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Wave Zone in General Relativity
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It is shown that in general relativity a "wave zone" may be de6ned for systems which are asymptotically
Qat. In this region, gravitational radiation propagates freely, independent of its interior sources, and obeys
the superposition principle. The independent dynamical variables of the full theory which describe the
radiation are shown to be coordinate invariant in the wave zone and to satisfy the linearized theory's
equations there. Thus, the basic properties oi free waves in linear Geld theories (e.g., electrodynamics)
are reproduced for the gravitational case. True waves are also clearly distinguished from so-called "coordi-
nate waves. "Reduction to asymptotic form (taking leading powers of 1/r), is rot identical to linearization,
since, for example, the Newtonian-like 1/r part oi the metric begins quadratically in the linear theory s
variables. The Poynting vector of the full theory, which measures energy ftux in the wave zone, is corre-
spondingly shown to be given by the linearized theory's formula. This Poynting vector is also shown to
be coordinate-invariant in the wave zone. All the physical quantities may therefore be evaluated in any
frame becoming rectangular suKciently rapidly. A brief discussion of measurements of the canonical
variables in the wave zone is given. The relation between the present work and other treatments of gravi-
tational radiation is examined.

I. INTRODUCTION; DEFINITION OF
THE WAVE ZONE

' 'T is well known that in the linearized approximation
~- of the full theory of relativity there exist wave
solutions whose physical interpretation can be framed
in terms identical to those used in classical electro-
dynamics. However, it has also been realized that a
gravitational wave carries energy, which should there-
fore give rise to a Newtonian gravitational field at
infinity. Such a term is not present in the free theory's
linearized approximation (the energy being quadratic
in the amplitudes). It is therefore necessary to investi-
gate the validity of the linearized approximation as a
description of waves escaping from a strong field
interior region. In this paper, we will examine the
asymptotic behavior of the full theory and compare it
with the linearized form. Our procedure will differ from
that commonly used in electrodynamics; it cannot be
based on retarded Green's functions relating the radi-
ation amplitudes to the sources, since in general
relativity neither these Green's functions nor equivalent
existence theorems are available. We shall therefore
base our approach on a study of the Einstein equations
and their solutions as specified by Cauchy data (a
procedure also applicable in electrodynamics). As a
result, no relations between the sources and the radi-
ation field will be obtained. However, the behavior of
the radiation fieM after its emission will be specified.
Vi~e will see that one can define a "wave zone" in which
the canonical variables (see III) describing the radi-
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ation do obey the linear theory's equations. Beyond
the wave front, there remain the (coordinate-inde-
pendent) Newtonian parts of the metric (which include
the nonlinear effects resulting from the interior domain),
as well as coordinate-dependent parts of the metric.

The "wave zone" is defined in analogy with electro-
dynamics. We consider a general situation in which the
gravitational canonical modes behave asymptotically
as fe't"' '&/r in some region; beyond this region
(i.e., past the wave front) they are assumed to vanish
more rapidly. This assumption is made to insure that
the total energy contained in the wave be finite. The
first requirement on the wave zone is the familiar one
that kr))1; this implies that gradients and time deriva-
tives acting on the canonical modes also fall off as 1/r.
However, two further requirements, not made in
classical electrodynamics, must be imposed in view of
the nonlinear nature of the field. YVe first demand that
all components of the metric g„„deviate from the
Lorentz metric p„, by terms small compared to unity,
and decrease at least as 1/r in the wave zone. (Note
that g„„r)„„ t/r is forbidd—en, since i/r is not small in
every Lorentz frame. }This requirement can always be
met when radiation is escaping to infinity by taking r
sufficiently large and waiting for the wave to reach
this distance. There are three different parts of' g„,:
(1) the canonical variables for which the above condi-
tion implies f/r«1; (2) the Newtonian-like parts
(which behave as 3E/r), so that by M/r«1, the wave
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'Notation and units are as in III, etc. : ~=—16m' 4=1=v,
where y is the Newtonian gravitational constant. Latin indices
run from 1 to 3, Greek from 0 to 3, and xo=t. All tensors and
covariant operations are three-dimensional unless specified, g'&

being the matrix inverse to g;; and the subscript vertical bar
indicating covariant differentiation with respect to g;; (not 'g„,).
Partial differentiation is denoted by a comma or by 8„.
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zone must lie well beyond the gravitational radius of
the total system; and (3) the gauge variables whose
specification fixes the coordinate frame being used. For
this last case, the condition defines how rapidly the
coordinate frame must become rectangular at infinity.
We shall see that derivatives of the Newtonian part go
as 1/r' and are negligible, while derivatives of the
gauge parts may or may not be negligible, depending
on the amount of "coordinate waves" present. Further,
it will be shown that such "coordinate waves" may be
completely isolated in the wave zone and beyond it.

The final requirement can be stated in terms of
the derivatives of the metric: it is necessary that
( Bg/ij(kx) ('«~g —

rj~ in order that a wave of frequency
(or wave number) k will behave as free radiation.
Alternately, frequencies above some k;„will behave
as free radiation provided k;„))k,„(a/r)'*, where

~ g
—it

~
a/r and k, is the maximum frequency

appearing in the metric. This condition can always be
fulfilled for any desired k;„by taking r large enough,
and waiting for the radiation to reach the region. For
fixed r, the condition represents a lower bound on
frequencies which may be treated in this part of the
wave zone.

The requirements that ~g„,—q„„~&&1,
~
Bg/8(kx) I2

«~g —
rt~ are necessary so that usual definitions of

radiation, first stated for linear fields, be applicable
here. These definitions presume that the radiation is
"free", i.e., that it propagates independently of the
sources and that superposition holds. In relativity,
then, one can only meaningfully speak of radiation if
the energy density in the wave zone is small. Otherwise,
the self-coupling of the theory comes into play and
effectively acts as a source in the region, giving rise,
for example, to scattering of waves by the Newtonian-
like parts of the Geld as well as to the scattering of two
waves of high frequency to yield waves of other fre-
quencies. A similar situation exists in quantum electro-
dynamics, due to vacuum polarization. There, one has
an effective nonlinear bT'0 n'(E' —B')+O(n') for the
Maxwell Geld, so that in the presence of an arbitrary
external electromagnetic field, the self-coupling can
produce distortion of "waves" (Delbruck scattering).
Also, the 8T'0 term produces scattering of light by
light. The usual definitions of electromagnetic radiation
would thus fail in a domain where bT'0 is significant,
and in fact the wave zone is then defined only when the
self-coupling has no physical effects. Of course, numeri-

cally, the nonlinear effects we are forbidding are
automatically small in most conceivable situations for
gravitation.

It should be remarked that our restrictions on
~g„„—rj„„~ and its first derivatives have been imposed
on all components, and so, in particular, on the parts
depending on the choice of coordinates. Thus, for the
same physical situation, it may be necessary to go to
larger distances in some frames than in others in order
to reach a region where the equations of motion of the

dynamical modes are Rat-space wave equations. How-
ever, we will see that one can distinguish coordinate
waves from the true physical waves and that the former
may be transformed away if desired. The isolation of
coordinate waves will be discussed in Sec. III.

