PHYSICAL REVIEW

VOLUME 121,

NUMBER § MARCH 1, 1961

Proof of the Mandelstam Representation for Every Order in
Perturbation Theory*

RiceARD J. EDEN
Clare College, Cambridge University, Cambridge, England
(Received October 27, 1960)

It is proved that every term in the perturbation series for a scattering amplitude satisfies the Mandelstam
representation when there are no anomalous thresholds. The absence of anomalous thresholds can be in-
vestigated from a few low-order diagrams, or reduced diagrams. Under certain conditions it is shown that
their absence in fourth order ensures their absence in every order.

1. INTRODUCTION
(a) Statement of the Problem

N this paper I will describe a proof of the Mandelstam
representation for a scattering amplitude for every
order in perturbation theory. The proof applies to any
collision process that does not have anomalous thresh-
olds. It is shown that under certain conditions the
absence of anomalous thresholds in fourth order en-
sures their absence to all orders, and more generally
that only certain lower order diagrams need be con-
sidered. For simplicity the main account of the proof
will be described for equal-mass scalar particles, and
special features for more general particles will be
discussed afterwards.

The starting point of the proof is the scattering
amplitude for a general Feynman diagram. This is a
function of any two of the three invariant energies
squared, s, ¢, and #. It is defined for real values of these
variables in physical scattering regions by an equation
of the form
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where the internal four-momenta are denoted %;- - - &;.
The four-momentum g¢; for any internal line of the
diagram will be a linear function of the %; and the
external four-momenta p,. The small imaginary part
—ie associated with each mass m? ensures that causality
is properly included in the scattering process. The
definition (1.1) is valid for each of the three physical
scattering regions, which are denoted I, II, and III in
Fig. 1. A change of variables can be effected by means
of the relation

stttu=4m?. (1.2)

The problem involves two objectives. The first is to
construct a function F(z1,22) of two complex variables
z1, %2, that tends to the Feynman amplitude F(s,t)
when a suitable limit is taken. The same function must
also give the amplitude in the other physical scattering

* This work was completed except for minor revisions while
the author was a visiting physicist at the Lawrence Radiation

Laboratory, Berkeley. It was reported at the Rochester Con-
ference on High-Energy Physics in August, 1960.

regions when we use a relation similar to Eq. (1.2) in
three complex variables,

2129+ 23=4m?, (1.3)

and again take a suitable limit. The second objective
is to show that the function F(z1,2:) satisfies the double
dispersion relation proposed by Mandelstam.!

(b) Outline of the Proof
The amplitude given by Eq. (1.1) can be written?

1
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where p is a positive integer and where
D.(a,s5,t)=sf(a)+tg(a)—m*K (a)+1e 2_Ta.C(a). (1.6)
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F16. 1. The real s, ¢ plane with equal masses. Phy51cal scattering
regions are denoted I I1, and III. The relation D <0 is first proved
for the inner trlangle and then extended to the larger triangle.

1S, Mandelstam, Phys. Rev. 112, 1344 (1958); 115, 1741 (1959);
115, 1752 (1959).
2R. J. Eden, Phys. Rev. 119, 1763 (1960).
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The value of D, at e=0 will be denoted D(e,s,t). When
s and ¢ are real and have physical values, D. is nonzero
for real values of « in the range of integration, since by
inspection C(a) is positive when the « variables are
positive.? Then the integral is well defined, but it may
become singular in the limit as e tends to zero, if the
integrand has either coincident or end point singu-
larities in each integration variable «;: - -a, within the
(real) range of integration.?—®

The first step in the proof is to show that the function
F(z1,t) defined by Eq. (1.8) satisfies a dispersion rela-
tion in 2; when ¢ is real and in the range

—dm2 << 4dm?. (1.7)

n(c)
F(Zl,t)—()zf da1 m (1.8)

It is shown in Sec. 2 that F(z;,t) satisfies a dispersion
relation and that when :

—4m?<1<0, s>4m>—t, (1.9)

the function F(z1,t) tends to the Feynman amplitude
F(s,t) for process I as z;=s+17¢ tends to s. It is also
noted that for s<0 the Feynman amplitude for process
III is obtained as z;=s—7e tends to s.

In step two of the proof the analogous single variable
dispersion relation for a function F(s,2;) is written
down.” This contains an integrand

F(s, i+ie)—F(s, t—ié€), (1.10)

where £ may be in either of the ranges t>4m?, or t<—s.
In order to express this integrand by a dispersion
relation in z;, we must show that there exist analytic
functions F (z1, i+14€’) and F (21, t—1¢€’). Their difference
must be shown to tend to the function (1.10) in a
suitable limit and to satisfy a dispersion relation in 2
in the limit as ¢ tends to zero. These functions are
defined by the formula (1.8) in which ¢ is replaced by
t+1€'. The proof that they have the required analytic
properties forms the third step in the proof and is
described in Sec. 3.

The basis of this third step is the method of analytic
completion® by which a domain of analyticity in the 2
plane for a particular value of 2z, can be extended
through a tube in 2;, 22 space. The starting point is the
upper half z; plane, when z,=¢ is in the range (1.7),
the boundary of the domain being a large semicircle.
It is then shown that the semicircle can be displaced
first to ze=1¢-+4€¢’ and then to larger values of ¢ without

R. J. Eden, Proc. Roy. Soc. (London) A210, 388 (1952).

4L D. Landau Nuclear Phys. 13, 181 (1959 )

5] Tarski, J. Math. Phys. 1, 154’ (1960).

