ~, to obtain, ( 2 ) g 2 )
Anally, after straightforward but lengthy algebraic ma-
nipulations,

H =" ~Ll ( o +po )——:(o '"+po '")"'j
f' (Z1 Z2)

X (poP"+po "')/h ', e'
(

—+—
l

—(p-o1+po )d&
( r, r2 )

& p
—(Po1+Po2) ——(poP +po2 )

pi+ay
'/' p1 o/q '/' '/'—

~.(~)=1—2
I I +I

2 ) E 2 )
- (1+a) '/2

X (po1"'+po2'")&2 —-', Voe (po1+po2)&o. (47)
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TABLE II. Numerical values of e and 8.

a 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

e 7.91 7.84 7.66 7.42 7.10 6.59 5.90 4.78 3.58 1.80 0.00
3.96 3.92 3.83 3.71 3.55 3.30 2.95 2.39 1.79 0.90 0.00

H Hg — J'(e»E e.A)—dn

(58)
J'L(1—6)E—(1—4)A jd~

Each of these four functions (52), evidently even in o.,
has been evaluated over the entire range of n in steps
of 0.1, along with the differences ($»—g») and (P,—q,),
respectively, as shown in Table I.

Now from the given deinitions of ~~, If. , pp;, and from.
the numerical values of ($» g—»)= e—», and ($, g—,)=e-„
given in Table I, it follows that each of the integrals
in Eq. (51) is positive, and so also is their difference, which, uPon co bination with Eq. (53), yields

as is evident from the theory of Sec. II and Fig. 1,
above.

From Eq. (51), therefore,

where

H —Hg —— (eIE—eQ)ds) 0, (53)

E=—sI:(5/3)a»(Psi"+Pos"')l(P»+P»), (54a)

Several methods of evaluating the right-hand
member of the inequality (58) exist. As an example of
what is perhaps the most straightforward procedure,
let us.evaluate the right-hand side of (58) for the case
o, =0.6, say. Then, with the aid of Table I,

a11(i

A=kLs g(Ps& +P» )j(P»+P»)

J'(0.059E—0.200A) dn
0& (e).=s.s &

(54b) J'(1.002E—1.008A)d.

have been introduced to simplify the notation. Simi-

larly, let Z and U, respectively, denote the second and.

fourth terms in Eq. (49). Then the latter, in view of

(7), gives

JL0.059(E—A) —0.141Aldv
(59)

J'(1.002 (E—A) —0.006A jds

But, as is readily veri6ed,

so that

H = ($»E $,A)du —(Z+ V)—&0, 9 6+c

b b+c
(60)

or

i
H

i
= (Z+ U) — ($»E—t.A)ds) 0,

(H( &Z—V—I (g»E —P~)d. &O.

if a, b, c are positive and a &b. Hence, adding
J'0.006Adv to numerator and denominator in (59) gives

JE0.059(E—A) —0.135A jds
0& (.).=, , &

J'1.002(E—A)dv

But by Eq. (4)

(56)Z —V ) (E A)dv, —

0.059—5.90%.
1.002

whence

iH i
&

C (1—q»)E —(1—g.)A]d.&0, (57)

TAnzE I. Values of $», g», and (g» —g»); p„g„and (p, —g,).

In this manner, the upper bound on e and, using the
simple relationship (35b), on e was evaluated, again
over the entire range of 0. in steps of 0.1, as shown in
Table II. Evidently, the maximum relative error in-
volved in approximating Hp, the exact value of H on
the TFD theory, by means of H of Eq (38) is l.ess than
7.91%, i.e.,

«8%. (61)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

—0.048—0.047—0.044—0.038—0.028—0.017-0.002
+0.016

0.042
0.090
0.200

—0.131 0.083—0.129 0.082—0.124 0.080—0.115 0.077—0.101 0.073—0.084 0.067—0.061 0.059—0.031 0.047
+0.008 0.034