With the above definition of the wave zone, we shall
Gnd that the full field equations reduce to those of
linear theory for the canonical variables, so that these
variables propagate as free radiation. We shall see,
further, that the energy Qux of this radiation is meas-
ured by the Poynting vector of the linearized theory.
Both this vector and the canonical variables themselves
are coordhriate iride-peridelt in the wave zone, and thus
form a suitable invariant basis for the analysis of
radiation. One can, in fact, obtain these quantities
invariantly from measurements of the spatial part of
the metric and its first time derivatives.

Beyond the wave front, the dynamical variables
vanish, leaving only the Newtonian-like and coordinate-
dependent parts. In a subsequent paper (IV c), we
shall show that from the Newtonian-like parts of the
field one may obtain a coordinate-invariant definition
of the energy-momentum vector of the total system.

gij ~ij=gij +gij +(gij+gji)), ,(2.1a)

~ij ~i jTT+~ijT+ (~i . +~j .),(2.1b)

The quantity g;jr=—2t 8,jg~ —(1/V')gr, ;j] is determined
by the single component gr, where 1/V' is the inverse
of the Rat space Laplacian with solutions vanishing at
spatial infinity. In a coordinate system specified by

I The first paragraph of this section is a brief review of the
results of III.

4 See, for example, L. P. Eisenhart, Riemannian Geometry
(Princeton University Press, Princeton, New Jersey, 1949).

II. FIELD EQUATIONS IN THE WAVE ZONE

A complete set of Cauchy data specifying the state
of the gravitational field' on a space-like surface (which
we take to be t=const) is provided by the variables'
g;, and x'&. Here g;,. is the spatial part of the metric and
defines the intrinsic geometry of the surface, while z'&' is
effectively the first time derivative of g;, : 4rij—= (—4g)&

X ('I'i~g"g~ j—g" 'I'i~g'~). Equivalently, m "is related
to the second fundamental form, ' E;;, by ir'j=——('g)'
&& (E"—g"X'i), and thus describes the external curva-
ture of the surface as imbedded in the four-space. This
set of Cauchy data determines not only the state of
the system, but the four coordinates of the surface as
well. Thus, four of these twelve quantities fix the
coordinates, leaving four dynamical variables, and four
Newtonian-like components determined as functions
of the other eight by the constraint equations 6'„
=—'jV„—8'„'E.=o. The division is best seen in terms
of the orthogonal breakup of the symmetric g;; and m'&

into transverse and longitudinal parts (as in III):
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g;=0=m ~, or equivalently by

g" -=0 (2.2a)

(2.2b)

it was shown in III that g;,~~, m'&~~ form two pairs of
canonically conjugate variables, while g~ and w' are the
Newtonian-like parts. The g~ and m' are obtained as
functions of the canonical variables by solving the four
constraint equations

'R+ ',or' or"-~ —=0 "vr =—m'i (2.3a)

(2.3b)

In the wave zone, the conditions of Sec. 1 imply that,
when one wishes to use a frame different from (2.2),
the new metric g„„' differs from p„„by terms of order
a/r«1. Therefore in the coordinate transformation
x'j'=zj' —P, the quantities P „must go as rJ/r. The
coordinate changes themselves, P, can then behave as

alnr, ax'/r, a exp(g„xj')/r (as well as, of course,
higher structures like 1/r). When differentiated, these
forms all give P „a/r (this behavior is also permitted
past the wave front). In this connection, we may
distinguish two classes of functions: those whose
derivatives are 1/r smaller than the functions (which
we will call "static") and those whose derivatives are
of the same order (which we will call "oscillatory" ).
Thus, the structures lnr, x'/r, b/r fall into the former
class; such P appear, for example, in transforming from
Schwarzschild to isotropic coordinates (which involves

moo'/r) The exp(iq„x. j')/r form falls into the second
class, representing a "coordinate wave" (which can
also exist past the wave front). To order a/r, the g,;
and m'& transform according to the linearized coordinate
transformation law:

(2.4a)

7r"'= jr"+($o„j &;jp, ~i), . — (2.4b)

the nonlinear terms being 0(1/r') or higher. (Corre-
spondingly, goo'=goo —2P, o and goi'=goi+P, o

—P, i )
Comparing Eqs. (2.4) with (2.1), we see that only g;,
and ~'&~ are affected by the linearized transformation.
To make sure that the remaining quantities g;,~~,
w'&~~ g~ and x' are invariants in the wave zone, one
must show that the neglected 0(1/r') terms do not
have 0(1/r) effects on these components. Such terms
arise in the nonlinear parts of the coordinate transfor-
mations, and in Appendix B it is shown that they
indeed do not affect, to 0(1/r), the g;,rr, n."r~, g~,
and ~',;. This is in spite of the appearance of 1/Vo

operators in the definitions of the relevant orthogonal
components.

To illustrate the behavior of the various parts of the
metric in the wave zone, let us first examine them in
the frame of Eqs. (2.2). The canonical variable g;Pr
may, in the interior, have arbitrary amplitude, but will,
for a radiation case, fall off as a/r in the wave zone
(e.g. , f exp(ik„z")/r). Note that in this region both
space and time derivatives acting on g;,.~~ maintain
its 1/r character. Beyond the wave front, however,

g;,~~ vanishes more rapidly, since the system is bounded.
The g~ component is determined from the constraint
equations (2.3) to be gr= (1/V') V'oLg r jr $j where
—1'd'r Y'oLgr~p. r~] is the Hamiltonian of the gravi-
tational fieM. Beyond the wave front, g~ then has a
static behavior as E/r, where E is the to/al energy of
the system (including the waves). In the wave zone,
additional 1/r' terms (both static and wave-like) enter
in g~, as is shown in Appendix C. While g~ is the
dominant part of the metric beyond the wave front in
the full theory, the linearized theory neglects g~
everywhere, since g~ begins quadratically in the canon-
ical variables. LThat this is the case is seen by solving
for g~ in the constraint equations (2.3) in terms of the
gr~, ~rr.) The situation for the conjugate variables

(2 5)

is in close parallel. Here the canonical variables m'&~~

go as kfe""*/r in the wa've zone, and vanish rapidly
beyond it. On the other hand, the constraint variables

(which are quadratic in grr, 7rrr and hence are
neglected in linearized theory) are static and go as

I"/jr (where I' is the total momentum) outside
the wave zone [from the constraint equations, m''

=(1/V') V'%j and so 7r', j I"/r' there (for details, see
end of Appendix C). In the wave zone, other terms of
comparable magnitude appear in m ";(e.g. , kf'e'~*/r')
Finally, we will see, in Appendix C, that the remaining
components, go„—po„, of the metric correctly behave
as 0(a/r).