¢ J. C. Polkinghorne and G. R. Screaton, Nuovo cimento 15,

289 (1960).

7R. J. Eden, Phys. Rev. 120, 1514 (1960).

8G. Killen and A. Wightman, Kgl. Danske Videnskab.
Selskab, Mat.-fys. Skrifter 1, No. 6 (1958); and S. Bochner and
W. T. Martin, Several Complex Variables (Princeton University
Press, Princeton, New Jersey, 1948).
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meeting any singularities of F(z1,%2). The same result
is true for z,=i{—i4€¢ provided € <e where z;=s-+7e
along the edge of the semicircle. This ensures the
required analyticity for {>4m? The region t<—s is
most simply handled by making a change of variable
and using oblique axes.” We note in Sec. 4 that this
completes the proof of the Mandelstam representation
for equal-mass particles.

In Sec. 5 it is noted that a key point in the validity
of the proof depends on the absence of anomalous
thresholds. When the leading normal threshold bounds
a physical region for the scattering process that is being
considered, the fourth order diagram (or reduced dia-
gram) determines whether anomalous thresholds are
absent to all orders. This applies to pion-pion scattering
and to pion-nucleon scattering for example. When there
is a gap between the region where the amplitude is real
and the physical region, it is necessary to consider a
limited number of other lower order diagrams, in order
to verify that there are no anomalous thresholds to any
order. This has been done for nucleon-antinucleon
scattering as an example and is discussed in Sec. S.
In Sec. 6 some concluding remarks are made which
note the particular points where knowledge from
perturbation theory is explicitly used. Two alternative
procedures for studying the validity of the Mandelstam
representation are also briefly noted.

2. SINGLE VARIABLE DISPERSION RELATIONS

In this section the analytic properties of F(zy,t)
defined by Eq. (1.8) will be studied and it will be shown
to satisfy a dispersion relation in z; when £ is in the range
(1.7). In an earlier paper? it has been shown that

D(a,s,) <0, 0, Sa=1, (2.1)

when s and ¢ are in the Euclidean region defined by
Eq. (1.2), and

for «;>

s20, t20, u2>0, (2.2)

with the exception of the three points s=4m?, {=0,
u=0, etc. We will first show that the function F(z,t)
exists, and is analytic for z; in the upper half plane, when

0<t<4m?. (2.3)
Let z1=s1+1s2; then
D(a,z1,t) = (s1+1is2) f(a)+ig(a) —m?K (). (2.4)

We will assume that the a variables are all real and then
show that D is never zero, which justifies the assump-
tion. Since f, g, and K are each real for real @, D cannot
be zero unless f is zero. If f(a)=0, then

D(a,s,t)=1g(a) —m?K (a). (2.5)

The right-hand side of Eq. (2.5) is a value of D(a,s,t)
at s=0 for a particular set of values of the a variables.
But for ¢ in the range given by Eq. (2.3) and with s=0,
D is negative for all real positive values of the « vari-
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ables, including those that give f(a)=0. Hence the
right-hand side of Eq. (2.5) is nonzero, and D(e,21,t)
is nonzero for z; in the upper half plane. Also for

0<s<4m?—1, (2.6)

D(a,s,t) is nonzero and real. This proves that F(z,l)
defined by Eq. (1.8) exists, and that it is analytic in
the upper half plane and in a region including part of
the real axis given by Eq. (2.6). It therefore satisfies a
dispersion relation.
The region in which D is negative can be enlarged
to the region
s<4Am?, 1<4m?,

u<4m?. 2.7

Let us consider first the part of this region in which s
and ¢ are positive. If D was not negative in this region
(for & positive), there would be a singularity of F(zy,t)
at the smallest real value s of 2; for which the change
of sign occurs. By varying ¢, a straight line or a curve of
singularities will be obtained. Any straight line of
singularities would necessarily enter the Euclidean
region (2.2), or one of the physical regions indicated I
and IT in Fig. 1. There are no such lines since there are
no singularities of the function F(zy,t) in the Euclidean
region, and the only straight lines of singularities
entering these physical regions are the normal thresh-
olds s= (mm)?, or t= (nm)?, n=2, 3, - --. There cannot
be any curves of singularities between (=0 and ¢=4m?.
To prove this we assume continuity of curves of singu-
larities of F(21,f). The continuity assumption will be
justified later. A continuous curve must have a turning
point at which

di/ds=0. (2.8)
Otherwise the curve would enter either the Euclidean
region or a physical region, neither of which is allowed.
Now it has been shown? that

dt/ds=— f()/g(a),

in which the « variables are given the numerical values
for coincident or end-point singularities that lead to
the curve of singularities under discussion. These will
be called their “critical”’values. Since g(e) is bounded,
f(a) must become zero at a turning point. But if f(e)
is zero, for this particular set of values of the a variables
D is given by Eq. (2.5). We have already seen that the
right-hand side of Eq. (2.5) is nonzero when ¢ is in the
range (2.3), for all positive a. Hence D cannot be zero
at a turning point, and the function F cannot be singular
along such a curve. This argument excludes also the
possibility that a curve has zero slope only asymp-
totically.