0.074 0.016
0.200 0.000

—0.055—0.053—0.050—0.044—0.035—0.025—0.008
+0.017

0.050
0.110
0.500

—0.330—0.324—0.318—0.310—0.275—0.248-0.208—0.149—0.082
+0.034

0.500

0.275
0.271
0.268
0.266
0.240
0.223
0.200
0.166
0.132
0.076
0.000

Hence the mean relative error involved in approxi-
mating Hs by H=-,'(H+H&), see Eqs. (38) and (47),
does not exceed 3.96%, or

e&4% (62)

It may be noted at this point that these values,
being upper bounds, obtain only where a=0, i.e.,
where pp1=pp2, but are actually smaller everywhere
else.
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r1
h4' r p

In order to eGect the numerical evaluation of the
coeScient appearing in the difference between H and
H1, let us introduce the quantities P and y defined by

p (P01 P02 P08)/(P01+P02+P08)~ —1&p & 1 i (6")

'y= ( P01 P02+P03)/(P01+P02+p03), —1 &y & 1; (68)

FIG. 2. E1ectron density distributions in TF and TFD atoms,
and quantum-mechanically (Q.M.). (Schematic).

so that

p+7 2P02/(Ppl+p02+p08) & 0 (69)

IV. THE THREE-CENTER PROBLEM IN THE
TF APPROXIMATION

A. Connection to TFD Theory

The fundamental distinction between the TF and
TFD models is that the latter, unlike the former, does
take account of exchange eGects. ' As a consequence of
this there arise the following two formal distinctions':
(1) The electron density p in the neutral TF atom
extends to infinity; that in the TFD atom, to a Qnite
boundary, dined by a radius r&, beyond which pzpD
vanishes; see Fig. 2. (2) The Lagrangian multiplier Vp

in the TF theory vanishes for neutral atoms. Essen-
tially all the analytic results thus far established hold,
therefore, also in the TF approximation, provided we
set both

(63)

These conditions reduce the complexity of the for-
malism to a manageable level, and it is for this reason
that the three-center problem will be treated in the
simpler TF approximation.

B. Upyer Bound on the Relative Error

%e again wish to Qnd an upper bound on the error
08 in calculating Hp by using (in obvious analogy with
the two center case), p=po1(r1)+p02(r2)+pop(r8) and

f=fp1(r1)+fp2(r2)+ fp3(rp) in H and H1, respectively,
where 08 and 03 are defined as before in Eqs. (35) above.

Using (63) and introducing

)t=—(5/3)~8, (64)

one then obtains in place of (38) and (47), respectively,

because all po;&~0, of course.
With the aid of these quantities, Eqs. (65) and (66)

can be expressed as

$(P,'Y) 2)t(P01 +Poo +Pop ) (P01+P02+P08)do

(Zt Z2 Z31
+ + l(P01+P02+P03)d» (70)'~&r, r r&

r/(P, V) 2&(pot'"+Po2'"+Pop"') (Pot+Po2+Pop)dt/

so that

/ tZ1 Z2 Z81
+ + 1(p»+p02+p03)d" (71)tr, r2 rpJ

where

(6 n) l)1(po—"'+po "'+po ")
X (ppl+p02+P03)/&, (72)

(1+p) /3 f 1+y) '/

~-=~(P,v)=12
i I +I

2 ) ( 2 )
(p+~) 2/3" —1

+I
2

1=k(v—,p), (73)

- (1+P) 2/8 (1+~q 2/8

~,—=~(P,p) =1—0.8
]E2) &2)

(P+~) 2/3- 8/2

+I I
=.b,p) (74)

((5/3) (po1+po2+ po3)"' = 1—0.8L1.2/(1+ $8)]8/2. (74')

and

2 (ppl +p02 +p08 )](pol+P02+P08)~n

/' (Z1 Z2 Z8)
2e

J I + + I (P01+P02+P03)~» (65)
Kr1 r2 rpi

H1 )t f2 (Ppl+P02+P08)

2 (p 2/8+p 2/8+p 2/8)8/2g (p 2/8 +p 2/8+p 2/3)

/' (Zt Z2 Z3)+ +
1 (P01+P02+P08)d& (66)

E r1 r2 r3)

The particular forms of P and p were chosen deliberately
so as to bring about the symmetries indicated in Eqs.
(73) and (74), respectively. These symmetries, together
with relations (69) and (74'), substantially reduce the
labor involved in the computation of (3 and 2/8. The
results of this computation over the entire range of
(P,y), in steps of 0.2 and subject to relations (69), are
given in Table III, along with the corresponding
differences (&3

—
2/8) .