We shall now show that, ie the wane some, the dy-
namics of the full theory rigorously reduces to that of
the linearized approximation. This is not a trivial fact,
since, as we have seen, gr and jr' go as a/r in the
wave zone, and are not zero, as they would be in
linearized theory. The distinction here is clearly due to
the difference between linearizing (expanding to first
order in g„„—rl„„) and going to the asymptotic form
(expanding in powers of 1/r). The quantities that will
obey linear equations of motion are g,,~~ and w'&~~.

We have seen previously that in the frame of Eqs.
(2.2), these quantities represented the canonical vari-
ables of the theory; further, as was discussed above,
they are coordinate-invariant to 0(1/r) in the wave
zone. They are therefore a suitable complete set of
variables to describe the dynamics of the radiation.
The proof itself will be given in an arbitrary frame and
is subject only to the three inequalities characterizing
the wave zone, as stated in Sec. 1. The field equations
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of the full theory are Eqs. (2.3) and:

~pg'~ =2N('g) '(~'i p—g'y~)+n'i~+ e~ i',

Bp7r"= —N('g)'('R" ——,'g" 'R)
N (Pg) $g-ij (~mnir pr2)

2—N ('g) l (x—'"m' . ,'—r ir—")

y(pg)y(N['q 'g'rN(m, )
+L(pr"il") i„—it'i„pr"' —q'i„ir 'j. (2.6b)

(2.68)

In the wave zone, all components of g„„—q„„and
go at most as a/r; as a result, all nonlinear terms are
0(1/r') and Eqs. (2.6) reduce to

~pg'J = 2 (ir" pb—'2~)+~'2+0, J'+ o, (1/r'), (2.7a)

()pg
~ ~

os &s

ijTT—& +2rr, ,TTp~ g gij

(2.9a)

(2.9b)

To complete the proof, it remains to be shown that the
terms of order 1/r' dropped in Eqs. (2.9) are indeed
negligible. First, if one is to neglect 1/r' terms, then
one must also neglect 1/r' terms in derivatives of grr
or ~rr. With ger, mrr~e'~*/r this means neglecting
e'"*/r' with respect to (k/r)e""*. Our first condition,

kr» 1, (2.10a)

guarantees this. Correspondingly, Eqs. (2.9) yield
information only about Fourier components satisfying
the condition kr» i, as the lower frequency parts give
a contribution comparable to the 1/r' terms. Thus,
Eq. (2.10a) has arisen just as in electrodynamics, where

this condition is needed if one is to neglect the source
terms. Turning to the 0(1/r') terms in Eqs. (2.7), we

erst consider nonlinearities arising from undifferentiated
g„„—g„„(as in expansions of g&" in terms of g„„).These
give rise to quadratic terms at least ~g» ri„, t

a/r-
times the leading linear ones. By our second condition,

~

g„„—g„„~-a/r&&1, (2.10b)

such terms (as well as all higher powers of g» —g„,)
are negligible. The last class of 1/r' terms involves
derivatives of g„.y which are & kmBx

~ g/ly glyy
~

kmaxG/r.

&ppr"=-', (g;, , ii+g~i„,—g'i, i,—g, u, i')+ (N, "—b "N, ii)

+p b "(gti, iI —gii, ii)+0 (1/r'). (2.7b)

To examine the motion of the dynamical modes, we

perform the orthogonal breakup of Eq. (2.1) on Eqs.
(2.7), noting that, it commutes with both Bp and 8;.
Formally, the "TT"parts of the equations are obtained
by applying the linear operation,

f'y = f'~ pb—'~f« —(1/~')L—fyi, i,+f, i, i,

2b'~fi-, —i- kf«, '~ —(1/2~')—f~-, i-*yj (2 g)

As is shown in Appendix B, this operation is well-

defined even for f;, 1/r, 1/r' and yields then f,,rr
1/r, 1/r', respectively. The equations obeyed by

g
rr and ~'yTi to order 1/r are just

We wish to show that a component. of g,;, ae""/r can
be treated by linearized theory in the presence of other
Fourier components extending up to frequencies km, „.
Equation (2.7a) then shows that the k frequency part
of m" is kae'"*/r, which we will use in estimating the
0(1/r') terms of Eq. (2.7b). Every term in Eq. (2.7b)
contains two derivatives of g„„(counting ~" as &g).
A k frequency component in the leading linear terms
is then k'ae'"*/r. In the nonlinear terms, factors
containing frequencies up to k,„may interfere to
produce a k frequency component. The maximum
value of such a term is k, '(a/r)'e'~". LHigher order
nonlinear terms, which contain no additional deriva-
tives, are smaller by higher powers of (a/r). j By the
third condition,

k»k .„(ii/r)-:, (2.10c)

8 m" = ——',k'g; ran+0„(1/r') (2.9bg)

The linear solution has frequency p~= ~k~, but the
O(I1 r/') terms may be time independent even with

wgi'e mNmber k. Such terms, in fact, being secular, will
grow fastest in time integration. The ratio, X, before
integration, of OI to k'ger is X~f/r&&1 by Eq. (2.10b).
Integrating for a time v., the leading term is multiplied
by pp '=

~k~ ', the secular Oi term by r. Thus the
ratio becomes X kr(f/r) and thus remains much less
than one for many periods. VVe now see that this
available time is sufficient for our purposes. Initial data
are available for Eqs. (2.9) only in the wave zone, r) R.
Thus at a point r=R+L, one can only integrate the
linearized equations up to a time L later (since after a
longer interval one would be within the light cone of

these too are negligible. Similar arguments then show
that the 0(1/r') term in Eq. (2.'7a) is smaller than the
leading term there by a factor (k, /k) (a/r)«1. This
shows that the 0(1/r') terms in Eqs. (2.7) are negligible
compared to the leading linear 1/r structures.

Equations (2.9) were obtained by applying the "TT"
operation of Eqs. (2.8) to Eqs. (2.7). As we have
mentioned, Eqs. (2.9) are only meaningful for the high
frequency components. For these components, the
significant point (shown in Appendix B) is that the
"TT" operation preserves magnitudes so that the
0(1/r') terms yield a negligible contribution to Eqs.
(2.9) ~ This completes the derivation that the dynamical
modes in the wave zone obey the linearized equations
(2.9) at a fixed time.

Finally, we will show that these modes coetiene to
propagate according to the linearized equations for a
sufficiently long time. To do this, we show that the
neglected 0(1/r') terms (which were negligible initially)
do not produce large cumulative effects upon time
integration. YVe proceed by iteration, that is, we
integrate the linear equations, and use these solutions
to estimate the integrated effect of the higher terms.
For example, we take Eq. (2.9b), and consider the k
wave number component:



$560 ARNOWITT, DESER, AN D M ISNER

the interior region). Thus the error becomes at most
(kf)L/r. To estimate kf, we note the mass contained

within R(r(R+L is, by the linearized Hamilton-
ian J&R+LgayP (Vg TT)2+ (~TT)2)~$2f2I & yg

X &~(L/r) '(mi„/r) ', and since L/r (1,and mi, i/r&&1, 'A is
quite small.