We deduce that there are no singularities in the region
(2.7) by using the symmetry between s, 7, and ». Hence
D is negative throughout this region. We can now check
that F(z1,t) does indeed define the physical branch of
the Feynman amplitude in an appropriate limit. We

(2.9)
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have

D(a, stie, t)= (s—4m*+n) f(a)+ (4m*—n) f ()
+tg(a)—m*K (a)+ief ().

When f(e) is positive, this expression has the same form

as D, given by Eq. (1.6) from which the Feynman

amplitude is defined. When f(a) is zero or negative,
and when s>4m?, and ¢=0, we have

D(ays,t) = (s—4m2+n) f+ (dm2—n) f+1g—m*K  (2.11)
< (dm2—n) fHtg—m?K. (2.12)

(2.10) .

This expression is negative for n small and real, when
¢ satisfies

—Am 4y <t<4m?. (2.13)

Hence in the limit as e tends to zero, either D is nonzero
so that it equals D, in the same limit; or it has exactly
the same form as D. and leads to the same distortion
of the contours of « integration in this limit.

When s is negative, the point z;= s—7e corresponds to

(2.14)

Z3= M+’L€

This provides the correct limit giving the Feynman
amplitude when # is the energy squared. The cut z;
plane of the function F(zy,f) is indicated in Fig. 2 when
—4m?<¢<0. This cut plane defines the physical sheet
of the amplitude F(z1,f) in the variable 21, and is valid
for ¢ in the range (1.7). _

The analogous function F(s,35) can similarly be
shown to satisfy a dispersion relation in 2, when
—4m?<s<4m?. This is

1 © [F(s, t+i€e')—F(s, t—i€) Jdt
F(S,Zg)=—‘“ f
211 Jam? 1—2
15)
N 1 f" [F(s, t-+i€e")—F(s, i—ie")]dt
1 .
27(‘1: — {— 22

We see from this formula that in order to obtain a
double dispersion relation we must define a function
F(z1, t=£4€¢') in the region :>4m?. This will be done by

z, /:/ane

Fin.z

= —

Finﬂ

(

F16. 2. The complex 2; plane with —4m?<¢<0. The limits giving
the amplitude for the physical regions I and III are indicated.
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analytic continuation from the region z,=/<4m? where
a single-variable dispersion relation has been proved.

The second integral on the right of Eq. (2.15) will be .

" similarly considered after changing variables.” The
formula (2.15) defines the physical sheet in the variable
z2. A similar formula can be used to define the physical
sheet in the variable zs.

3. ANALYTIC COMPLETION IN THE
PHYSICAL SHEET

In Sec. 2 it has been shown that F(z1,¢) defined by
Eq. (1.8) has no singularities in the upper half z; plane
for ¢ in the range (1.7). Hence if C is a contour defined
by a large semicircle in the upper half 2, plane, we can
write F(25,t) in the form

F d:
Plart)=— f (s)ds
C

2w 2—21

(3.1)

In the four-dimensional space of the complex variables
21, 22 the contour C in Eq. (3.1) lies in a plane
ze=constant.

The method of analytic completion® consists of dis-
placing the contour C by varying z; in Eq. (3.1).
Provided the integrand does not become singular on
the contour C, the formula (3.1) shows that F(z1,22)
must be analytic everywhere inside the contour. It
is therefore necessary only to prove that F(z,2,) is not
singular when z=s+47¢, and z=Re®, (0<6<m), for arbi-
trarily large values of R. The initial value of 2, is { <4m?,
and we will vary it to {4=7¢/, and then increase ¢ past
the threshold 4m? Higher thresholds can be considered
in a similar manner.

The function F(z1,2:) is defined by

F(Zl,22)=62f day- - -day n(a) (32)

[D(a21,2)]7

This definition has been shown in Sec. 2 to be valid
with real integration paths for the « variables when 2,
and 2, are near the real region (2.7). Its analytic con-
tinuation consists in varying 2z; and 2, from this region
and distorting the « paths of integration so that singu-
larities of the integrand [zeros of D(a,21,%2)] do not
cross them. For z.=¢, with {<4m? we have also seen
in Sec. 2 that F(z,f) is analytic in the 2 plane cut
along the real axis as shown in Fig. 2. We now consider
displacement of the contour C as indicated in Fig. 3.
The first displacement of C is to

Zy=l+ie’, (3.3)

We will be concerned in particular with values of 2,

on C near the real axis,
(3.4)

1= S+’L'€.

Since € and € can be arbitrarily small, it is only neces-
sary to consider those surfaces of singularities in the 2,
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F1c. 3. The displacement of the contour C in the complex z1, 22
space. Only their real axes, s and ¢, are shown explicitly.

29 space that intersect the real s, ¢ plane. There, they
will appear as curves of singularities or straight lines of
singularities. This follows from the fact that the critical
values of a are real when s and ¢ are real and hence the
derivative dzs/dz; is real at the intersection with the
real s,t plane. Accidental degeneracy might lead to a
point singularity but this can be avoided by a slight
variation in one or more masses. The reality of the
critical « values for real s and ¢ is most directly proved
by the following argument given by Landshoff and
Polkinghorne (private communication). The Landau-
Bjorken equations dD/da;=0 are real for real s and ¢.
The self-consistency of these equations determines a
set of curves or points for real s and ¢ (not necessarily
related to a physical branch). Given s and ¢ at one of
these points or on a curve, the corresponding critical
values of the « variables will be unique (except for
accidental degeneracy such as two curves crossing).
Since the Landau-Bjorken equations are real the com-
plex conjugate values of the o’s also provide a critical
set and by uniqueness these two sets are the same.
Hence the critical values of the o variables are real,
and the surfaces of singularities have real derivatives
for s and ¢ real.