Two salient facts concerning (p—
2/) are apparent

from Table III: (1) (t—2/) is positive for all physically
admissible values of (p,y). This is in exact agreement
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TA3LE III. Numerical values of $(P,'r) =$(r,P); 11(P,'r) =0(7,P) l aud (5—
W)

C

—1.0

0.200
0.200
0.000

0.042
0.008
0.034

—0.002—0.061
0.059

—0.028—0.101
0.073

—0.044—0.124
0.080

—0.048—0.132
0,084

—0.044—0.124
0.080

—0.8

0.042
0.008
0.034

—0.070—0.173
0.103

—0.108—0.248
0.140

—0.126—0.287
0.161

—0.135—0.307
0.172

—0.135—0.307
0.172

—0.126—0.287
0.161

—0.6

—0.002—0.061
0.059

—0.108—0.248
0.140

—0.139—0.316
0.177

—0.154—0.351
0,197

—0.158—0.361
0.203

—0.154—0.351
0.197

—0.139—0.316
0.177

—0.028—0.101
0.073

—0.126—0.287
0.161

—0.154—0.351
0.197

—0.166—0.381
0.215

—0.166—0.381
0.215

—0.154—0.351
0.197

—0.126—0.287
0.161

—0.2

p= —1
—0.044 —0.048—0.124 —0.132

0.080 0.084

p= —0.8
—0.135 —0.135—0.307 —0.307

0.172 0.172

p= —0.6
—0.158 —0.154—0.361 —0.351

0.203 0.197

p= —0.4
—0.166 —0.154—0.381 —0.351

0.215 0.197

p= —0.2
—0.158 —0.135—0.361 —0.307

0.203 0.172

p=0
—0.135 —0.048—0.307 —0.132

0.172 0.084

p =+0.2
—0 044—0 124

0.080

p=0.4

0.2

—0.044—0.124
0.080

—0.126—0.287
0.161

—0.139—0.316
0.177

—0.126—0.287
0.161

—0.044—0.124
0.080

0.4

—0.028—0.101
0.073

—0.108—0.248
0.140

—0.107—0.246
0.139

—0.028—0.101
0.073

0.6

—0.002—0.061
0.059

—0.070—0.173
0.103

—0.002—0.061
0.059

0.8

0.042
0.008
0.034

+0.042
+0.008

0.034

1,0

0.200
0.200
0.000

~ ~ ~

—0.028—0.101
0.073

—0.002—0.061
0.059

0.042
0.008
0.034

0.200
0.200
0.000

—0.108 —0.108 —0.028—0.248 —0.248 —0.101
0.140 0.140 0,073

—0.070 —0.002—0.173 —0.061
0.103 0.059

0.042
0.008
0.034

p=0.6

p=0.8

p=1.0
~ ~ ~

a All spaces marked ~ ~ ~ only correspond to sets (P,y) which, by relation (69), are physically inadmissible.

with the requirement that, by the theory concerning
the minimal and maximal principles of Sec. II above,
the quantity (H—H1) in Eq. (72) must be positive.
(See also Fig. 1.) Hence, as X and the pp; on the right-
hand side of (72) are all essentially positive, so must
($—3f) be. (2) The maximum value of ($—rf), somewhat
greater than 0.225, seems to occur somewhere between
the points (P,y)= (—0.4, —0.4) and (—0.4, —0.2) or
(—0.2, —0.4). This, too, is found to be in close agree-
ment with the value of

By virtue of (75), Eq. (72) gives

so that
)I ppP &e'(Z /r, ), (77)

(H H1) &0.218 ),2(ppl I3+—p02 I +pp I )

X (ppl+P02+P03)d& (76)

From Eq. (4) we have, using also relations (63) and
(64) appropriate for the TF case,

(g—~),.=0.2176 at P=~= —-'„

obtained analytically.