The remaining field equations in the wave zone,
i.e., the equations for Bpg, Bpg;, ;, Bpm', ;, and Bpx can
be obtained by similar arguments. They are

Bpm. ',;=0,

(2 1»)

(2.11b)

III. OBSERVABLES IN THE WAVE ZONE

The main result of the previous section was embodied
in Eqs. (2.9) for the 1/r parts of the dynamical modes
of the full theory, g

~ and x, in the wave zone.
Equations (2.9) are identical in form to the equations
for the canonical variables in linearized theory and
therefore correspond to the linearized Hamiltonian
density BC~;„——4 (Vg~'r)'+ (n.r~)'. These equations are,
of course, linear, ensuing that superposition holds;
further, they are source-free, indicating that the radi-
ation propagates independently of its origin, and with-
out any self-interaction or dependence on the New-
tonian-like part of the field. Thus, the Qat-space wave
equation 'i&„g;Jr=0 represented by (2.9) shows the
absence of curvature effects on the radiation. Note also
that coordinate effects have disappeared from the wave
equation, since the coordinate-dependent parts of the
field, g;, x, and gp„are no longer present. Since g„.
and ~'&~r are invariant to order 1/r under coordinate
transformations which leave the metric asymptotically
flat (and which do not involve a Lorentz transformation
at infinity), they represent a coordinate-independent
description of the radiation in a fixed Lorentz frame.
When a Lorentz transformation is performed, one must

(2.12b)

and again are meaningful only for high-frequency
components. From the constraint equations (2.3), one
can see that m', ;, V'g~ 1/r'. Thus the bracketed terms
in Eqs. (2.11, 2.12) are to be discarded. Note that Eqs.
(2.11) are Bianchi identities, while Eqs. (2.12) deter-
mine E and g; when coordinate conditions are imposed
on x~ and g;. In Appendix C, an alternate derivation
of Eqs. (2.9) is given under slightly stronger assump-
tions than those used here. The extra assumptions are
of the type needed in order that higher multipole terms
in (1/V') V'„be negligible compared to the monopole
term in the wave zone (which can always be satisfied
by suitably increasing the radius of the wave zone).
The derivation then shows that Eqs. (2.9, 2.11, 2.12)
are valid also for low frequencies.

use the "TT" variables in the new Lorentz frame to
describe the radiation, just as in electrodynamics one
must use the transverse parts of the transformed A'
and E

In the presence of matter (e.g. , the Maxwell field),
the above derivation may be carried through equally
well, provided, of course, the matter system is contained
in the interior region (and has finite energy content).
Under these circumstances, any gravitational waves in
the wave zone are still independent of the matter
sources. Even if electromagnetic waves are propagating
in the wave zone with small amplitude (and 1/r),
the gravitational radiation is still unaffected by the
electromagnetic waves, since' the latter couple quad-
ratically ( 1/r') into the field equations (2.6). Thus
in the common wave zone, the two systems are cor-
rectly independent.

Our discussion has so far been concentrated on the
dynamical ("TT") modes in the wave zone, where
they are coordinate-invariant and represent the
physical waves. We can also examine coordinate waves
in this region; the only components of g;. and x'&

affected by coordinate transformations to 1/r are
g;, , and m

~ (as are also go„, by the equations of motion).
Therefore, g;, and m~ carry the effects of the choice
of coordinate system. One may then adopt the con-
vention that a frame for which these quantities are
nonoscillatory (in order 1/r) has no coordinate waves.
The frame of Eqs. (2.2), for example (where g, , ,=0
=err), falls within this cia,ss, as does the "isotropic"
frame (see V) specified by g, ,;—(1/4V')g~, ;,=O=~r
+2m', , For such "static" frames, the frequency k

appearing in condition (2.10c) is then a physical wave
frequency rather than one connected with a coordinate
wave. However, in an "oscillatory" frame, where g, ;
or m~ are not static, the highest frequency in the full
metric may reside in the coordinate waves. In this case,
condition (2.10c) may be unnecessarily restrictive, due
to the choice of coordinates. Such a situation may be
recognized independent of our convention simply by
noting that the full metric contains frequencies higher
than those in the canonical modes. One has then defined
the wave zone to be further out than is necessary. By
making the coordinate transformation x"= x'+g, ,
t=f (1/2V')—err, one may remove these excessively
high-frequency coordinate waves (of course, only the
high-frequency parts of g; and m~ need be included in
the transformation). Similarly, condition (2.10b) may
also be too restrictive if the size of the metric is governed
by its coordinate parts g; and m~.

We turn next to the question of energy Aux in the
wave zone, i.e., to the Poynting vector V". In the
canonical formalism, as developed in III and IV, an
expression for 9""has not been derived. It is not a priori
the same as the momentum density V", which was
shown to be —2vr'&, in the frame (2.2). However, a
simple physical argument proves that, for the wave
zone, at least, V""= V"=—2x'&' =2~™F'~. We have
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seen that, in the wave zone, the full metric g„, satisfies
the linearized equations (2.7), along with linearized
form of the constraint equations (2.3):

Thus, if one imagines a dilute absorber of energy in
this region (i.e., one whose energy content is not so
highly concentrated as to produce strong fields), then
the behavj. or of such an absorber is governed by
linearized theory. ' Since linearized theory is a standard
I orentz-covariant theory, its symmetric stress-tensor
can be obtained by conventional techniques; the result
has been recorded in I. ln particular, the energy
absorbed is given by this T". One may also carry out
the proof of this result from the point of view of
emission of the energy rather than its absorption.
Although the physical metric we are considering satisfies
Eqs. (2.7) and (3.1) without the 0(1/r') terms, only in
the wave zone, it is possible to construct a parallel
situation in which the field is everywhere weak, but
agrees with the first in the wave zone. Since it is weak,
the parallel Geld satisfies linearized equations every-
where. However, in order to obtain agreement between
the corresponding so/It joes in the wave zone, one must
introduce fictitious matter sources in the parallel
situation (whether or not there were any in the original
case). This is needed in order to simulate the effects in
the wave zone solutions produced by the 0(1/r') terms.
Thus, while the interior 0(1/r') terms do not affect
the high-frequency components of the solutions (Sec. 2),
they can conceivably modify the low-frequency parts,
which include the dominant parts of g~ and x'. For
example, Eqs. (3.1) for the parallel situation read:

g~f,jj gij,ij=~ g Ts p& (3.2)

2''&,;= —2(~',;,+—~—';,) =Ts', , (3.3)

where the simulating sources TsP„vanish in the wave
zone and are to be distributed sufficiently thinly within
the interior region so that linearized theory remains
valid. To show that the simulation can be achieved by
dilute sources, consider for example, Eq. (3.2). We wish
to reproduce the physical gr by (1/V')Ts's. Since gT

satisfies the Laplace equation in the wave zone (and
beyond), is of the form P r ' 'I'& (8, p)Mi~. Therefore,
one need only choose Ts's such that Js"d'r r'I t Ts's
=M&~. By the condition (2.10b), M& /r'+' a/r&&1, i.e.,
M~ ar'. Thus, the conditions on Ts'p can be satisfied
with a