When ¢ is just below the leading threshold 4?2, the
only singularities of F(z,f) are the normal thresholds,

(3.5)
(3.6)

The location of normal thresholds in 2; or z; is inde-
pendent of the other variables, and they are avoided
when

si=s=(nm)?, n=2,3, -,

zz=u= (nm)?, n=2,3, --.

(3.7)
3.8)

The contour C therefore avoids the singularities given
by Eq. (3.5) during the displacement to the point (3.3).
Using Eq. (1.2) and (1.3) we have

z3=u—1(e+¢€). (3.9)

Hence the singularities given by the normal thresholds,
Eq. (3.6) are not encountered by the contour.

Z1=51¢,

z3=u-t1e’.
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The second displacement of C is obtained by in-
creasing ¢ in Eq. (3.3) past the normal threshold,
t=4m?. The singularity corresponding to the threshold
itself is avoided by the small imaginary part 7¢’ in Eq.
(3.3). We must also consider curves of singularities and
the corresponding surfaces. It was shown in Sec. 2 that
there are no curves of singularities just below this
threshold. Hence any curve of singularities must either
touch the line {=4m? or tend to it asymptotically. In
both cases it must lie above this line except at the
tangent point. Near the tangent point (which may be
at infinity) the absolute value of the slope of the curve
can be made less than any given positive number 5, by
a suitable restriction on ¢,

|dt/ds| <, for dm2<t<4m?4-58(n). (3.10)

The slope of the curve of singularities is also the
derivative of the hypersurface in 2z, 22 space at any
point on the curve. If the curve has an equation

t=1(s), (3.11)
the hypersurface will have an equation
29=1(21). (3.12)
Since this is an algebraic equation, we have
dzy/dz=dt/ds, (3.13)

at any point 2;=s, 3s=1, on the curve of singularities.
It follows from Eq. (3.13) that when the curve of

singularities has a slope =7, a point z;=s4-7¢, on the

corresponding surface of singularities will have co-

ordinates,
(3.14)

Given ¢ and ¢ in Eq. (3.3) and (3.4), we can always
choose é in Eq. (3.10) so that

z1=5+17¢, za=it1ine.

ne<e. (3.15)

Hence the contour C can be displaced past the threshold
up to the point
t=4m*+3, (3.16)

either for positive or negative slope of the curve of
singularities. If the slope of the curve of singularities is
negative, the contour C does not meet the surface of
singularities for any value of 5. If the slope is negative
everywhere then the displacement of the contour C can
continue to all positive values of ¢ without meeting any
singularities.

It will be our objective now to show that in fact with
the analytic continuation defined by Eq. (3.3) and
(3.4) the only curves of singularities do have negative
slope. That is to say F(z1,22) becomes singular on curves
of negative slope only, in the limit,

z1=s5+te—>s, zp=I+id — 1. (3.14)

We will show first that our continuing displacement
of the contour C must not be prevented by a curve of
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Fic. 4. The surface of singularities from a curve of
positive slope and positive second derivative.

singularities of positive slope and positive second
derivative. Below such a curve would be a concave
region of the real s, ¢ plane near which F(z1,22) is
analytic. By considering the intersections of the corre-
sponding surface with the plane

(3.15)

where p is real and positive, it is clear that near the
real curve the surface will extend downwards into the
interior of the contour C as indicated in Fig. 4. This
would contradict our result that C can be displaced at
least a small distance past the first normal threshold.
Therefore such a curve of singularities cannot exist
unless the displacement of C is prevented at some earlier
stage. Since a curve of negative slope never extends into
the region where z; and 2, have imaginary parts of the
same sign the only type of curve that could give trouble
must have positive slope and negative second deriva-
tive. Thus it would have to bound a convex region of
the real s, ¢ plane near which F(z1,25) is analytic. We
will prove that such a curve cannot exist by showing
that curves of singularities cannot leave the physical
sheet through a normal threshold at a finite point, and
by using continuity of curves of singularities.

We will first consider the general possibility of a
curve of singularities leaving the physical sheet. When
F (21,22) is continued along the path indicated by Eqgs.
(3.3) and (3.4) the paths of the « integrations become
distorted but still have the end points 0 and 1. On a
curve of singularities all the variables have either end-
point or coincident (pinching) singularities. When the
curve is followed, it can leave the physical sheet only
at a point where one or more coincident singularities
falls off the end of the contour of integration. At this
point these coincident singularities are also end-point
singularities. Therefore there is also a curve of singu-
larities for a reduced diagram at the same point and
having the same critical values of the « variables. (The
“critical values” are those that give the coincident and
the end-point singularities.) Since the slope of the two
curves of singularities, given by Eq. (2.9), is a function
of these critical values, the curves must touch where

22=PZ1,
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the original curve left the physical sheet. We can
therefore continue along the curve for the reduced
diagram which is on the physical sheet. The situation
in the a integration is illustrated in Fig. 5. This estab-
lishes that every curve of singularities is associated
with a continuous curve whose slope is continuous and
along which F(z1,25) is singular in the limit given by
Eq. (3.14), after analytic continuation in the physical
sheet.