(Z1 Z2 Z3 )
(7g) (H—H1) &0.218 —2,e'~ + +( r1 r2 r3 )

X (P01+P02+P03)~& (78)
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Also, as H &0, it follows from ('70) and (77) that

(Zr Z2 Zo l
IHI&-,'. (1—b)I + +

0 rr r2 ro )
X (p01+p02+ p03) ds (79)

Eqs. (38) and (44),

U(R) =Z1Z2e2/R

+J xkl (Pol+P02) 0 (P01 +P02 )

(, =0.200, (80)

The lower bound on IHI is clearly obtained with

, which latter is found from Table III to be
X (Pol+p02) 0 (pol +p02 ')7

(Pol+P02) 2 (Pol +P02 )

X (Pol+P02) 2 (Pol +P02 )j
so that

~Z1 Z2 Zo)
2s'I + + I (P01+P02+poo)d» (81)

L r, r2 r, ) U1(R) =Z1Z2e2/R

tZ1 Z,—-'col —po2+ —po1 I
&&, (86)

Err r2

whence, upon combining this result with (78), one
finally obtains the desired values:

02 & (0.218/0. 800) 27%, (82a)

02& 13.5%. (82b)

02 & (0.172/1.135)~15%, (83a)

The mean 1(H+H1) thus differs from Ho, the exact
value (in the TF approximation), by not more than

13.5%, an. error well within the over-all accuracy of
20% of the TF model. "It may further be noted that,
in general, the error 02 (or co) will be very much less
than the upper bound(s) calculated here. This is so
because the values of e3 and ~~ depend, through Eqs.
(78) and (79), essentially on the ratio ((—27)/(1 —g),
which latter generally is very much smaller than

((—2)),„/(1—$, ). Thus, at (P,y) = (—0.2, —0.8) for
example, one finds, using Table III,

it is clear that

Hy&Hp&H&0,

V, &Up&0,

(88)

(89)

where Vp is the exact repulsive interaction potential.
Hence, if for brevity we set g=—Z1Z2e2/R, then

+ xkL0 (Pol +P02 ) (Pol+P02)

2 (P»+P02)'" —
0 (Pot"'+P02"')l

—x I
—(por i'+poP')(po1+po2)

2 (Pol+P02) 2 (Pol +P02 )$

(Zr Z2—-'"I —»2+—Po11 ~' (87))
Recalling now that

so that

02 & 7.5%.

V. THE INTERACTION POTENTIALS

A. The TFD Two-Center System

(83b)

V—Vp U —Vg

Vp Ug

Z+H H(~) $Z+H—1 H(~—)j-
Z+H1 —Hr(oo)

Defining the interaction potential U(R) as the sum
of the Coulomb interaction between the atomic nuclei
and the change in the electron energies brought about
by the approach of the nuclei to a mutual distance E.,
we have for a two-center system,

U(R) =Z1Z2e2/R +H H(~), —

U1(R) =Z1Z2e'/R +H1 Hr(~), —
(84)

(85)

where Z~, Z2 denote the atomic numbers of atoms 1
and 2, respectively. More explicitly, with the aid of

10 0.B.Firsov, J.Exptl. Theoret. Phys. U.S.S.R. 33, 696 (1957)
Ltranslation: Soviet Phys. —JETP 6(33), 534 (1958)g.

H H1 pI(oo) —Hr(~)—j H——H1=—0' (90)
zl+lH, ( )I —lH, l lH

ev&4%. (91)

That is, the mean relative error in calculating Up by
using 2(U+U1) as obtainable from Fqs. (86) and
(87) will be less than 4%; or, if U alone be used, the
relative error will be less than 8%.

whence it follows, in view of result (62), that the mean
relative error, not only in the total electron energy
H—= 2 (H+H1), but also in the interaction energy
U=-,'(U+U1) is not greater than 4%:
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U(R) =-',Zie
Zoe

I
pox—8 —dS

E. J rl

Introdnction of the TFD Screening Fgnction

For the twofold purpose of achieving greater con-
ciseness and aiding in the numerical computation of
U(R), it is desirable to simplify the two results (86)
and (87) as follows: Let X and A denote the integrals
in (86) involving «z and «„ respectively. Then (86)
can be written as

mation). Equations (91) and (102) are the central
results of this paper with regard to a TFD two-center
system.