~

Ts's
~

of the order of magnitude a/R' (where R
is the inside radius of the wave zone) up to r R and
zero outside. For such a source, (1/7')Ts'o a/R«1
everywhere, so that the analog g~ is kept small through-

'To analyze the behavior of the dilute absorber, consider
initial Cauchy data for both the Geld and the absorber specified
in a region many wavelengths in size around the absorber. These
data are sufBcient to determine the state of the absorber for a
time many periods long, during which the absorber's backward
light cone intersects only this region. Since the system is in the
wave zone, the final state of the absorber is given by linearized
theory Lby the discussion of Eq. (2.9bq) j.

out. Equation (3.3) can be similarly analyzed for s'
The fictitious TB „we have introduced will require a
Ts'j such that TBj"„„=0to maintain the Bianchi
identities. This Ts'j will also be small; it will appear
in the analog of Eq. (2.7b) and, like Ts'„, vanishes in
the wave zone. With the analog g" and m', j now guaran-
teed weak everywhere, we may specify the remaining
analog components of gij and m'j initially to agree
with the physical field in the wave zone and to be weak.
in the interior. The components gp„may be similarly
specified for all time, since no time derivatives of them
appear. The linearized version of Eqs. (2.6) $i.e., Eqs.
(2.7)j now holds rigorously for the analog metric for
all space. The latter then propagates maintaining
smallness, and hence, according to linearized theory,
for sufficiently long times, ' i.e., t E. We have now
guaranteed the identity of the two situations in the
wave zone. Note that the analog metric is a solution of
the full theory's equations; due to its smallness it was
seen to be a solution of the linearized equations as well.
An absorber of gravitational radiation in the wave
zone, then, clearly cannot distinguish between the two
situations, and we can therefore use the Poynting vector
of linearized theory to measure the energy Qux of the
radiation.

The Poynting vector as given by linearized theory,
must of course be time-averaged, as in electrodynamics.
However, since coordinate waves do not necessarily
have frequency related to wave number, one must also
average over wavelengths to obtain the physical V"
in the presence of such waves. " From I, one finds that

io —~lmT2'(2g I'T
g

TT .) (3 4)

to 0(1/r'), where the averaging is understood. In
establishing Eq. (3.4), it is easiest first to verify it in
the coordinate system (2.2), where g;=O=s.~. One
may then show that V i;„"in any other frame differs
from its value in this frame by divergences of quadratic
structures such as (P, ii)', ,),;, as well by terms mani-
festly 0(1/r'). If P „represents a coordinate wave
(fe'&*/r), then the divergence is either oscillatory and

1/r' or the phases cancel, in which case it is (1/rs);
1/rs. Thus, with the averaging over oscillations, 9"'

is coordinate-independent through 0(1/r') The righ. t-
hand side of Eq. (3.4) is obviously coordinate-invariant
through 0(1/r') since s r r and gr~ are invariant through
0(1/r) and the change due to transforming the gradients
is also 1/r'. Hence Eq. (3.4) provides an invariant
formula for the wave-zone Poynting vector. Note that
g" and s' do not enter to 0(1/r'), showing that the
Newtonian-like parts do not affect the energy Qux of
radiation. Similarly, in electrodynamics, E does not
contribute to E)r,'B since Ez 1/r'.

'The derivation is similar to the one used in the discussion
Eq. (2.9bl,).

'One can always recognize the existence of such coordinate
waves in the Poynting vector since, starting from the frame (2.2},,
they are found entirely in g; and sr. In frame (2.2), g &;~+ is just
the right-hand side of Eq. (3.4) mthogl spatial averaging.
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We now show that the Poynting vector is indeed
—2z",;=2m' 1"i . The right-hand side of (3.4) is just
2ir' F'i +O(1/r') in the frame of Eqs. (2.2), and
2m~™I'~ can be verified to be coordinate invariant
through O(1/r') as above (the transformation terms
forming divergences of quadratic structures). Finally,—2s",;=2~™I"iin all frames. (The invariance of
~'&,; is also directly verifiable from its definition. ) The
invariance of the Poynting vector holds only if the
Lorentz frame at infinity is left unchanged by the
transformation, since the invariant components of g,,
and x'& discussed earlier in this section would otherwise
be altered. Under Lorentz transformations, V"" trans-
forms, of course, like the (s0) component of a Lorentz
tensor, as can be seen from its linearized theory defi-
nition.

In the presence of matter, the constraint equation
(2.3b) used above is modified to become

—2z-'&', ,=2z-'"F'i + V'sr" (3.5)

Er(k) = E(k)—k(k E)/k'

Ar(k) =sk)& B(k)/k'.

(3.8a)

(3.8b)

While Fourier measurements are, in principle, nonlocal
in space, for a fixed desired accuracy, the region
required is finite. In fact, electromagnetic wave meas-
urements are commonly of this type, as are recent
proposals for measuring gravitational waves. '

' Equations (3.7) again demonstrate the invariance of g, err
and ~'&~~ in the wave zone, since, as is well known, 4R &„p is
coordinate invariant in linearized theory.' J. Weber, Phys. Rev. 117, 306 (1960).

where to O(1/r'), any metric dependence in Esr" may
be replaced by its Oat space value. The total Poynting
vector, i.e., the energy Aux carried by all fields, in-
cluding the gravitational field, is

(3.6a)

while the measure of purely gravitational energy Aux
remains

(3.6b)

The separate cruxes are clearly additive.
The canonical variables can be measured in any

frame by means of Fourier analysis of the field, since
the kr))1 condition implies that the wave zone is large
enough to single out a particular Fourier component.
If one takes such a Fourier component of g;; and Bog;;,

g( )krrand z."(k)~r can be extracted algebraically.
Alternately, one may measure the curvature tensor
4E I"„p to obtain these physical quantities'.

g; (k)rr= (2/k') 4E," (k) (3.7a)

K'~(k) = —(sk~/k') Rp~ (k) (3.7b)

where k is the propagation vector. Such measurements
find a parallel in Maxwell theory, where Er, Ar are
found from E and B by

Finally, it may be noted that "S-matrix" types of
measurements made in the asymptotic domain are
sufFicient to determine a great deal of other information
about the interior region. For example, Plebanski" has
recently shown that the properties of orbits (even if
they remain in the strong field interior) can be deter-
mined by geodesic projection to the asymptotic domain.
Thus, with knowledge of the invariant physical quan-
tities at infinity, one may, in principle, discuss a wide
class of characteristics of the system with apparatus
located entirely outside strong gravitational fields.