It may be possible for this continuous curve of
singularities to terminate along a straight line of singu-
larities. The only such lines are the normal thresholds.
We will now show that a curve cannot leave the
physical sheet through a normal threshold except
asymptotically.

The discriminant D (a,s,t) has the form,

D(a,s,t)=sf(a)+ig(a) —m2K (). (3.16)

We will assume that this corresponds to a suitably
reduced diagram so that on its curve of singularities
all the critical « values correspond to coincident
singularities. We will also assume that this curve leaves
the physical sheet at a point of tangency to a normal
threshold, ¢=4m? for example. If this diagram can be
further reduced to give another curve of singularities
touching the normal threshold and leaving the physical
sheet at the same point we fix our attention on the most
fully reduced diagram that has this property. At the
point of tangency, for the critical a values,

dt/ds=— f(&)/g(a)=0, (3.17)
and since g(e) is bounded,
f(a)=0. (3.18)

Since the curve leaves the physical sheet at this point
at least one parameter, a; say, must have its coincident
singularities at the end point 0. If this was the only such

(<)

(4)

« N\

X Xﬁ (e)

F16. 5. An « integration; (@), (b), (¢) show a coincident singu-
larity following off the contour of integration as s, £ vary along a
curve of singularities through a point where it leaves the physical
sheet. (¢) keeps on the physical sheet but (d) follows the curve to
an unphysical sheet. (¢) shows the related singularity for a reduced
diagram.
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parameter there would be a reduced diagram formed
from D, Eq. (3.16), by taking a;=0, that has a singu-
larity on the physical sheet at the point of tangency.
But we have assumed that D describes the most fully
reduced diagram having a curve of singularities with
this point as tangent and leaving the physical sheet.
Therefore the reduced diagram having a;=0 must give
a straight line of singularities. But the only lines of
singularities are normal thresholds for which all the «
variables are zero except those in generalized self energy
parts.? It is not possible to go from a diagram giving a
curve of singularities to a generalized self energy part
by putting only ay=0. The simplest possibility is that
also a;=0, that is to say another variable has its co-
incident singularities at an end point at the point of
tangency. Further, both «; and a; must be factors of
f(e) in this simplest case. Hence near the point of
tangency to the normal threshold

df(a)/da;— 0. (3.19)
We also have on the curve near this point,
aD af og K
—=§—+t——mP—=0, (3.20)
day  Oday  Oay Oay
and
g 0K
t——m?*—3>~0. (3.21)
6a1 6(,21

If the expression in Eq. (3.21) were zero, then the
reduced diagram with a;=0 would have a singularity
for which a; gives a coincident singularity. Thus the
line 1 would be on the mass shell although it is not one
of the lines in the generalized self-energy part that
gives the normal threshold. This is not possible, so the
statement (3.21) is valid. Equation (3.19), (3.20) and
(3.21) are consistent only if as the point of tangency is
approached,

§— 0,

(3.23)

More generally, several a variables may become zero
at the point of tangency to a normal threshold. The
structure of diagrams giving rise to curves of singu-
larities means that every term in f(a) must contain
two factors ey, ap’ from two sets ai, o/, 0y/’, -+ and
as, a9, @'’y + -+ all of whose critical values tend to zero
at the point of tangency.? The argument then proceeds
as in the simple case considered above.

We consider next the possibility that a curve of
singularities ‘has a minimum, at which (d¢/ds) is zero.
If it did not leave the boundary of the physical sheet
at the minimum, it would lead to a horn of singularities
extending downwards as shown in Fig. 4. The method
of analytic completion cannot be obstructed by such
a downward pointing horn, as we noted above when
discussing curves with positive slope and positive second
derivative. If a curve had a maximum at some point
but did not leave the physical sheet, it would either
have a minimum at some other point or it would tend
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to infinity at some normal threshold in ¢ In order to

stop the curve from going below the leading normal
threshold in s, it is necessary for s to tend to plus
infinity along both ends of the curve. This means that
the curve would have a minimum in the variable s at
which (ds/dt) is zero. As before, the method of analytic
completion must not be obstructed by such a minimum.
In this instance the analytic completion would begin
from the analyticity in the upper half z; plane and
proceed by varying z;. If it were only necessary to
consider one branch of a curve at a time, this would be
sufficient to prove that all curves of singularities on the
boundary of the physical sheet, where s and ¢ are
positive, must have negative slope. This is because only
this type of curve satisfies the conditions we have
proved, namely, that it leaves the physical sheet only
asymptotically through a normal threshold and that it
does not have a minimum. For a single branch of such
a curve, a minimum would always lie below a maximum
and therefore would obstruct the analytic completion
in a manner that is not allowed. Also the curve cannot
have a maximum without also having a minimum.
Hence it must have negative slope everywhere in this
region, as indicated by curve (a) in Fig. 1. These curves
are allowed singularities of the function F(z,2,) ana-
lytically continued in the upper half z;, 2, planes and
in the limit given by Eq. (3.14). Curves of singularities
with negative slope do not lead to surfaces of singu-
larities in the physical sheet in this region. Thus there
would be no singularities of F(z1,22) for z1=s-+14e and
22=1-+14€¢ for any positive value of ¢ if the curves of
singularities all have negative slope.

