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The difference in the multiple scattering of electrons and positrons has been calculated on the basis of
the work of Nigam, Sundaresan, and Wu. The results are compared with the experimental work of Henderson
and Scott and are found to be in good agreement.

I. INTRODUCTION
' 'N a recent paper Nigam, Sundaresan, and Ku' have
~ - pointed out that the formula given by Moliere' for
the scattering cross section of a charged particle by an
atom in his theory of multiple scattering is incorrect.
This is because Moliere's calculation of the scattering
amplitude' includes an inconsistent expansion of the
phase shift in powers of cti sZe'/jt——v. In the paper of
Nigam et ajI., hereafter to be referred as paper A,
Dalitz's' expression for the scattering cross section of a
charged particle by the screened Coulomb field of an
atom is used, and the distribution function for multiple
scattering is calculated in powers of nl in a consistent
manner. One interesting result of paper A is that, in
contrast to Moliere's theory, it predicts different
screening angles for electron and positron scattering
and, consequently, different distribution functions for
multiple scattering. Mohr4 has calculated the difference
of electron and positron multiple scattering by using
Dalitz's scattering cross section but essentially retaining
Moliere's result for the screening angle. In this note
we have employed the results of paper A and checked
them against the experiment of Henderson and Scott'
on electron-positron multiple scattering.

' B. P. Nigam, M. K. Sundaresan, and T. Y. Wu, Phys. Rev.
115, 491 (1959).' G. Moliere, Z. Naturforsch. 2a, 133 (1947), and Ba, 78 (1948).' R. H. Dalitz, Proc. Roy. Soc. (London) A206, 509. (1951).

4 C. B. O. Mohr, Proc. Phys. Soc. (London) A67, 730 (1954).
~ C. Henderson and A. Scott, Proc. Phys. Soc. (London) A70,

188 (1957).

2 1 I' q(y)
ln———= dy, y= sin(x/2),

X. 2 &„y
q(y) = a(y)/a~(y),

where x is the angle of scattering and q(y) is the ratio
of the scattering cross section (with screening) to the
Rutherford cross section (no screening) for single
scattering. The screening angle X is defined such that in
the first Born approximation, when q(y) =o&(y)/ott(y),

X —+ Xe ——AA/p, (2)

for the scattering of an electron of momentum p by an
exponentially screened potential V(r) = —(Ze'/r)e "".
In Moliere's paper the potential used is V(r) = —(Ze'/
r)&o(r)Ie), where the Thomas-Fermi function &o(rXe) is
represented by a sum of three exponentials and P«

S. A. Goudsmit and J. L. Saunderson, Phys. Rev. 57, 24
(1940), and 5&, 36 (1940).

7 H. A. Bethe, Phys. Rev. 89, 1256 (1953).

II. SUMMARY AND RESULTS OF PAPER A

In Moliere's work' all the effect of the deviation from
the first Born approximation on the distribuiion func-
tion for multiple scattering is contained in the quantity
8 vrhich depends only on the screening angle X. . The
screening angle X, for the scattering of a charged
particle by the screened Coulomb field of an atom is
given by' '

Copyright 1961 by the American Physical Society.
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T)&»LE I. Numerical values of f&'&'/uPx, +B

e/X, V'B 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 3.0 40
f&'&'/npx QB —11.123 —9.085 —6.848 —4.952 —3.254 —1.740 —0.371 +0.908 +2.179 +3.569 +0.716 +0.170 +0.063

=Zl/0. 855ap, ap being the Bohr radius. In the first
Born approximation, this Thomas-Fermi 6eld gives,
upon numerical integration,

x —+ xp 1.12(A7&p/p). (2a)

In the paper of Nigam et al. ,' the calculations are
carried out by using Dalitz's' relativistic formula,
derived in the second Born approximation, for the
scattering of a spin s~particle of charge s (s= —1 for
an electron) by an exponentially screened Coulomb
6eld:

5= 1+(2«p/P) (1—P'),

b = g ln (x '/4) —ln(x "/4)

b=B g lnB—,

(7b)

(7c)

(7d)

where C is Euler's constant =0.577. Finally, the
distribution function can be approximated by

X ', $, b, and B defined as follows.

ln(2/x )= ln(2/x ') ——',+C
-(2 x/p)(1 —p')(1 —C), (7a)