EV. DISCUSSION

In this investigation, we have considered under what
circumstances the full self-interacting gravitational field
possesses a wave zone in which its wave modes behave
as a radiation field propagating independently of the
sources and according to the equations of the linearized
approximation. "To do this, it was necessary to examine
the rigorous field equations; it was then found that, if
the full metric becomes flat as 1/r at spatial infinity,
a wave zone always exists. In this region, the basic
physical quantities describing the radiations ampli-
tudes and the energy it carries are invariantly defined.
Further„ the above boundary condition on the metric
necessarily implies that a wave front exists, beyond
which the physical waves fall o6 rapidly. Otherwise,
one would find an infinite contribution to the energy
from the radiation in the wave zone (using the linearized
Hamiltonian (which is valid there), and then from
gr = (1/V') 1'&, gr would violate the asymptotic require-
ment. The necessity for the existence of a wave front
has previously been noted by Papapetrou. ""

It is instructive to compare our results with some
previous investigations on radiation. In a recent work,
Trautman" has discussed the generalization of the
Sommerfeld outgoing wave conditions to gravitation.
The main aim of Trautman's work was to formulate
appropriate radiation boundary conditions in the hope
that these conditions would be sufficient to replace the
initial Cauchy data for the gravitational field. In that
case, one would have an analog of the retarded Green's
function specification of solutions in linear theories, in
which knowledge of the external sources plus outgoing
wave boundary conditions are sufficient to determine

'0 J. Plebanski (private communication).
"A. Peres and N. Rosen, Nuovo cimento 13, 430 (1959), have

suggested that linearized theory may not be a valid approximation
even when g;; and 80g;; are weak. In arriving at this, they fail to
recognize that the apparently linear quantity &2g~ is really of
second order, this being the content of the constraint equation
(2.3a). Their difhculty is due to their "inconvenient" choice of
Cauchy data, g;; and 80g;; (rather than g;; and ~'&), which, as
they show, leads to an unstable determination of the solution.

'2 A. Papapetrou, Ann. Physik 2, 87 (1958).
1~The possibility of using a wave front to make the energy

finite seems to have been overlooked in a calculation similar to
Papapetrou's by A. Peres and N. Rosen, Phys. Rev. 115, 1085
(~959).

r4 A. Trautman, Bull. Acad. Sci. (Poland) 6, 403, 407 (195g).
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the solutions uniquely. Since Trautman was concerned
with characterizing outgoing waves, he did not investi-
gate the structure of the full field equations; in this
paper, we have stated under what circumstances (i.e.,
the wave zone criteria) such radiation may exist. Also,
the coordinate frames he considered were restricted by
asymptotic Deoonder conditions, so that all his
coordinate waves satisfied the wave equation asymp-
totically. Hence, no general separation was made
between the invariant wave amplitudes and coordinate
effects.

A minimal invariant statement of the outgoing wave
boundary conditions is provided by g;,~~ itself:
( cl,+ cl&)g,, rr~1/r'; this condition is significant in the

wave zone, where g, ,rr is 1/r. Since g;,rr is expressible
in terms of the curvature tensor LEqs. (3.7)j, these
two conditions may be rephrased as k"8„;,s 1/r', where
k~ is the outgoing propagation vector, k„=r)„(r t)—
The "pure radiation" conditions of Lichnerowicz" are:
k"E„p~=0= k ~„E p~ „,and it is easy to see that these
are satisfied in order 1/r in the wave zone, using the
Geld equations. It is interesting to note that, on physical
grounds, the conjecture that outgoing wave boundary
conditions determine the solution uniquely can be
related to one made by Papapetrou. " In turn, these
ideas are connected with the question of the positive-
definiteness of the gravitational field's energy. "Papa-
petrou has given arguments for believing that every
solution of the Einstein equations satisfying g„„—p„,~
0 as r —+ ~ is such that for t —+ ~, the fieM becomes
time-independent in a suitable frame. That is, g„,~
gs„.+k„, where gs„„is time-independent, while k„.—r 0
at t= ~. According to a theorem of Lichnerowicz, "
the only time-independent solution of the source-free
field equations is given by Oat space, i.e., g8„,=q„„
the Lorentz metric. Thus, one would expect' by this
theorem, that the energy (which is, of course, con-
served) is positive-definite since the linearized theory s

energyexpression (see I)8= J'd'rLsr (g;,rr &)'+(z-"rr)'j
~&0 is valid as 3 —+ ~. The physical situation at t= ~,
then, is of a spreading radiation field, such as f(t r)/r, —
which gets more diffuse with time. The conjecture of
Papapetrou therefore states that all initial field con-
figurations (however intense) eventually dissipate into
free radiation. The contrary possibility, namely a bound
state of the field (e.g. , a completely stable geon), which
Papapetrou excludes from his discussion (since it
cannot be treated by perturbation expansions), should

physically have negative energy. No such bound-state

"A. Lichnerowicz, Compt. rend. 246, 893 (1958).
"For some classes of solutions, it can be shown that the 6eld's

energy is positive-de6nite: D. Brill, Ann. Phys. 7, 466 (1959);
R. Arnowitt, S. Deser, and C. W. Misner, Ann. Phys. 11, 116
(1960).

'7 A. I.ichnerowicz, Theories ReLatieistes de La Gruv@utiorl, et de
L'ELectromagrIetisnse (Masson, Paris, 1955), p. 142.

"Actually, Lichnerowicz's theorem would have to be general-
ized to make this argument rigorous, since g~„„does not rigorously
satisfy the Einstein equations (the h„„acting as effective weak
sources).

solutions are known at present. Returning to Traut-
man s radiation boundary conditions, then, it would
seem physically reasonable that such conditions could,
in fact, replace initial conditions on the independent
gravitational wave modes. For, with the exception of
bound states, these modes would eventually spread out
to spatial in6nity and be determined by the radiation
conditions there.

Another approach to radiation has been that of
Petrov" and Pirani" in terms of the algebraic structure
of the Riemann tensor, E„, p. By analogy with Maxwell
theory (where E B=O=E'—Bs are the characteristic
algebraic properties of plane waves, and hold asymp-
totically for an outgoing radiation field), Pirani sug-
gested that the form of E„, p representing radiation
should be the case II-null of the Petrov classification.
Thus, their approach would suggest that the curvature
tensor represents free radiation in the wave zone only
if its 1/r leading term has the II-null structure. This,
in fact, agrees with the results obtained here. Thus,
using the linearized form of the Riemann tensor and of
the field equations (valid in the wave zone), one easily
finds" that R„„sis type II-null to order 1/r.

The wave zone metric provides the information
concerning the behavior of radiation; it is also of
interest to investigate the properties of the metric past
the wave front. More generally, one may examine the
truly asymptotic form of the metric whether or not
radiation exists. This will be carried out in a following
paper (IVc). Beyond the wave front, the dynamical
variables g;;~~, m;;~~ are negligible, leaving only the
Newtonian-like parts of the metric g~ and m' and the
coordinate-dependent components g; and m~. It is
shown in Appendix C that g~ and z' are determined
entirely by the energy-momentum I'& of the system;
they are of order P&/r and their derivatives are I'I'/r'
(see also IVc). Thus it is possible to choose coordinates
yielding nonoscillating g, and w (i.e., no coordinate
waves). It would seem reasonable, therefore, to expect
that one can choose frames in which Lichnerowicz's
boundary conditions'r g„„1/r aressatisfied even when
radiation is present. Of course, they must be understood
to hold in the truly asymptotic region beyond the wave
front at each fixed time.