However, it is necessary also to consider curves of
singularities having more than one branch. A possible
configuration is indicated in Fig. 6. In this case a maxi-
mum of a curve of singularities comes below a mini-
mum.? It would obstruct the process of analytic com-
pletion since from either the s or from the ¢ direction
the maximum would be encountered first. A complex
surface of singularities would extend into the physical
sheet, (s1414sq, t1+1ts) between the curves 4B and CD.

t >

(=

T16. 6. Curves of singularities that would block the procedure
of analytic completion. They are excluded because a single
branch never has both ends tend to infinity in parallel directions.

9 I am indebted to Dr. J. C. Polkinghorne and P. Landshoff for
discussions on this point.

MANDELSTAM REPRESENTATION

1573

However, we will now show that the type of curve
shown as EABF is not allowed. At E, near the normal
threshold in ¢, the coefficient g of ¢ in the discriminant
D, Eq. (3.16) satisfies

g2(a)>0, (3.24)

for the critical values of the a variables. Since the slope
is negative, we also have at E, from Eq. (3.17),

fla)>0. (3.25)

At A the slope becomes infinite and g changes sign;
hence, on 4B, g is negative and f is positive. Similarly
at B, the slope is zero so f changes sign. Hence at F
both f(e) and g(e) must be negative. This contradicts
the fact that near a normal threshold in ¢, it is necessary
for g to be positive, as in Eq. (3.24). Hence the type of
curve EABF in Fig. 6 is not allowed. A similar argument
shows that no curve can have an odd number of turning
points. Since this discussion depends only on one branch
of the curve, it is sufficient to show not only that the
situation in Fig. 6 is not allowed, but also that we need
not consider more complicated topologies. Each single
branch of the curve must have an even number of
turning points (if any) in each variable in order to
have f and g with the known positive signs near the
normal thresholds. This ensures that it starts from a
normal threshold in ¢ and ends at a normal threshold
in s, in each case approaching the threshold asymp-
totically. For this type of curve a minimum always
occurs below a maximum, that is for smaller values of
¢. Then the method of analytic completion applies and
shows that no minimum is allowed.

This leads to the conclusion that the only curves of
singularities of F(21,22), in the limit shown in Eq. (3.14)
in the region where s and ¢ are positive must have
negative slope. Their characteristic form is shown by
the curve (e¢) in Fig. 1. In the limit shown in Eq. (3.14),
there can be no curves of singularities in the region
where ¢ is positive and s is negative. We deduce that
for

Z1=5-+1i¢, 2Z2=1+1€, (3.25)
there are no singularities of F(z1,25) for any positive
value of ¢. There is no special significance attached to
our earlier use of the threshold /=4m? as an illustration.
Similar arguments apply to all thresholds.

This completes the proof that the function

F(zl, t+’l:6,),

has no singularities in the upper half z; plane for all
positive values of ¢.
The analytic properties of the function

F(Zl, t— ié’)

(3.26)

(3.27)

can be similarly investigated. By making a change of
variable to 23, the argument proceeds exactly as above.
It shows that F(z1,25) is singular in the limit (with
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e¢),
(3.28)

only in the region ¢>4m?, u>4m?. There it has curves
of singularities that touch the normal thresholds in ¢
and #. They are illustrated by curve (b) in Fig. 1. The
restriction in Eq. (3.26) ensures that z; has a negative
imaginary part. This is required to avoid the normal
thresholds in #. This proves that the function (3.27)
is analytic in the upper half z; plane above the line
z1=s5-+1¢€.

gs1=s5+ie—s, ze=Il—1ie — i,

4. DOUBLE DISPERSION RELATION

The results of Sec. 3 permit us to transform the first
integral on the right-hand side of Eq. (2.15). From the
analyticity properties obtained for F(z1,22) the contour
Cin Eq. (3.1) can be displaced to give, for t>4m?,

1 p® F(s+ie, t+i€)ds
F(z1, t+ie)=— f —_— (41)
2w s+ie—2
1 F(s+ie, t—i€)ds
e
273

(4.2)
s—}—ie— 21

The difference between the expressions on the left of
Eq. (4.1) and (4.2) is real for g,=s, (—4m?<s<4m?)
in the limit as ¢, € tend to zero. From Egs. (4.1) and
(4.2) both functions are analytic in the upper half z;
plane in this limit. Hence their difference satisfies a
dispersion relation. The first integral on the right-hand
side of Eq. (2.15) then leads to

1
(zwt)zf dtU ds+f ot ](s zl)(t . Y

where we have replaced s in Eq. (2.15) by 2, so as to
obtain the relevant term in F(z,2).

o(s,t)=limit [F(s+ie, t+ie) —F (s+ie, t—i€’)

€,e’—0

—F(s—ie, t+ie')+F(s—ie, i—i€)].

(4.4)

The second integral on the right of Eq. (2.15) can
be considered in a similar manner by making a change
of variable so as to keep # constant when transforming
the integrand to give the second dispersion relation.
This procedure was described in an earlier paper.”
After taking account of the use of oblique axes, the
integrals can then be combined to give the Mandelstam
representation. This completes the proof of the
Mandelstam representation with equal-mass particles.

5. GENERAL MASSES WITHOUT
ANOMALOUS THRESHOLDS

In order to prove in a similar manner the validity of
the Mandelstam representation for general masses we
require (a) that there is a region in the real s, ¢ plane
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where the amplitude is real, (b) that when ¢ exceeds its
least value in this real region the amplitude has no
curves of singularities in the limit of F(s+7e, t+14€’) for
which dt/ds is positive and decreasing, and (c) similar
restrictions with respect to the other variables.