V(r) = (sZe'/r)e (3)
f(8,t)=It(x'B) ' f'"+ (f"'+f—'")

8

+ (f"'+f"')+ ", .(8)
2 tS'

du u'+lx"&e'+ e lt) Jp~
— u

~
exp( —u'/4)

(X.QB J

where the screening parameter X=pAO, p, being an
adjustable parameter of the order of unity. The
parameter p, is introduced to compensate for the use of
a single exponential as the screening factor of the
Coulomb Geld of an atom instead of a sum of three where
exponentials as done by Moliere. The expression for
the screening angle X is then obtained by calculating
the angular distribution function6 ~

f(8,t) =P(t+-,')P&(cos8)
L=O

Xexp l&/t ' dx sinx&rn—(x)L1—P&(cosx)], (4)

—s.nPX, (B)lu

X P(u'/4) ln(u'/4)

—f&P)

=fo)'

= fO) (9)

where f(8,t) sin8d8 is the actual number of scattered
particles between 8 and 8+d8; t is the thickness of the
foil. The expression for the screening angle X is
obtained by calculating the integral in the exponential
of Eq. (4) and combining all the contribution from the
small angles into a single term. This gives

—2)rnpx (B)lt(u'/4) ln(u'/4) = f&»'

Lg(up/4) ln (u2/4) ]2 —f&2)

BXP 8&rnP ln2
E=exp 1+— +2P-

16i 8 8

X =Xp 1+2«p

where

1—p' 0.2310
lnXp+ +1.448P, (5)

8 (P'+vrnP)
(C—lnx, +B)

8
x,'= 4)rlVte's'Z(Z+1)/(PcP)'.

At Z1
xp= p,-i i, n= —sZ/137, P=%.

P (0.885ap)

The corresponding expression in Moliere's theory is

X =xp(1.13+3.76n'/p'}'.

Notice that since in Eq. (5), X depends on o&, we will

get diGerent values of the screening angle for electron
(s= —1) and positron (s=+1) scattering. In Moliere's
theory X depends onn', Eq. (6),andthereisnodifference
in electron and positron scatterings. The multiple scat-
tering can then be described in terms of the parameters

The exponent of I in the integrand can be taken as
unity. The numerical values of f&p& and f&'& are given by
Bether and the values of f&')' for specific cases are given
in paper A; the contributions of f&" and f"&' being
ignored. In Table I, we give the numerical values of
f"'/~px. &B.

III. MULTIPLE SCATTERING OF POSITRONS
AND ELECTRONS

The experiment on the multiple scattering of posi-
trons and electrons has been performed by Henderson
and Scott.' We reproduce in part their Table I (our
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TAsr.E II. Data and observed' 1/e widths for multiple scattering. TABLE III. The screening angle x and the 1/e width 8„
for electron-positron multiple scattering.

Energy Ma- t
Mev terial (mg cm~) B x,'X10s 8„(obs) 8„(calc) p, Particle xoX10' x X 10' f 5 B

0.40 Au 1.98
Ag 2.64
Al 6.04

0.59 Ag 2.64
1.2 Ag 2.64

4.06
4.96
6.03
4.85
4.71

2.62
2.29
1.64
1.20
0.367

19.8
18.3
18.8
13.2
7.25

18.7
19.3
18.0
13.8
7.54

See reference 5.

8'P(8)d8,

where P(8) is the probability of single scattering
through an angle between 8 and 8+d8, which for small

angles was taken as

P (8) 28 'o D'd8/8',

OD' being a corrected Dalitz cross section, evaluated by
assuming the equality

&a Oa OD Oa
(12)

Table II). 8„ is the half-width (or 1/e width) and 8„
is defined as the angle at which the intensity falls to a
factor 1/e of its maximum value. In order to compare
their experimental results for the difference of electron
(8„) and positron (8„+) 1/e widths with theory, they
assumed, for the purpose of calculations, that the
Moliere's distributions for electrons and positrons
diRered only in the value of the parameter X,'B. They
noted that for a given scattering foil, the plot of the
electron-positron count ratios calculated from Moliere
distributions with a given difference of X,'8 against the
cube of the counter to foil distance is a straight line;
the slope of the straight line varying linearly with the
difference of X,'B. Thus, the value which fitted the
experimental straight line was taken to be the estimate
of the difference of X,'B.