B. The TF Three-Center System

We restrict our considerations here to a system of
three atoms, the nuclei of which occupy the vertices
of an equilateral triangle of side R. Then, by generalizing
the definitions (84), (85), we have here

+0Zoe
R

Z18 P P01—e —di +E A —(92.)
r2 and

U(R) = P' (Z;Z,e'/R)+H H(~)—, (103)

But the expression contained in the Grst square brackets
above is just the TFD potential &0'due to atom 2 at a
distance R from it, and similarly, the expression in the
second set of brackets represents the TFD potential
pi due to atom 1 at a distance R from it.

Also, from TFD theory, '

P(R) = (Ze/R)P(x) «,'/—(60 Keo), x~(xo, (93)
where

Ui(R) = Q' (Z;Z, e'/R)+Hi Hi(~), —(104)

where the primes on the summation signs indicate that
the terms in i= j are to be excluded. Hence, with the
aid of Eqs. (65), (66), one obtains

U(R) = (e'/R) Q' Z;Z;

ti =-'(9n'/2Z)'"ao =0.8853ao/Z 'to

(94)

(95)

and f(x) is the TFD screening function. Hence, if we
introduce the further abbreviations

A.=—X—A and a=—0.8853ap= 0.468)& 10 cm,
(96,97)

then Eq. (92) becomes

U(R) = (0Z1Zoe'/R) L4'(Zi'"R/a)+0 (Zo"'R/a) j
—(« '/120«o) (Zi+Zo)+A) (98)

and in precisely the same manner,

Zl——2 Po j~11 e—(P-»+P»)' J r,

Z2 Z3
+—(pos+poi)+ —(poi+poo) ~& (105)

r2

Ui(R)=(e'/R) Q' Z,Z;

Ui(R) = (2Z1Zoe'/R)[p(ZiitoR/a)+p(Z0'toR/a)5
—(« '/120«g) (Zi+Zo)+ti. i, (99)

where

(100)

and X& and Al, respectively, denote the integrals in-
volving «0, «, in (87). Finally, setting

one finds, in view of (91), that

(101)

U(R) = (-,'Z1Zoe'/R) g ( ,"Z/ )+a&(Z,'i'R/a) 7
—(Ko'/120«o) (Z,+Z,)+A, (102)

when used to calculate Uo(R), will involve a mean
relative error of less than 4%%uo (in the TFD approxi-

—io Z po 13&o oe ' —(poo+p—»)

Z2 Z3
+ (poo+pol)+ —(p01+p02) ~0 (106)

r2 r3

oo (13.5%. (107)

Since the terms in Z;Z; vanish upon formation of the
difference (U—Ui), it follows by reasoning exactly
analogous to that leading to relation (90) above, that
here, too, (U—Uo)/Uo((H —Hi)/iHi —= 00', whence,
using (82),
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That is, by results (82) of Sec. IV, the mean relative
error in calculating the interaction energy Uo by using
—,'(U+U~) as obtainable from Eqs. (103) and (104), is
less than 13.5%, or if H alone be used, the relative
error will not exceed 27%.

INtrodlctioe of the TF Screening Pgnctiom

C. The TF Two-Center System

It may be observed that Eqs. (111), (112) correctly
reduce to the TF two-center interaction potentials
given by Firsov. "For if we set, say, Z3=0, p03=0, then
two of the terms in (113) vanish, thus reducing (111)
and (112), respectively, to

U(R) =-,' (ZgZ2e'/R) Ly(xg)+x (xp) j+A', (116)

U, (R) =-;(Z,Z,e2/R) L&(x,)+x(x,)$+~,'. (117)

Let A.3' and Asi' denote the terms involving ) in
Eqs. (105) and (106), respectively. (The primes on the
symbols A. will distinguish quantities in TF theory
from corresponding ones in the TFD theory. ) Then,
upon rearranging the terms involving the Z;, these

These are evidently the exact TF analogs of our TFD
results (98) and (99), respectively.