In the equal-mass case the condition (b) was proved
from the fact that the curves of singularities tend
asymptotically to the normal thresholds in s and £, and
do not leave the physical sheet in any other manner.
This same condition applies in the general-mass case.
If there are no anomalous thresholds, then the only
straight lines of singularities are normal thresholds.
Curves of singularities leave the physical sheet only
asymptotically through normal thresholds (taking into
account the discussion on continuity in Sec. 3). The
condition (a), that the amplitude is real, is sufficient
to prove single-variable dispersion relations. These
establish the starting region for the method of analytic
completion with the contour C. The required displace-
ment of the contour C will not be prevented by normal
thresholds nor by the surfaces related to the curves that
tend asymptotically to normal thresholds. No curve of
singularities can have a minimum since this would
contradict the proven displacement of the contour C to
positive values of . Since the curves are continuous
there can be no maximum either. This then establishes
the characteristic negative slope of curves that are
singularities of F(z1,25) in the limit z;=s+7%¢— s, and
zo=1+1¢ — {. Similarly, given that there are no
anomalous thresholds, the required analyticity can
also be proved in the other limits.

We will now show that condition (a), that there is a
region of the s, ¢ plane where the amplitude is real, is
ensured for all orders if its holds in fourth order. The
discriminant D(a,s,t) for a general diagram has the
form,?

D(a,s,o=sf<a>+tg(a>+§Mij<a)

—-Zj‘,a,-me(a). (5.1)

If the variable «; corresponds to an internal line of the
diagram, then

3D (a,s,t)/ 0c;= D (a,aiL5,t) — aim2C (a,it)
—msC(a). (5.2)

The notation «; indicates that the line labelled o; is
to be removed before evaluating the expression con-
cerned. The coefficient C(e) in Eq. (5.1) is positive for
a real and positive for all diagrams. Hence C(a,a;1)
is positive.

From Eq. (5.2) we see that if, in some region of the
real s, ¢ plane, for real positive a, we have

D(a,ai,s,t) <O, (5.3)
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then in the same region

dD(a,s,t)/9a;<0. (5.4)

This proves that in the region in which Eq. (5.3) is
valid, the variable a; cannot have coincident singu-
larities (for the physical branch of the amplitude).
Hence in considering the singularities corresponding to
D(ays,t), it is sufficient to consider those with a;=0 so
that the corresponding line is reduced. In this manner
we can obtain a lower bound on the leading singu-
larities of any diagram either by reducing any internal
line, or by removing any internal line. It is clear from
Eq. (5.1) that an increase in the mass #; of any internal
line will not cause a negative D to become positive. If
the line 7 is on the mass shell, D will decrease as m; is
increased. It is therefore sufficient to consider only
diagrams in which the lightest “allowed” masses occur
in internal lines. Allowed masses are those that are
compatible with selection rules. In removing lines from
a diagram, selection rules must not be violated if the
best lower bound is to be obtained for the location of
singularities. However, the statement in Eq. (5.3) and
(5.4) does not itself depend on selection rules and it
may be convenient in some instances to ignore selection
rules in removing internal lines, provided it is re-
membered that this may not give the best lower bound.

The above method of reduction or removal of internal
lines will lead in general to the simplest reduced dia-
gram having the structure of a fourth order diagram.
The simplest such diagram will have the lightest
allowed masses. We conclude that the condition for
the amplitude to be real in some region of the real s,
¢ plane is that the amplitude given by this reduced
“fourth order” diagram shall be real in some region of
the s, ¢ plane. ’

We consider next the possibility of anomalous
thresholds. We assume that there are none for the
reduced “fourth order” diagram. Then the region in
which D is negative will extend up to the leading
normal threshold in each variable. If the leading
normal threshold bounds not only the real region but
also bounds a physical scattering region in each variable
then there can be no anomalous thresholds. This is
because any straight line of singularities must intersect
a physical region since it must not enter the region
where the amplitude is real. In physical regions the
only singularities are at normal thresholds.? Examples
of this type of process are given by pion-pion scattering,
and by pion-nucleon scattering. For these processes
there are no anomalous thresholds.

However, the leading normal threshold may not
bound a physical region for the scattering process we
are considering. For example, the leading normal
threshold for nucleon-antinucleon scattering is given
by an intermediate state of two pions. In considering
the possibility of anomalous thresholds in such a case
it is sufficient to limit the discussion to vertex parts.
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Then D is a function of one variable only, and

D(a,S) = SP1(C¥)+M22P2<C!)+M32P3(OZ)
—2amiC(a),

where P;(a) is positive when « is real and positive. For
ease of description, the nucleon-antinucleon case will
be discussed. Below the two-pion threshold, D is
negative for all vertex parts since the fourth order term
leads to a vertex part that has D negative in this region.
Above the two-pion threshold, if two pion lines for any
diagram contain four-momenta satisfying

(5.5)

s= (g1t (5.6)
then the diagram cannot have a singularity with
gl=mz?, ql=m. (5.7

This result follows from the fact that only at the
threshold

s=(2mn.)?, (5.8)

will the Feynman diagram have an end-point singu-
larity in the relative momentum of the two pions. It
follows that one of the two pion lines can be reduced
when s exceeds the threshold value. In the reduced
diagram s must be carried by at least three pion lines.
It can be seen by inspection that the simplest of these
vertex diagrams will have D negative below the three-
pion threshold. This is done by noting that the deriva-
tive of D with respect to a parameter for one of the
nucleon lines is always negative. Hence this line cannot
be on the mass shell and the diagram can be further
reduced. The reduced diagram is known to have no
anomalous thresholds. An argument similar to that
used below the two-pion threshold can now be applied
to show that all vertex diagrams having at least three
pion lines carrying the energy squared must have
negative D below the three-pion threshold. This argu-
ment is a generalization of the “majorization” pro-
cedure developed by Symanzik.'® It shows that below
each normal threshold only the simplest vertex dia-
grams corresponding to that threshold need be con-
sidered. The argument can be fairly readily applied to
any individual case, and it shows for example that
multiplarticle states do not lead to anomalous thresholds
in nucleon-antinucleon scattering.