"A. Z. Petrov, Sci. Notices Kazan State Univ. 114, 55 (1954).
~Q F. A. E. Pirani, Phys. Rev. 105, 1089 (1957); see also H.

Bondi, F. A. E.Pirani, and I. Robinson, Proc. Roy. Soc. (London)
A251, 529 (1959).

2' By a suitable choice of reference frame at a point, the II-Null
criterion states that R12]2=R]22Q=R3]3Q R2p2Q —R]33] RQ33p with
all other components not obtained by symmetry vanishing. This
condition is satis6ed by a wave travelling in the "1"direction, and
polarized in the "2, 3" directions: gssrr= gspr= fe'& '—~'&/r,
(ca= ~lt~) all other g;;vv=0. Note that the II-Null criterion is
satisfied by a superposition of spherical waves, provided they are
purely outgoing (or purely incoming). However, it is conceivable
that, from our wave zone definition, there may exist radiation
propagating in more than one direction. In that case, the II-null
criterion is satisfied by the separate contributions to the curvature
from each propagation direction. Of course, at sufIIciently large
distances, all waves look spherical.
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APPENDIX A

Ke state here a form of solution for the Poisson
equation which is useful in making estimates of size
of terms in text. In V'q= —krp, we expand q in
spherical harmonics:

totic behavior with that of its orthogonal components.
These components are dined by

f'. = (1/V')(f, —l-L(1/V')f -, -],. ), (8 1 )

(8 1b)

One finds
(A.1)

(8.1c)

with
r

Mi (r) =
~

d'r' pr" Yi„.
0

(A.2a)

(A.2b)

The solution (A.1) has incorporated the boundary
condition that p —+0 at inanity. Correspondingly, we

have for q, ;.
e.'=Q x)~(r'Y)~), k

—P M)~(r)x'r ' 'Y) . (A.3)

Ke will use these equations to obtain the asymptotic
behavior of y and y, ; both in the wave zone and
beyond. We first establish the behavior of q in a region
where p has the oscillatory character p Yie'~"/r". '

For our uses, the region will always extend over many
wavelengths, and of course ter))1. Then only the
moment Mi survives. By Eq. (A.2b),

where 1/V' means that solution of the Poisson equation
which vanishes at infinity. Note that only the operator
(1/V2)8;8; appears in Eqs. (8.1), and that the order of
these operations (8;8; and 1/V2) can be important to
insure that 1/V' exists. We restrict ourselves to a
"static" asymptotic behavior for f,; since oscillatory
terms have been separately treated in Appendix A.
Thus we assume

a.(8, (o)
(8 2)

and, of course, that f;; is regular for some interior region
where this asymptotic expansion is no longer valid.
By linearity, it is sufhcient to consider one term in f...
say f;,=Pa„/r". T—o compute (1/V')P, ;;, then, we

need the moments Mi of P,;. The monopole and
dipole moments can be evaluated explicitly:

r

kd„d;;d'r= =(NI 4;dS; (r )/r" ', (8.3a)

r

=(1k) 'r' "r'r' 'L1+O(1/kr)]+c, . (Ak) kd, rrdr;;d'r= =frrd, dS; fk ddS,;—
0

Here E is a radius beyond which the asymptotic form
for p is valid. The constant c& is determined by the
interior behavior of p,. it is the integral up to R plus
the contribution from the lower limit (E) of the re-
maining integral. From Eq. (A.1), one finds

-(a )/r" -'. (8.3b)

The symbol (a„) is used generically to represent angle
averages such as J'dQ Ya„.)For the higher moments,
we have

e'~r

(p ( /8) Yi I 1+O(1/kr)$+e), Yi . (A.5),(
r"

VJe shall be interested in text in the oscillatory part of
y. The cl term does not contribute to it; hence for
high frequencies, V' can be inverted locally. This is
true even if the c& term is numerically very large in
the wave zone.

A second case of interest is one in which one knows
only Jo"d'r

I p I
—=& is finite. Then

Here R is a radius beyond which the asymptotic
expansion for P is valid. The constant e) is determined

by the interior behavior of P; that is, it is the integral

up to R as well as the lower limit (R) contribution from
the remaining integral. LNote that in Eq. (8.4), but
not in Eq. (8.3), "r"' can mean lnr. j Then from
Eqs. (A.1,2) we have

so that
IM)„l ~(Brt

P I&,„l &B!r

(A.6a)

(A.6b)

1 (a) c, Yi„+2
g2 yn ) 2 ~1+1

(8.5)

For this situation, dp 1/r and (p, , 1/r'.

APPENDIX 8
In this appendix we consider the orthogonal decom-

position of a symmetric tensor f;;,and relate its asymp-

Thus, for e(3, the leading term in (8.5) is determined

by the asymptotic behavior of P (and no lnr factors
appear), while for e&~3, the leading term is affected

by the interior behavior of P (and the term with
3+1= r/, may also contain r' " lnr).
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We summarize our results relating to the decompo-
sition of f;;: First, the orthogonal components are
deflned whenever f;; vanishes as 1/r' at inflnity.
Secondly, terms slower than 1/r' in the asymptotic
expansion of f,,TT, f;,T, and f;,, are determined by, and
are comparable in magnitude to, the corresponding
terms in f,, (By Appendix A, the identical statement
holds for oscillatory terms. ) Finally the 1/r' and higher
terms are influenced by the interior behavior of f;,, so
the magnitude of their coefficients cannot be estimated
from the asymptotic behavior of f,, LThese static
"interior" terms in Eq. (B.S), which involve ci, can
be numerically quite large if the system has enormously
high interior multipole moments. In that case, they
could, in some region, be the dominant terms of the
orthogonal components of f;; even though they may
not be the leading terms in powers of,1/r. For the
cases e&3, however, they can always be made negligible
by taking r large enough. This procedure will be used
in Appendix C, but is not necessary for the wave zone
derivation in text. $

cis2I ~ +8 ( s2+r2r1 i)
1172g TT

EL' g2 (2ilt +1gT)
—(2&+sg'). t3+o(1/r') (C.ib)

where the 0(1/r') terms are negligible by the two
conditions on the wave zone which eliminate nonlinear
terms. We will derive Eqs. (2.9) by showing that all
terms except those involving g;,~~ and x'&T~ are negli-
gible. We first show that 2r', ; 1/r' and is negligible.
(Note that 1/r' is not a priori negligible. with respect to
1/r, since the ratio of such terms might be a large
number such as R/r where R is a length of the order of
the wave front radius. ) From the constraint equation
(2.3b), we have

(C 2)

Sy Appendix A, the oscillatory parts of m. ', ; arise
entirely from the oscillatory parts of (2ri'), in the

APPENDIX C

We give an alternate derivation of Eqs. (2.9), that
the rigorous dynamical modes obey the linearized
equations in the wave zone. The proof is performed
directly on the asymptotic form of the field equations
without applying the orthogonal decomposition oper-
ator on them. This can be done by use of coordinate
conditions (2.2), and it will then be seen that the
results hold in any asymptotically rectangular frame.