(Z2 t P02 ) (Zl t' Pos
U(R) = 2Z,e2( ——~. I+kZ, e2ER&., )&R ~ r, )

fZ2 f P»+
&R & r, ) &R ~ r, )

PPoi l tZ3 f Po~
+-,'Z e'( ——d~ [+-,'Z e'~—

(R ~ r, ] (R ~ r, )
+A 3', (108)

Ug(R) = Z'+A3g', (109)

where Z' denotes the right-hand member of (108)
exclusive of A3'. But

VI. DISCUSSION

A. Range of Validity of the Potentials

The domain of applicability of both our central
results, Eq. (102) for the TFD two-center system and
Eq. (115) for the TF three-center system, is restricted
in the following manner. Recalling that the TFD atom
is confined entirely within a sphere of radius r&, different
for each atomic species (see Fig. 2), it is clear that for
R) (rb&+r»), the actual interaction energy of the
undistorted, nonoverlapping atoms 1 and 2 must
vanish. Yet our formula (102) for UT3n does not
appear to guarantee such vanishing, and moreover
will contain

t Z' "P«& TF potential due to atom i
& R ~ „, ) at a distance R from it;

K constant for
4(x) =-

Ze 60~~e a given Z
when x) x~, (118)

where i, j= 1, 2, 3; i / j; and from TF theory, '

y(R) = (Ze/R)y(x), (110)

U(R) =X+A ',

U, (R) =X+A3i',
where

X= (—e'/R) {+' Zg;(x(x, )+x(x,)j). (113)

Setting

one finds

Xs' =—2 (A.3'+A3g'),

U(R) =X+X3',

(114)

(115)

which, when employed in calculating the interaction
energy Uo by using ~(U+U&), will involve a mean
relative error of less than 13.5%; or, if U alone be used,
a relative error of less than 27%. Equations (107) and
(115) are the main results of this paper with regard to
a TF three-center system.

where x is the same as de6ned by (94) above, and x(x)
is the TF screening function. Thus (108), (109) may
be written

(111)

Lsee Eq. (93)$. We, therefore, conclude that UTFQ

may become inaccurate when R exceeds r~i or r~2,
whichever is the smaller, and that UTpD becomes in-
applicable when R exceeds (rgl+~ t,2).

The TF electron distribution involved in formula
(115),on the other hand, vanishes too slowly as r —+ ~
(see Fig. 2),6 and the TF screening function x is con-
sidered" acceptable only out to r~i A, or ~2ao.
Hence, result (115) for UTp may become unreliable
when the internuclear distance 8 exceeds 1A or
~2 cp.

B. Applications

Preliminary calculations using the TFD two-center
interaction potential U(R) of Eq. (102) for such
systems as A-A; Xe-Ne; Kr-Kr; but also for some non-
spherically symmetric atoms, and hetero-nuclear sys-
tems have been made. All these tend to indicate that:
(1) For very small separations of less than 0.3 ao,
U agrees well with other theoretical curves and with
experiment. (2) In the intermediate range from 0.3 ao
to 3 ao, U agrees better with other theoretical curves
and experimental curves than does Bohr's screened
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Coulomb potential~ or that based on the TF approxi-
mation. "It is expected that the results of these calcu-
lations will be reported in detail in a later paper.

On the basis of these results, it may then be of interest
to calculate atomic scattering cross sections (in suitable
energy intervals), and to perform range-energy calcu-
lations, both capable of being verified by experi-

'7¹Bohr, Kgl. Danske Videnskab. Selskab, "'Mat. -fys. Medd.
18, 8 (1948).

ment. '8-" Furthermore, the TF three-center potential
(115) may be applied to suitable triatoms. Lastly, a
generalization of the formalism developed in this paper
to ionic systems would evidently still further enhance
its usefulness.