We  conclude that (1) when the leading normal
threshold in each variable bounds a physical region for
the process under consideration, the absence of anoma-
lous thresholds ensures their absence to all orders, and
(2) when the leading normal threshold lies below the
relevant physical region, the absence of anomalous
thresholds can be verified by considering the simplest
multiparticle reduced diagrams whose normal thresh-
olds lie in the gap between the region where the ampli-
tude is real and the region where it is physical.

10 K. Symanzik, Progr. Theoret. Phys. (Kyoto) 20, 690 (1947).
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6. CONCLUDING REMARKS

The proof of the Mandelstam representation given
in this paper applies when there are no anomalous
thresholds. It has also been shown that the absence of
anomalous thresholds is ensured when they are absent
from a limited number of lower order diagrams. In
some instances the fourth order diagram itself gives
this information, as for example with pion-pion scat-
tering, or pion-nucleon scattering. It may also be true
in general that the fourth order diagram determines
the absence of anomalous thresholds to all orders, but
this has not been proved yet. It can fairly easily be
checked for special cases, and for example it is true for
nucleon-nucleon scattering.

The method of proof used in this paper can in prin-
ciple also be applied when there are anomalous thresh-
olds but not when there are super-anomalous thresholds.
The characteristic of the latter is the existence of two
branches of a curve on which the amplitude is singular
in one spectral region, the two branches being con-
nected by a singular surface in the physical sheet. The
difficulty in practice of applying the method when there
are anomalous thresholds is that curves of singularities
can leave the boundary of the physical sheet through
these thresholds at a finite point. There is therefore no
simple continuity argument that prevents such a curve
from having a maximum at some positive value of one
of the energy variables. The aim of further investi-
gation of anomalous thresholds must be to find out
whether certain low-order diagrams, possibly the fourth
order alone, determine the validity of the Mandelstam
representation to all orders when there are anomalous
thresholds.

There are several points in the proof where the
perturbation series has been explicitly used. The method
of analytic completion beginning with knowledge
obtained from a single-variable dispersion relation is
not specific to a perturbation treatment of the problem.
However, the perturbation series, in particular the
parametric representation of a Feynman diagram, has
been used in showing that the required analytic com-
pletion is possible without distortion of the contour
surrounding the tube of analyticity. This representation
was required (1) to extend the single-variable dispersion
relation up to the leading normal threshold, (2) to
establish continuity of curves of singularities on the
boundary of the physical sheet, and (3) to prove that
a curve of singularities that leaves the boundary of the
physical sheet through a normal threshold does so
asymptotically.

In a previous report on this proof,!! an alternative
method was mentioned whereby the nonexistence of
spurious turning points (i.e., minima of curves of
singularities not at anomalous thresholds) and dis-
connected complex singularities can be established for
the physical sheet. This method consists of tracing

11 R. J. Eden, Phys. Rev. Letters 5, 213 (1960).
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curves of singularities through the complex part of the
physical sheet beginning from either a minimum of a
curve of singularities or a disconnected complex singu-
larity if either of these exist in the physical sheet. It
can be shown that this complex curve must lead to a
singularity below the leading normal threshold, for
example in the variable ¢, with ¢ real. This contradicts
the single-variable dispersion relation and proves that
the starting assumption of a spurious turning point or
a disconnected complex singularity was wrong. This
alternative method will not be described in detail since
the manner in which it traces complex singularities is a
special case of another alternative method that has been
developed independently. )

This alternative method for proving the Mandelstam
representation has been developed by Landshoff,
Polkinghorne, and Taylor.?? Their method of approach
starts from the opposite side of the problem to that
used in this paper. Here we have started from a region
in 21, 22 space know to be free from singularities and by
standard methods have extended this region to show
that there are no singularities inside a tube in this
space. Several applications of this procedure were
sufficient to prove the analyticity required for the
Mandelstam representation. In contrast to this method,
Landshoff, Polkinghorne, and Taylor assume the
existence of singularities in the physical sheet, and then
study the properties of the associated surfaces of singu-
larities. By tracing curves of singularities in the complex
space, they show that if one part of a branch of a surface
of singularities is in the physical sheet, then all parts of
this branch of the surface must be singular in the
physical sheet. Since any such branch must intersect,
for example, a forward scattering region (¢=0, s com-
plex) where there are no complex singularities, they can
deduce that their original assumption of singularities
in the physical sheet was incorrect, and there can be no
complex singularities in the physical sheet. Their
method is dependent also on a continuity argument that
is related to the one used in this paper, but it is ex-
pressed as an induction procedure which is the converse
of the way in which it is used here.
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