The usefulness of the frame (2.2) lies in the fact that
for it, g;;=0=~'&T. Thus by substituting for g;; and
2r" their decomposition (2.1) into Eqs. (2.7), the latter
may be written as

tlogig' +clogs j
= 22r'&TT+ (22r'+tl, ) + (22r &'+ti;),

28,,m, i+0—(1/r'), (C.1a)

wave zone. These behave as ji'ase'""/r2, and, by
Eq. (A.S), contribute to 2r'; there a term kase'"*/r',
which is negligible. We may therefore assume in the
remainder of the derivation of 2r', ; that (2ri") is non-
oscillatory in the wave zone. The moment (see Ap-
pendix A) associated with the source (2ri"); is

r

Mi =
)~

r"Yi '(TrI"), ,dsr'

0

r'I'im'

4p

We estimate M~ as follows:

(r"Yt„'),,(2ri")dsr'. (C.3)

M'1 (r'+2(I2ri'"I)+r' 1 12rl" Id'r',
Jp

(c.4)

where the symbol ( ) represents the angular average.
Hence from Eqs. (A. 1), (A.2a),

"An identical situation holds in electrodynamics in the presence
of a current j„.One usually requires that J'

~ js ~

d'r is comparable
in size to J'j„d r. For anomalous situations, the wave zone must
be redefined as in the gravitational case.

f dr
(I2ri"'I)&'r'+ ' d'r" I2ri" I. (C.5)J„,s J,

We note first that, since 2(2rI") is just the momentum
density of the field, 2Js"d'r(2rl") =P'(~P . In the
inequality (C.5), there appear the absolute values of
the density. It can be shown (see end of this Appendix)
that 2r'&' and I";2 each go as 1/r+' beyond the wave
zone, so that I2TI"

I
1/r'+' there; hence these integrals

exist (assuming, as always, the regularity of the fleld
throughout the interior). Setting Js"dsr I2ri"

I
=P",

one sees that
I
2r';

I
(P' /r'. For most physical situations

one expects P"~P'&P'; it is conceivable that there
can exist situations with portions of the interior Geld
carrying enormous momenta (P" R, the radius of
the wave zone) such that these cancel to the small
number P'(«R). Here, one would have to redefine"
the wave zone to be a region of larger r such that P"
again becomes ((r (and wait for the waves to reach the
larger boundary). For simplicity, then, we shall assume
that P"'(&r, so that

',*-(P"/r) (1/r), (c.6)

and is negligible in (C.1). To establish that the full
m'; is also negligible one again uses the methods of
Appendix A, since

V22r', ;=—(2ri"),,—8;8pr', „. (C.7)

The first source term, (2rl');, may be handled as before,
while the 8;B,m~, „source can be shown by Appendix 8
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to contribute (I "/r) 1/r, using the previous estimates
(C.4, C.5) for 7r",„.

%e next examine the behavior of g~,;; this is
obtained from Eq. (2.3a). The linear part of 'R is
clearly —V'g~ and so the equation may be rewritten as

(C.S)

Since j'(P'd'r= —J'Pg~d'r=P', one may think of (P'

as an energy density. (Note, however, that (P' is not
the Hamiltonian density —V's)g, pr, 7r'&'rr), as gr and
m' have not been eliminated in terms of canonical
variables in (P (see III).) From the wave zone condi-
tions, it is clear that 6" 1/r' and is negligible, so that
V'gr is to be discarded in Eq. (C.1b). To see that gr, ;
is also negligible in this equation, we use the multipole
expansion of Appendix B.The source term is then 6";,.
Again the oscillatory terms of 6" can be treated sepa-
rately, and shown to be negligible, i.e., to contribute
to gr, ;; a term k'f'e's*/r'. From the remaining part
of (P', which is nonoscillatory in the wave zone, one
then finds a contribution to gr, ;, P"/r', where P"
= J's"d'r~(P'~. One can show I'" to be finite, since
(Pe 1/r'+' beyond the wave zone; its magnitude is
expected in general to be P'= fd'r(P'. Again, if
there exist situations of large positive and negative
energy contributions to the total P', each much greater
than P', then P" would greatly exceed P', and one
would redefine the wave zone appropriately further out.

The remaining terms to be proven negligible in
Eqs. (C.1) (now that gr;, , rr'; and hence Berr'; are
known to be negligible) are ri;; and E,,; as well as
8&g~,;. The p; and Ã terms are determined by the
coordinate conditions, Eqs. (2.2): g, , ;=0=or . Thus
the divergence of Eq. (2.6a) provides an equation from
which p; may be estimated by the techniques of
Appendix A. Similarly, the trace of Eq. (2.6b) allows

E to be estimated. These estimates show that g;, and
1V;; go as 1/r' and are negligible, by use of the
absolute value bounds on multipole integrals. (Note
also that q; and E go as 1/r. ) Thus Eqs. (2.9) have

been derived; at the same time, one sees that Eqs.
(2.11, 2.12) are also valid in the frame (2,.2).

To see that Eqs. (2.9) hold in any asymptotically
rectangular frame, one uses the invariance of g;;~~ and
s."Tr to 0(1/r) and the fact that the transformation
of the explicit derivatives in these equations only
introduces higher order terms. Equations (2.11) are
similarly invariant, while (2.12) are clearly the trans-
form of the above results to an arbitrary frame, due
to the transformation properties of E and ri; (i.e., gs„).
The above analysis has therefore shown that, in the
wave zone, the full set of linearized theory equations
are valid at al/ frequencies.

Ke conclude this Appendix with a brief discussion
of the behavior of the metric beyond the wave front.
A more complete analysis of this domain will be found
in IVc. The canonical modes g;;~~, m"~~ must fall off
at least as 1/rl+' in order that the energy in the
asymptotic region, J'"d [sr-', (g;r

r r, z)'+ (s "Tr)'] be
finite. In the frame (2.2), g;=0=s-r while the quantities
g~ and x' are determined by the constraint equations
(2.3). As shown in III, these equations may be re-
written as

g "=V's, (C.9a)

—2s.'& —= —2(s' .+s&' ")=V';, (C.9b)

where 1"'„is the energy-momentum density in the frame
(2.2). Since these are Poisson-like equations, the leading
1/r terms in their solutions depend only on the monopole
moments of the sources, I'„=J' T'„d'r. O—ne has thens'

(C.10a)

(C.10b)

Thus gr; and s'; go as 1/r', and by conservation of
I'„ their time derivatives go faster than 1/r. Conse-
quently, (s P') goes faster than 1/r' and J'd'r

~

rrI"
~

exists. A similar derivation shows that J'd'r
~

6"
~

exists.
23 In distinction to the wave zone analysis, one need not estimate

here the coeKcients of terms going faster than 1/r since r may be
taken arbitrarily large beyond the wave front.