Mohr4 has calculated the difference in the multiple
scattering of electrons and positrons, using Dalitz's'
formula. He calculated the difference in the root mean
square angle of scattering for electrons and positrons
as given by Moliere's theory,

Orms = 201naX &

Au: 8=0.4 Mev, P=0.8279, n=Z/137=0 57.66
1.12 e 2.6845 2.6926 1.01175 3.3844 5.01

e+ 2.6764 0.9882 3.4950 5.11
1.8 e 4.3144 4.374 1.0189 2.3705 3.71

e+ 4.253 0.9811 2.5985 3.95

Ag: 8=0.4 Mev, P =0.8279, n =0.3431
1.12 e 2.259 2.260 1.0059 3.624 5.30

e+ 2.257 0.9941 3.676 5.34
1.8 e 3.629 3.649 1.0095 2.6497 4.07

e+ 3.609 0.9905 2.7535 4.17

Al: 8=0.4 Mev, P =0.8279, n =0.09488
1.12 e 1.471 1.4715 1.0001 4.1727 5.957

e+ 1.4705 0.9999 4.1747 5.960
1.8 e 2.364 2.3646 1.0002 3.2252 4.7919

e+ 2.3634 0.9998 3.2253 4.7927

Ag: F.=0.59 Mev, P =0.885g, n=0.3431
1.12 e 1.7463 1.7580 1.0029 3.4909 5.131

e+ 1.7346 0.9971 3.5464 5.188
1.8 e 2.8066 2.8430 1.0047 2.5219 3.886

e+ 2.7702 0.9953 2.5821 3.949

Ag: E=1.2 Mev, P =0.9544, n=0.3431
1.12 e 1.0430 1.0519 1.0007 3.3434 4.942

e+ 1.0341 0.9993 3.4320 5.050
i.g e 1.6762 1.7002 1.0011 2.3807 3.6882

e+ 1.6523 0.9989 2.4511 3.779

19.52
18.37
16.24
15.54

18.50
17.85
15.76
15.37

16.50
16.34
14.50
14.36

13.07
12.75
11.04
10.80

7.02
6.98
5.86
5.84

TAnLE IV. Percentage difference in the 1/e widths for
electron-positron multiple scattering.

The results of our calculations based on Eqs. (5) and

(7), (8), (9) and data of Table II are presented in
Tables III to IV. The calculations are carried out for
p= 1.12 and p, = 1.8, where p, is the adjustable parameter
defined in Eq. (3). In Table IV the observed values
are those of Henderson and Scott' and refer to per-
centage difference in widths of the Gaussian part of
multiple scattering distributions as predicted by their
estimate of 6(X,'8) from the straight-line fit mentioned
earlier. We have given the values of (8„—8„+)/8„as
calculated by the full distribution function for multiple
scattering, viz. , f(8,t) ~ f"&+(1/8) (f&'&'+f'") It is
interesting to note from Table III that the difference
in 1/e widths of the Gaussian part alone, which is
equal to 6(X,QB), is of the wrong sign. This need not
worry us since the use of the full distribution function
which, in fact, is proportional to the number of electron
(or positron) counts in the experiment, gives the
correct sign.

and 8 is the parameter as defined by Moliere, ' which
is same for electron and positron LEqs. (6) and (7),
with /=1]. However, it is clear from the results of

paper A, Eqs. (5) and (7), that 8 is different for
electron and positron scattering since the screening
angle as derived from Dalitz's' formula is diferent for
the two cases. A consistent calculation for the difference
in the multiple scattering of electrons and positrons
should therefore use the formulation of paper A.

F.
(Mev)

0.4

0.59

obs
1.12
1.8
1.12
1.8
1.12
1.8

Au

5.79w0.46
5.88
4.31

(8--8+)/8- (%)
Ag Al

4.60%1.04 1.19%0.70
3.47 0.97
2.48 0.97
2.41
2.13
0.53
0.31
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IV. DISCUSSION AND RESULT

We find from Tables III and II, that a satisfactory
value of the 1/e width is obtained for tt 1.12, except
in the case of Al. The agreement of the calculated
difference in 1/e width for electron and positron
multiple scattering (Table IV) with the experimental
results also seems fairly satisfactory for p, 1.12,
though we are comparing slightly different quantities.