"J.Amdur and E. A. Mason, J. Chem. Phys. 22, 670 (1954);
23, 415 (1955);23, 2268 (1955).

"H. W. Berry, Phys. Rev. 75, 913 (1949);99, 553 (1955).
~ R. A. Schmitt and R. A. Sharp, Phys. Rev. Letters j., 445

(1958).
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Onset of Correlation in Initially Uncorrelated System
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The system under consideration is a number of molecules
contained in a resonant cavity and isolated from external in-
Quences. The molecules are assumed to have two energy levels,
and the molecular", frequencies have a Gaussian distribution
centered at the cavity frequency; the initial states of the molecules
are uncorrelated. The onset of correlation in the molecular
behavior is studied by examining the Geld in the cavity and the
power emitted by the molecules for effects depending on the
square of the number of molecules, in a perturbation theory
approach.

It is shown that correlation effects manifest themselves in the
fourth order interaction. Both the correlation energy in the Geld

and, the correlation power emitted by the molecules approach

steady-state values after transient periods determined by the
relaxation time of the cavity and the frequency spread of the
molecules. A physical picture of the correlation effects, as being due
to induced emission produced by the lowest order spontaneous and
thermal emission, is investigated and found to be approximately
correct. The ratio of correlation energy to lowest order spontaneous
emission energy is derived. An analysis is made of the dependence
of the results on the initial states of the molecules, and interpreted
in terms of the physical picture. The effect of the presence of a
number of cavity modes, rather than a single mode, within the
frequency spread of the molecules is investigated under simplifying
assumption, and is shown to multiply the correlation effects by
the square of the number of modes.

INTRODUCTION

HE subject of correlation in a many-body system
includes a large number of diverse problems,

some of which have become very popular recently.
Correlation is caused, of course, by a coupling between
the individual bodies of the system, which can take one
one or more of several forms. The problem to be
treated in the present article deals with the correlation
of a number of atomic systems, which we refer to as
molecules, coupled to one another through the electro-
magnetic field in a resonant cavity. The question we ask
is the following: Suppose we have a cavity containing a
number of molecules that are isolated from external
inQuences and are initially in uncorrelated states. Will
correlation arise, and if so, in what manner?

The meaning of correlation in the present context
will be described first. The molecules are uncorrelated
if the state of each molecule is independent of the other
molecules. Correlation may be measured by the extent
to which the behavior of each molecule is affected by
the others. The di6'erence between the behavior of
molecules in correlated and uncorrelated states has
been discussed in some detail by both Dicke' and the
author. ' In reference 2 it is shown that when molecules

' R. H. Dicke, Phys. Rev. 93, 99 (1954).' 1. R. Senjtzky, Phys. R,ev. $/1, 3 (1958).

are in a correlated state, spontaneous emission is
proportional to N', where N is the number of molecules;
if the molecules are in an uncorrelated state that is
also an energy state, spontaneous emission is propor™
tional to N. There are, however, uncorrelated states in
which each molecule is in the same superposition of
individual energy states, and in this case the sponta-
neous emission is also proportional to N'. The latter
type of state may be regarded as corresponding to a
classical array of dipoles oscillating with the same
well-defined phase; it can be created by subjecting the
molecules to an external driving field. We are excluding
the consideration of such classical-type correlations,
since they cannot arise in an isolated system, and use
the term correlation to indicate only quantum-mechan-
ical correlation. (In the language of reference 2, the
case in which each molecule is in the same superposition
of individual energy states is called uncorrelated but
coherent. ) Incidentally, as explained in reference 2, in
the correlated energy state the molecules may also be
regarded as oscillating in phase with each other, but
the absolute phase is completely undetermined. ' With

3 We give a simple illustration of correlated and uncorrelated
states for the case of two similar molecules. If q; is the i'th
energy state of the mth molecule, then y&,.q» is an uncorrelated
energy state, and 2 &(sn;ys;&sq;pm') is a correlated energy state.
In the language of reference 2, $1/2, where p =aIp ~+a~q I, is
g goherqn& uncogre)g, ,ted state,