The fact that p, 1.8, the value found to 6t the experi-
mental data of Hanson et ttl. s for the 1/e width for
15—16 Mev electron multiple scattering by Au and Be
in paper A, gives low results for electron scattering
around 1 Mev seems to suggest that the screening
parameter, X, is probably somewhat energy dependent.

A. O. Hanson, L. H. Lanzl, E. M. Lyman, and M. B. Scott,
Phys. Rev. 84, 634 (1951).
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Nuclear Quadrupole Absorption in Indium Metal*f

MARCH 15, 1961

The nuclear quadrupole resonance spectrum of indium metal
has been observed and studied over the temperature range O'K to
225'K. The four transition frequencies occur in ratios of 1:2:3:4,
as expected from the crystal structure of indium. The lowest
transition at 1.881 Mc (at 4.2'K) gives a quadrupole coupling
constant of (45.19+0.02) Mc.

The root second moment of 18 kc is substantially greater than
the 4 kc predicted from magnetic dipolar coupling among the
nuclei, is temperature independent, but is somewhat sample de-
pendent. It is shown that for a pure quadrupole resonance, the
pseudo-exchange coupling produces an exchange broadening.
This mechanism is shown to contribute about 10 kc to the root
second moment and predicts a Gaussian line shape, as observed.

It is concluded that in some cases magnetic impurities must be
present, but it is not known whether or not the narrowest line
represents a natural width.

The Geld gradient is computed assuming point ions and a
uniform electron density by a technique that converges rapidly
with distance, but the answer is too small by a factor of 3. It is
argued that it is important to consider the p valence electrons.
The temperature dependence of frequency is very strong (a 23%
decrease between 4'K and 220'K), and unexplained. It appears
to show that the Geld gradients cannot be computed assuming
point ions and a smooth charge distribution.

A resonance in the superconducting state is reported.

I. INTRODUCTION

JURE quadrupole resonance may be observed in a
solid when a nucleus possessing a quadrupole

moment is situated in a lattice having lower than cubic
symmetry. This paper reports the observation and
study of the nuclear quadrupole resonance spectrum
in indium metal. During the course of this research,
Knight and Hewitt independently observed the same
resonance. A preliminary report of their work has been
published. '

We will center our attention on three principal
issues. These are: (1) the interpretation of the shape
and breadth of the resonance lines; (2) calculation of
the axial field gradient at the nuclear site; (3) the
temperature dependence of this field gradient. In
addition, an observation of the resonance below the
superconducting transition temperature (T,=3.39'K)
is reported.

A general theory of line shape for pure quadrupole

*Based on a thesis (W. W. Simmons) submitted in partial
fulGllment of the requirements for the degree of Doctor of
Philosophy.

t This research supported jointly by a grant from the Alfred
P. Sloan Foundation and the U. S. Atomic Energy Commission.

f. Now at Space Technology Laboratories, Inc. , Los Angeles,
California.

$ Alfred P. Sloan Fellow.
' R. R. Hewitt and W. D. Knight, Phys. Rev. Letters 3, 18

(1959).

resonance has not as yet been developed. However, it
is well known that nuclear resonance line widths are
in general somewhat broader, for heavier elements,
than would be expected on the basis of dipolar coupling
alone. We account for much of the observed line
breadths in indium phenomenologically in terms of the
pseudo-exchange interaction. ' ' On account of the large
spin of the indium, we show that we have a case of
exchange broadening rather than exchange narrowing.
The exchange interaction constant A;, is scaled from
the thallium data of Bloembergen and Rowland. ' To
the extent of this approximation, the line shapes are
shown to be Gaussian. Pseudo-exchange will lead to
broadening in a large-spin, pure quadrupole resonance
experiment, since a given neighboring pair of nuclei
in general will not be able to conserve energy by a
mutual spin Rip. In addition, it appears that impurities
may in some instances play important roles in deter-
mining line breadths.

An analysis of the effect of the magnetic modulation
field on the resonance will be given. For the condition
that this field is small in comparison with the natural
resonance line width, this analysis will lead to a simple
interpretation of the second moment and shape of the
resonance line. Comparison of the results of this

' M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954).
3N. Bloembergen and T. J. Rowland, Phys. Rev. 97, 1679

(1955).


